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Abstract

We present the first algorithm to morph graphs on the torus.
Given two isotopic essentially 3-connected embeddings of the
same graph on the Euclidean flat torus, where the edges in both
drawings are geodesics, our algorithm computes a continuous
deformation from one drawing to the other, such that all edges
are geodesics at all times. Previously even the existence of
such a morph was not known. Our algorithm runs in O(n1+ω/2)
time, where ω is the matrix multiplication exponent, and the
computed morph consists of O(n) parallel linear morphing steps.
Existing techniques for morphing planar straight-line graphs do
not immediately generalize to graphs on the torus; in particular,
Cairns’ original 1944 proof and its more recent improvements rely
on the fact that every planar graph contains a vertex of degree
at most 5. Our proof relies on a subtle geometric analysis of
6-regular triangulations of the torus. We also make heavy use of
a natural extension of Tutte’s spring embedding theorem to torus
graphs.

1 Introduction

Computing a morph between two given geometric objects
is a fundamental problem, with applications to questions
in graphics, animation, and modeling. In general, the goal
is twofold: ensure the morphs are as low complexity as
possible, and ensure that the intermediate objects retain
the same high level structure throughout the morph.

Morphs between planar drawings are well studied
in the topology, graph drawing, and computer graphics
literature, with many variants. A morph between two
planar straight-line embeddings Γ0 and Γ1 of the same
planar graph is a continuous family of planar embeddings
Γt parametrized by time, starting at Γ0 and ending at Γ1. In
the most common formulation, all edges must be straight
line segments at all times during the morph; there are then
many variables of how to optimize the morph.

In this paper, we consider the more general setting
of morphs between two isotopic embeddings of the same
graph on the flat torus. To our knowledge, ours is the
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first algorithm to morph graphs on any higher-genus
surface. In fact, it is the first algorithm to compute
any form of isotopy between surface graphs; existing
algorithms to test whether two graphs on the same surface
are isotopic are non-constructive [29]. Our algorithm
outputs a morph consisting of O(n) steps; within each step,
all vertices move along parallel geodesics at (different)
constant speeds, and all edges remain geodesics (“straight
line segments”). Our algorithm runs in O(n1+ω/2) time; the
running time is dominated by repeatedly solving a linear
system encoding a natural generalization of Tutte’s spring
embedding theorem.

1.1 Prior Results (and Why They Don’t Generalize).
Cairns [20, 21] was the first to prove the existence of
a straight-line continuous deformation between any two
isomorphic planar straight-line triangulations. A long series
of later works, culminating in papers by Alamdari et al. [1]
and Kleist et al. [54], improved and generalized Cairns’
argument to apply to arbitrary planar straight-line graphs,
to produce morphs with polynomial complexity, and to
derive efficient algorithms for computing those morphs.
(For a more detailed history of these results, we refer the
reader to Alamdari et al. [1] and Roselli [76].) Cairns’
inductive argument and its successors fundamentally rely
on two simple observations: (1) Every planar graph has
at least one vertex of degree at most five, and (2) Every
polygon with at most five vertices has at least one vertex
in its visibility kernel. Thus, every planar straight-line
graph contains at least one vertex that can be collapsed to
one of its neighbors while preserving the planarity of the
embedding.

Unfortunately, the first of these observations fails for
graphs on the torus; it is easy to construct a triangulation
of the torus in which every vertex has degree 6. Moreover,
not every star-shaped hexagon has a vertex in its visibility
kernel. Thus, it is no longer immediate that in any geodesic
toroidal triangulation, one can move a vertex to one of its
neighbors while maintaining a proper geodesic embedding.
(Indeed, the fact that we can actually collapse such an edge
is the main topic of Section 4.)

Floater and Gotsman [42] described an alternative
method for morphing planar triangulations using a gener-
alization of Tutte’s spring-embedding theorem [84]. Every
interior vertex in a planar triangulation can be expressed
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as a convex combination of its neighbors. Floater and Gots-
man’s morph linearly interpolates between the coefficients
of these convex combinations; Tutte’s theorem implies that
at all times, the interpolated coordinates are consistent with
a proper straight-line embedding. Gotsman and Surazh-
sky later generalized Floater and Gotsman’s technique to
arbitrary planar straight-line graphs [47,80,81].

At its core, Floater and Gotsman’s algorithm relies
on the fact that the system of linear equations expressing
vertices as convex combinations of their neighbors has
full rank. An analogous system of equations describes
equilibrium embeddings of graphs on the torus [38, 46];
however, for graphs with n vertices, this linear system has
2n equations over 2n variables (the vertex coordinates),
but its rank is only 2n− 2. If the linear system happens to
have a solution, that solution is consistent with a proper
embedding [28,32,46,62]; unfortunately, the system is not
always solvable.

When the coefficients associated with each edge are
symmetric, the linear system has a two-dimensional set
of solutions, which correspond to proper embeddings
that differ only by translation. (See our Theorem 2.1
below.) Thus, if two given triangulations can both be
described by symmetric coefficients, linearly interpolating
those coordinates yields an isotopy [30]. Otherwise,
however, even if the initial and final coefficient vectors
are feasible, weighted averages of those coefficients might
not be. Steiner and Fisher [79]modify the linear system by
fixing one vertex, restoring full rank. However, while the
solution to this linear system always describes a geodesic
drawing of the graph, edges in that drawing can cross. In
either setting, linearly interpolating the edge coefficients
does not yield a morph.

Both of these approaches produce planar morphs
that require high numerical precision to describe exactly.
Barerra-Cruz et al. [11] describe an algorithm to morph
between two isomorphic weighted Schnyder drawings of the
same triangulation, each determined by a Schnyder wood
together with an assignment of positive weights to the
faces. The resulting morph consists of O(n2) steps, where
after each step, all vertices lie on a 6n× 6n integer grid.
The algorithm relies crucially on the fact that the set of
Schnyder woods of a planar triangulation is a distributive
lattice [41]. Despite some initial progress by Barerra-Cruz
[9], it is still an open question whether this algorithm can
be extended to arbitrary planar triangulations, or even to
arbitrary planar straight-line graphs. Beyond that, it is also
not clear whether this result can be extended to toroidal
graphs. Castelli Aleardi et al. [22] and Gonçalves and
Lévêque [45] describe natural generalizations of Schnyder
woods to graphs on the torus; however, the Schnyder woods
(or 3-orientations) of a toroidal triangulation do not form
a distributive lattice.

Considerably less is known about morphing graphs
on higher-genus surfaces. Like earlier planar morphing
algorithms, our algorithm follows the same inductive
strategy as several earlier algorithms for transforming
combinatorial embeddings into geodesic embeddings on
the torus [55,65,66]. Our algorithm most closely resembles
an algorithm of Kocay et al. [55], which transforms any
essentially 3-connected toroidal embedding into an isotopic
geodesic embedding, by repeatedly collapsing vertices with
degree at most 5 until the embedding becomes a 6-regular
triangulation.

1.2 Our Results. We begin by reviewing relevant defini-
tions and background in Section 2. Most importantly, we
review a natural generalization of Tutte’s spring embedding
theorem [84] to graphs on the flat torus, first proved by
Y. Colin de Verdière [28]; see Theorem 2.1. We present a
technical overview of our contributions in Section 3, defer-
ring details to later sections for clarity.

Like many previous planar morphing papers, most of
our paper is devoted to computing pseudomorphs between
triangulations. A pseudomorph is a continuous deformation
in which vertices are allowed to coincide during the motion
but edges are not allowed to cross. Our pseudomorph
algorithm uses two different operations that reduce the
complexity of the graph: direct collapses, which move
one vertex to one of its neighbors, and spring collapses,
which increase the weight of one edge to infinity while
maintaining an equilibrium embedding, as described by
Theorem 2.1. The heart of our result is a novel analysis of
6-regular toroidal triangulations in Section 4, which implies
that every non-trivial toroidal triangulation contains at least
one edge that can be directly collapsed without introducing
any crossings. We regard this analysis as the main technical
contribution of our paper. We describe and analyze spring
collapses in Section 5, again relying on Theorem 2.1. We
describe and analyze the base case of our pseudomorph
algorithm in Section 6: a special class of triangulations we
call zippers, where every vertex is incident to a loop.

In Section 7, we show that a mild generalization of
techniques from Alamdari et al. [1] can be used to perturb
our pseudomorph into a proper morph; this perturbation
technique gives us our final morphing algorithm for tri-
angulations. Finally, in Section 8, we describe a simple
reduction from morphing essentially 3-connected geodesic
toroidal embeddings to morphing triangulations, again us-
ing Theorem 2.1. We conclude in Section 9 with some open
problems and future directions to consider.

2 Background and Definitions

2.1 The Flat Torus. The (square) flat torus T is the
metric space obtained by identifying opposite sides of the
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unit square [0, 1]2 in the Euclidean plane via (x , 0)∼ (x , 1)
and (0, y)∼ (1, y). See Figure 2.1. Equivalently, T is the
quotient space T = R2/Z2, obtained by identifying every
pair of points whose x- and y-coordinates differ by integers.
The function π: R2 → T defined by π(x , y) = (x mod 1,
y mod 1) is called the covering map or projection map.

A geodesic in T is the projection of any line segment
in R2; geodesics are the natural analogues of “straight line
segments” on the flat torus.1 We emphasize that a geodesic
is not necessarily the shortest path between its endpoints;
indeed, there are infinitely many geodesics between any
two points on T. A closed geodesic in T is any geodesic
whose endpoints coincide; the two ends of any closed
geodesic are locally collinear.

2.2 Toroidal Embeddings. Geodesic toroidal drawings
are the natural generalizations of straight-line planar
graphs to the flat torus. Formally, a geodesic toroidal
drawing Γ of a graph G is a mapping of vertices to
distinct points of T and edges to non-intersecting geodesics
between their endpoints. Following standard usage in
topology, we refer to any such drawing as embedding, to
emphasize that edges do not cross.2

A homotopy between two (not necessarily injective)
drawings Γ0 and Γ1 of the same graph G is a continuous func-
tion H : [0, 1]×G→ Twhere H(0, ) = Γ0 and H(1, ) = Γ1. A
cycle on T is contractible if it is homotopic to a single point
and non-contractible otherwise. A homotopy is an isotopy
if each intermediate function H(t, ) is injective. In other
words, an isotopy is a continuous family of embeddings
(Γt)t∈[0,1] that interpolates between Γ0 and Γ1. (Edges in
these intermediate embeddings Γt are not required to be
geodesics.)

Two toroidal embeddings of the same graph need not
be isotopic, even if they have the same rotation system; see
Figure 2.1. A recent algorithm of É. Colin de Verdière and
de Mesmay [29] can decide whether two toroidal drawings
of the same graph are isotopic in linear time; we describe
an arguably simpler linear-time algorithm in Appendix A.
However, neither of these algorithms actually construct
an isotopy if one exists; rather, they check whether the

1Identifying opposite sides of any other parallelogram yields a different
flat torus. All flat tori are related by homeomorphisms induced by linear
transformations that map geodesics to geodesics, and therefore map
morphs to morphs. Thus, our results automatically apply to embeddings
on any flat torus. On the other hand, our results do not apply to geodesic
embeddings on the standard torus of revolution in R3; geodesics on that
surface have radically different behavior.

2Formally, an embedding is a continuous injective map from the graph
(as a topological space) to the torus T. We note that this usage differs
from standard terminology in many other graph drawing papers, where
“embedding” refers to either a homeomorphism class of (not necessarily
injective) drawings or a rotation system.

vu vu

Figure 2.1. Two combinatorially equivalent but non-isotopic geodesic
toroidal triangulations with parallel edges and loops. Opposite edges of
the square are identified.

two embeddings satisfy certain topological properties that
characterize isotopy [57–59].

We explicitly consider embeddings of graphs with
parallel edges and loops. In every geodesic toroidal
embedding, every loop is non-contractible (since otherwise
it would be a single point), and no two parallel edges
are homotopic (since otherwise they would coincide). In
this paper, we consider only geodesic embeddings; we
occasionally omit the word “geodesic” when it is clear from
context.

The universal cover eΓ of a geodesic toroidal embed-
ding Γ is the unique infinite straight-line plane graph whose
projection to T is Γ ; that is, the projection of any vertex,
edge, or face of eΓ is a vertex, edge, or face of Γ , respectively.
A lift of any vertex u in Γ is any vertex in the preimage
π−1(u) ⊂ V (eΓ ). Similarly, each edge of Γ lifts to an infinite
lattice of parallel line segments in R2, and each face lifts
to an infinite lattice of congruent polygons.

vu vuvu vu

vu vu vu

vu vu vu

vu vu

vu vu vu

vu vu vu

Figure 2.2. Universal covers of the geodesic embeddings from Figure 2.1,
with the link of one vertex emphasized in each.

The link of a vertex eu in the universal cover eΓ is the
simple polygon formed by the boundary of the union of the
(closed) faces incident to eu; the vertices of the link are the
neighbors of eu. We emphasize that when projecting a link
down to the flat torus, the vertices and edges of the link
need not remain distinct; see Figure 2.1 for an example.
For a vertex u in Γ , we informally write “link of u” to refer
to the link of an arbitrary lift eu of u. Because the links of
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any two lifts are congruent, any property proven about one
lift applies to all of the others.

Geometric properties of geodesics, polygons, and
embeddings on the flat torus are defined by projection
from the universal cover. For example, the angle between
two edges (or geodesics) e and e′ at a common vertex u is
equal to the angle between lifts ee and ee′ at a common lift eu.
Similarly, the cyclic order of edges around a vertex u of Γ
is the cyclic order of the corresponding edges around an
arbitrary lift eu. In particular, if u is incident to a loop, that
loop appears twice in cyclic order around u, and each lift eu
of u is incident to two different lifts of that loop. Finally,
angles in the link of a vertex in Γ are projections of angles
in the link of an arbitrary lift eu.

A toroidal embedding Γ is a triangulation if every
face of Γ is bounded by three edges, or equivalently, if its
universal cover eΓ is a planar triangulation. In particular, we
do not insist that triangulations are simplicial complexes.
Every geodesic toroidal embedding Γ is essentially simple,
meaning its universal cover eΓ is a planar embedding
of a simple (albeit infinite) graph. A geodesic toroidal
drawing Γ is essentially 3-connected if its universal cover eΓ
is 3-connected [45,67–70]; every geodesic triangulation is
essentially 3-connected.

2.3 Coordinates and Crossing Vectors. To represent an
arbitrary straight-line embedding of a graph in the plane,
it suffices to record the coordinates of each vertex; each
edge in the embedding is the unique line segment between
its endpoints. However, vertex coordinates alone are not
sufficient to specify a toroidal embedding; intuitively, we
must also specify how the edges of the graph wrap around
the surface.

Formally, we regard each edge of the graph G as a
pair of opposing half-edges or darts, each directed from
one endpoint, called the tail, toward the other endpoint,
called the head. We write rev(d) to denote the reversal of
any dart d; thus, for example, head(rev(d)) = tail(d) and
rev(rev(d)) = d for every dart d.

We can represent any geodesic embedding of any
graph G onto the torus by associating a coordinate vector
p(v) ∈ [0,1)2 with every vertex v of G and a crossing
vector x(d) ∈ Z2 with every dart d of G. The coordinates
of a vertex specify its position in the unit square; to
remove any ambiguity, we assign points on the boundary
of the unit square coordinates on the bottom and/or left
edges. The crossing vector of a dart records how that dart
crosses the boundaries of the unit square. Specifically, the
first coordinate of x(d) is the number of times d crosses
the vertical boundary to the rightward (with negative
numbers counting leftward crossings), and the second
coordinate of x(d) is the number of times d crosses
the horizontal boundary upward (with negative numbers

counting downward crossings). Crossing vectors are anti-
symmetric: x(rev(d)) = −x(d) for every dart d. See
Figure 2.3.

vu vu

←[–1,1]

←[–1,0] [0,–1]→

[0,0]→

[0
,1]

→

←[–1,0]
[0,0]→

[1,1]→

Figure 2.3. The geodesic embeddings from Figure 2.1, showing the
crossing vectors of all four darts from u to v.

Crossing vectors and their generalizations have been
used in several previous algorithms for surface graphs
[23–25,37,39,40] and simplicial complexes [19,34,35] to
encode the homology classes of cycles. Crossing vectors are
also equivalent to the translation vectors traditionally used
to model periodic (or “dynamic”) graphs [27,31,48–50,52,
56,73,74,85] and more recently used to model periodic
bar-and-joint frameworks [16,17,33,53,64,72,77,78].

In principle, our morphing algorithm can be modified
to update the coordinates of any vertex v and the crossing
vectors of darts incident to v whenever v crosses the
boundary of the unit square, with only a small penalty
in the running time. But in fact, this maintenance is not
necessary; it suffices to modify only the vertex coordinates,
keeping all crossing vectors fixed throughout the entire
morph, even when vertices cross the boundary of the unit
square. We describe how to interpret toroidal embeddings
with these more relaxed coordinates in Appendix A.

2.4 Equilibrium Embeddings. We make frequent use of
the following natural generalization of Tutte’s “spring em-
bedding” theorem for 3-connected planar graphs [84], first
proved by Y. Colin de Verdière [28] and later independently
reproved by several others [32,46,62]:

THEOREM 2.1. Let Γ be any essentially 3-connected geodesic
toroidal drawing, where each edge e has an associated weight
λ(e)> 0. Then Γ is isotopic to a geodesic embedding Γ∗ in T
such that every face is convex and each vertex is the weighted
center of mass of its neighbors; moreover, this equilibrium
embedding is unique up to translation.

The equilibrium embedding Γ∗ can be computed by
solving a linear system for the vertex coordinates p∗(v),
treating the crossing vectors x(d) and weights λ(d) as
constants [28, 38, 46, 79]. For each vertex v, the system
contains the constraint

(?)
∑

tail(d)=v

λ(d) ·
�

p∗(head(d)) + x(d)− p∗(v)
�

= (0, 0),
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where λ(d) = λ(rev(d)) is the weight of the edge contain-
ing dart d. This linear system has a two-dimensional set
of solutions, which differ by translation [28,46]; we can
remove this ambiguity by fixing p∗(r) = (0, 0) for some ar-
bitrary root vertex r [79]. Some vertex coordinates p∗(v) in
the solution to this system may lie outside the unit square;
as we explain in Appendix A, it is possible to move all
coordinates back into the unit square by appropriately ad-
justing the crossing vectors, but in fact no such adjustment
is necessary.

The support of this linear system is the toroidal
graph G, which has balanced separators of size O(

p
n) [3].

Thus, the linear system can be solved in O(nω/2) time using
the generalized nested dissection technique of Lipton et
al. [61], where ω< 2.37286 is the matrix multiplication
exponent [4,60].

2.5 Morphs and Pseudomorphs. A morph between
two isotopic geodesic toroidal drawings Γ0 and Γ1 is a
continuous family of geodesic drawings (Γt)t∈[0,1] from
Γ0 to Γ1; in other words, a morph is a geodesic isotopy
between Γ0 and Γ1. Any morph is completely determined
by the continuous motions on the vertices; geodesic edges
update in the obvious way.

A morph is linear if every vertex moves along a
geodesic from its initial position to its final position at
a uniform speed, and a morph is parallel if all vertices
move along parallel geodesics, that is, along projections of
parallel line segments.3 In this paper, we construct morphs
that consist of a sequence of O(n) parallel linear morphs.
Every morph of this type can be specified by a sequence
of isotopic geodesic toroidal embeddings Γ0, . . . , Γk and for
each index i, a set of parallel geodesics connecting the
vertices of Γi to corresponding vertices of Γi+1.

Like many previous planar morphing algorithms, our
morphing algorithm first constructs a pseudomorph, which
is a continuous family of drawings in which edges remain
geodesics, vertices may become coincident, but edges never
cross. The most basic ingredient in our pseudomorph
is an edge collapse, which moves the endpoints of one
edge together until they coincide.4 Collapsing an edge
also collapses the faces on either side of that edge to
single edges; edge collapses also preserve essential 3-
connectivity. Our final morph is obtained by carefully

3Alamdari et al. [1] and their predecessors [7, 10] call these “unidi-
rectional" morphs; however, this term suggests incorrectly that vertices
cannot move in opposite directions. Our usage differs from other papers,
which use “parallel morph” to describe a morph that keeps each edge
parallel to its original embedding [12–15].

4This procedure is often called edge contraction in planar graph
morphing literature; we use the term “collapse” to avoid any confusion
with the topological notion of contractible cycles.

perturbing a pseudomorph consisting of edge collapses
and their reversals.

3 Technical Overview

In this section, we give a technical overview of our results:
at a high level, first we develop an algorithm to compute
a pseudomorph between geodesic toroidal triangulations,
and then we describe how to use this algorithm to compute
a morph between essentially 3-connected geodesic toroidal
embeddings. Here we give only a brief overview of several
necessary tools; each of these components is developed in
detail in a later section of the paper.

3.1 List of Ingredients. We begin with some essential
subroutines and structural results.

3.1.1 Direct collapses. Following Cairns’ approach [20]
and its later derivatives [1, 2, 6, 7, 10], a direct collapse
consists of moving a vertex u along some edge to another
vertex v, at uniform speed, until u and v coincide, keeping
all other vertices fixed. To simplify our presentation, we
require that the moving vertex u is not incident to a loop.
We informally call a vertex good if it is not incident to a
loop and it can be directly collapsed to one of its neighbors
without introducing any edge crossings, and bad otherwise;
see Section 4 for a simple geometric characterization of
good vertices.

As noted by Cairns [20], every vertex of degree at
most 5 not incident to a loop is good; indeed, this fact,
along with the fact that every planar graph has a vertex
of degree at most 5, forms the basis of Cairns’ approach
and its derivatives for computing (pseudo)morphs between
straight-line planar drawings. We prove in Lemma 6.1 that
in any geodesic toroidal triangulation, a vertex of degree at
most 5 cannot be incident to a loop, so in fact all vertices
of degree at most 5 are good.

On the other hand, Euler’s formula implies that the
average degree of a toroidal graph is exactly 6, and there
are simple examples of degree-6 vertices that are bad. Mor-
phing between torus graphs thus requires new techniques
to handle the special case of 6-regular triangulations.

3.1.2 6-regular triangulations. We then prove in
Lemma 6.2 that if a 6-regular toroidal triangulation con-
tains a loop, then in fact every vertex is incident to a loop;
we call this special type of triangulation a zipper. Because
all the loops in any non-trivial zipper are parallel, morphing
between isotopic zippers Z0 and Z1 turns out be straight-
forward. If the zippers have only one vertex, they differ by
a single translation. Otherwise, two parallel linear morphs
suffice, first sliding the loops of Z0 to coincide with the
corresponding loops in Z1, and then rotating the loops to
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Figure 3.1. Our pseudomorph consists of a direct collapse, a recursive pseudomorph, and a reversed spring collapse.

move vertices and non-loop edges to their locations in Z1.
We describe and analyze zippers in detail in Section 6.

We analyze 6-regular triangulations without loops in
detail in Section 4; we regard this analysis as the main
technical contribution of the paper. Averaging arguments
imply that in any 6-regular triangulation where every vertex
is bad, in short a bad triangulation, every vertex link is
one of two specific non-convex hexagons that we call cats
and dogs, illustrated in Figure 4.4. Analysis of how cats
and dogs can overlap implies that any bad triangulation
must contain a non-contractible cycle of vertices (each of
whose link is a cat) that consistently turns in the same
direction at every vertex, and therefore has non-zero
turning angle, contradicting the fact that the total turning
angle of every non-contractible cycle on the flat torus is
zero [75]. We conclude that bad triangulations do not exist;
every geodesic toroidal triangulation that is not a zipper
contains at least one good vertex.

3.1.3 Equilibria and spring collapses. Suppose we are
given two isotopic geodesic triangulations Γ0 and Γ1 that
are not zippers. Our analysis implies that Γ0 and Γ1 each
contain at least one good vertex. However, it is possible
that no vertex is good in both Γ0 and Γ1. More subtly, even
if some vertex u is good in both triangulations, that vertex
may be collapsible along a unique edge e0 in Γ0 but along
a different unique edge e1 in Γ1.

The second problem also occurs for straight-line planar
embeddings. Cairns’ solution to this problem was to
introduce an intermediate triangulation Γ1/2 in which u can
be collapsed along both e0 and e1. Recursively constructing
pseudomorphs from Γ0 to Γ1/2 and from Γ1/2 to Γ1 yields a
pseudomorph from Γ0 to Γ1 with exponentially many steps.
Subsequent refinements of Cairns’ approach, culminating
in the work of Alamdari et al. [1] and later improvement
by Kleist et al. [54], obtained a pseudomorph with only
polynomial complexity by finding clever ways to avoid this
intermediate triangulation.

Our algorithm does introduce one intermediate trian-
gulation, but still avoids the exponential blowup of Cairns’
algorithm. Specifically, we use an equilibrium triangula-
tion Γ∗ isotopic to Γ0 and Γ1, as given by Theorem 2.1.

A vertex that is good in Γ0 might still be bad in Γ∗, so in-
stead of applying a direct collapse to Γ∗, we introduce a
novel method for collapsing edges in an equilibrium em-
bedding in Section 5. Intuitively, we continuously increase
the weight of an arbitrary edge e to infinity, while maintain-
ing the equilibrium triangulation given by Theorem 2.1.
This spring collapse moves the endpoints of e together,
just like a direct collapse. By analyzing the solutions to the
equilibrium linear system (?), we show in Section 5.1 that
a spring collapse is a parallel pseudomorph, and in fact
can be simulated by an equivalent parallel linear pseudo-
morph. Moreover, this parallel linear pseudomorph can be
computed by solving a single instance of system (?).

3.2 Recursive Pseudomorph Between Triangulations.
We are now ready to describe our recursive algorithm to
compute a pseudomorph between two isotopic geodesic tri-
angulations Γ0 and Γ1. We actually explain how to compute
a pseudomorph Ψ0 from Γ0 to an isotopic equilibrium trian-
gulation Γ∗. The same algorithm gives a pseudomorph Ψ1
from Γ1 to Γ∗, and concatenating Ψ0 with the reversal of Ψ1
yields the desired pseudomorph from Γ0 to Γ1.

If Γ0 is a zipper, we morph directly between Γ0 and
the equilibrium zipper Γ∗ using at most two parallel linear
morphs. This is the base case of our recursive algorithm.

If Γ0 is not a zipper, then it contains a good vertex u.
By definition, u can be directly collapsed along some edge e
to another vertex v, without introducing edge crossings.
This direct collapse gives us a parallel linear pseudomorph
from Γ0 to Γ ′0, a geodesic toroidal triangulation whose
underlying graph G′ has n− 1 vertices. On the other hand,
performing a spring collapse in Γ∗ by increasing the weight
of the same edge e to ∞ leads to a drawing where u
and v coincide, that is, an equilibrium triangulation Γ ′∗
of G′ that is isotopic to Γ ′0. Finally, because Γ ′0 and Γ ′∗ are
isotopic embeddings of the same graph G′, we can compute
a pseudomorph from Γ ′0 to Γ ′∗ recursively.

Our full pseudomorph from Γ0 to Γ∗ thus consists of
the direct collapse from Γ0 to Γ ′0, followed by the recursive
pseudomorph from Γ ′0 to Γ ′∗, followed by the reverse of the
spring collapse from Γ∗ to Γ ′∗. See Figure 3.1.
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Altogether our pseudomorph consists of O(n) parallel
linear pseudomorphs: at most n direct collapses to reach
a zipper, O(1) parallel linear pseudomorphs to reach an
equilibrium zipper, and finally at most n reversed spring
collapses. The time to compute the overall pseudomorph is
dominated by the time needed to compute the O(n) equi-
librium embeddings; the overall running time is O(n1+ω/2).

3.3 Morphing Between Embeddings. In Section 7, we
show that a technique introduced by Alamdari et al. [1]
for perturbing planar pseudomorphs into morphs can be
applied with only minor modifications to our toroidal pseu-
domorphs, to produce morphs between geodesic toroidal
triangulations. This perturbation step adds only O(n2) over-
head to the running time of our algorithm, and the resulting
morphs consist of O(n) parallel linear morphs.

Finally, in Section 8, we describe a simple reduction
from morphing arbitrary essentially 3-connected embed-
dings to the special case of morphing triangulations. In
brief, given any triangulation of any essentially 3-connected
geodesic toroidal embedding Γ , the isotopic equilibrium
embedding Γ∗ given by Theorem 2.1 can be triangulated in
the same way, and any morph between the two triangula-
tions induces a morph between Γ and Γ∗. This reduction
preserves the number of parallel linear morphs and adds
only O(nω/2) overhead to the running time.

In summary, given any two isotopic essentially 3-
connected geodesic toroidal embeddings, we can construct
a morph between them, consisting of O(n) parallel linear
morphs, in O(n1+ω/2) time.

4 Cats and Dogs

In this section, we present the core of our technical analysis:
the proof that every geodesic toroidal triangulation without
loops has a (directly) collapsible edge.

The visibility kernel of a simple polygon P is the set
of all points in P that can “see” all of P; more formally,
the visibility kernel is {p ∈ P | pq ⊆ P for all q ∈ P}. The
visibility kernel is always convex. If P is the link of a
vertex v in a geodesic triangulation, then v must lie in
the visibility kernel of P. We call a simple polygon good if
its visibility kernel contains a vertex of the polygon, and
bad otherwise. All triangles, quadrilaterals, and pentagons
are good [20], but some hexagons are bad; Figure 4.1
shows several examples.

A vertex u of a geodesic toroidal triangulation is good
if it is not incident to a loop, and the link of any (and
thus every) lift ũ of u in eΓ is good, and bad otherwise.
A good vertex can be safely collapsed to any neighbor in
the visibility kernel of its link. Finally, a geodesic toroidal
triangulation Γ with no loops is good if it contains at least
one good vertex, and bad otherwise. The main result of

Figure 4.1. Three bad hexagons. Visibility kernels are shaded in blue; the
third visibility kernel is empty.

this section is that bad triangulations do not exist; that is,
every geodesic triangulation without loops is good.

LEMMA 4.1. Every bad triangulation is 6-regular.

Proof. Every vertex in a bad triangulation must have degree
at least 6, because every vertex with degree at most 5 is
good [20]. On the other hand, Euler’s formula for the torus
implies that the average degree is exactly 6.

Like Alamdari et al. [1], the following analysis of 6-
regular triangulations without loops implicitly assumes
that the vertices are in general position. Specifically, for
every vertex ṽ in the universal cover, we assume that (1)
no pair of edges incident to ṽ are collinear, and (2) no
edge of the link of ṽ is collinear with another vertex of
that link. Because the underlying triangulation has no
loops, each nondegeneracy condition involves at least two
distinct vertices of the torus triangulation, so like Alamdari
et al. [1], we can enforce these conditions if necessary by
perturbing the vertices.

LEMMA 4.2. In every bad triangulation, the link of each
vertex has exactly two reflex vertices.

Proof. If a simple polygon is convex or has exactly one
reflex vertex, then it is good: the visibility kernel of a
convex polygon is the polygon itself, and if there is exactly
one reflex vertex, then the reflex vertex is in the visibility
kernel. So each link in a bad triangulation has at least two
reflex vertices. We argue next that the average number of
reflex vertices per link is at most two, which implies that
every link has exactly two reflex vertices.

Let Γ be any (not necessarily bad) 6-regular geodesic
triangulation. A corner of a vertex v in Γ is the angle be-
tween two edges that are adjacent in cyclic order around v.
If v is a vertex of the link of another vertex x , then the link
of x contains exactly two adjacent corners of v. Moreover,
if v is a reflex vertex of the link of x , those two corners sum
to more than half a circle.

Thus, if v is reflex in the link of two neighbors x
and y , the links of x and y must share a corner of v, which
implies that edges vx and v y are adjacent in cyclic order
around v; see Figure 4.2. If v were reflex in the links of
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three neighbors x , y, and z, then all three edge pairs vx ,
v y and vx , vz and v y, vz would be adjacent around v,
which is impossible because v has degree 6.

x y

v

Figure 4.2. Each vertex in a 6-regular triangulation is reflex in at most two
links

We conclude that each vertex in Γ is a reflex vertex of
the links of at most two other vertices. It follows that the
average number of reflex vertices in a link is at most two,
which completes the proof.

LEMMA 4.3. A bad hexagon with two reflex vertices separated
by two convex vertices has an empty visibility kernel, and
thus is not the link of any vertex.

Proof. Consider a bad hexagon P whose reflex vertices are
separated by two convex vertices. Label the vertices a
through f in cyclic order such that c and f are the reflex
vertices, as shown in Figure 4.3.

a
b

c
d

e

f

Figure 4.3. A hexagon with two reflex vertices that are separated by two
convex vertices. The dashed diagonal splits the hexagon into two non-
convex quadrilaterals with disjoint visibility kernels.

Because P is bad, neither c nor f lies in its visibility
kernel. Vertex c can see vertices b, d, and f , so it cannot
see both a and e. Without loss of generality, suppose c
cannot see a. Then f is a reflex vertex of the quadrilateral
abc f . Every quadrilateral has at most one reflex vertex,
and that reflex vertex is in the visibility kernel, so f can
see b. It follows that f cannot see d, and c is a reflex vertex
of the quadrilateral cde f .

The visibility kernels of quadrilaterals abc f and cde f
are disjoint, which implies that the visibility kernel of P is
empty.

For the remainder of the proof, we annotate the edges
of any triangulation as follows. The star of an edge in
a triangulation is the union of the faces incident to that
edge. An edge is flippable if its star is convex, and non-
flippable otherwise. Every non-flippable edge is incident

to the unique reflex vertex of its star; we direct each non-
flippable edge away from this reflex vertex.

LEMMA 4.4. In any bad triangulation, every vertex is incident
to exactly two incoming directed edges, exactly two outgoing
directed edges, and exactly two flippable edges.

Proof. Fix a bad triangulation Γ . If w is a reflex vertex in
the link of some vertex v, then the edge vw is directed
toward v. So Lemma 4.2 implies that each vertex of Γ is
incident to two incoming edges.

We argued in the proof of Lemma 4.2 that each vertex
is reflex in the links of exactly two of its neighbors. Thus,
each vertex of Γ is also incident to two outgoing edges.

Finally, because every vertex of Γ has degree 6, each
vertex of Γ is incident to two flippable edges.

Lemmas 4.3 and 4.4 imply that the links in every bad
triangulation fall into two categories, which we call cats
and dogs. A cat is a bad hexagon whose reflex vertices are
adjacent; a dog is a bad hexagon whose reflex vertices are
separated by one convex vertex. Cats are (combinatorially)
symmetric; however, there are two species of dogs, which
are reflections of each other.

ear

eye eye

ear

cheek cheek

nose

mouth

chin

eye

ear

nape

Figure 4.4. Cat and (right-facing) dog anatomy. Flippable edges are shown
in double-thick green.

We label the vertices of each cat and dog mnemonically,
as shown in Figure 4.4. In particular, if the link of vertex v
is a dog, then nose(v) is the unique convex vertex of the dog
whose neighbors are reflex, and the vertex opposite nose(v)
in the link is nape(v). Because nape(v) is incident to two
convex vertices, it can see every vertex of the dog except
nose(v). Because neither reflex vertex lies in the visibility
kernel of the dog, nape(v) can see both reflex vertices. The
visibility between nape(v) and nose(v) is blocked by one
of the reflex vertices, which we call mouth(v). The edge
from v to nose(v) is flippable, because otherwise v could
not see either ear(v) or chin(v). A dog is right-facing if
mouth(v) immediately follows nose(v) in clockwise order,
and left-facing otherwise.

The following lemma implies that two boundary edges
of each cat and dog are flippable, as shown in Figure 4.4.
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LEMMA 4.5. In any bad triangulation, every triangle has
exactly one flippable edge.

Proof. Fix a bad triangulation Γ with n vertices. Euler’s
formula implies that Γ has 3n edges and 2n triangular
faces. Lemma 4.4 implies that Γ has exactly n flippable
edges, so the average number of flippable edges per triangle
is exactly 1.

The flippable edges incident to any vertex v are
separated in cyclic order around v by two non-flippable
edges if the link of v is a cat, or by one non-flippable edge
if the link of v is a dog. Thus, two flippable edges never
appear consecutively around a common vertex. It follows
that every triangle in Γ is incident to at most one flippable
edge.

LEMMA 4.6. Every bad triangulation contains a cat.

Proof. Let Γ be a triangulation, and let u be any vertex in Γ
whose link is a dog. We argue that the link of the nose of u
must be a cat. (Mnemonically, dogs only sniff cats.)

Without loss of generality, assume that the link of u is
facing right, so the triple chin(u), nape(u), ear(u) is oriented
clockwise, as shown in Figure 4.5. The fact that the link of
u is a bad hexagon implies several orientation constraints
on its vertices:

• The triple ear(u), eye(u), mouth(u) is oriented coun-
terclockwise; otherwise, mouth(u) could see the en-
tire dog. It follows that the triple eye(u), mouth(u),
nape(u) is oriented clockwise, and that nape(u) and
eye(u) can see each other.

• The triple eye(u), mouth(u), chin(u) is oriented coun-
terclockwise; otherwise, eye(u) could see the entire
dog.

• Finally, the triple nose(u), mouth(u), nape(u) is ori-
ented counterclockwise; otherwise, nape(u) could see
the entire dog.

nose

mouth

chin

eye

ear

nape

Figure 4.5. Concave chains inside any dog.

Now suppose for the sake of argument that the link of
v = nose(u) is a dog. We label the other vertices of the link

of u as shown on the top row of Figure 4.6; in particular,
x = eye(u) and y =mouth(u). Because the flippable edge
uv is inside the link of v, either u = nose(v) or u = chin(v);
each of these cases admits two subcases. The four cases
are illustrated schematically in the rows of Figure 4.6.

v
u

y

x

w’

v

u
x

y

w’

v

u

y

x

z’

v

u

x

y

w’

u
v

y

x

w

z

u
v

y

x

w

z

u
v

y

x

w

z

u
v

y

x

w

z

Figure 4.6. Four cases in the proof of Lemma 4.5: One dog’s nose (v)
cannot be the center of another dog.

• Suppose u = nose(v) and x =mouth(u), and therefore
y = eye(u). Let w′ = chin(v). The triple w′, x , y must
be oriented clockwise; our earlier analysis implies that
w, x , y is oriented counterclockwise. It follows that
triangles w′x v and wxu overlap, which is impossible.

• Suppose u = nose(v) and x = eye(u), and therefore
y = mouth(u). Let w′ = ear(v). The triple w′, x , y
must be oriented clockwise; our earlier analysis im-
plies that w, x , y is oriented counterclockwise. It fol-
lows that triangles w′x v and wxu overlap, which is
impossible.

• Suppose u = chin(v) and y = nape(v). Let w′ =
nose(v). The triple w′, x , y is oriented clockwise;
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our earlier analysis implies that w, y, z is oriented
counterclockwise. It follows that triangles w′x v and
wxu overlap, which is impossible.

• Finally, suppose u = chin(v) and y = mouth(v). Let
z′ = nose(v). The triple x , y, z′ is oriented clockwise;
our earlier analysis implies that x , y, z is oriented
counterclockwise. It follows that triangles z′ yv and
z yu overlap, which is impossible.

In all four cases, we derive a contradiction. We conclude
that the link of nose(u) is actually a cat.

Every 6-regular triangulation of the torus is isotopic
to the quotient of the regular equilateral-triangle tiling
of the plane by a lattice of translations [5, 18, 71]. We
analyze the patterns of cats and dogs in bad triangulations
by analyzing their images in this reference triangulation,
and in particular, by studying the induced annotations of
edges, as illustrated in Figure 4.7.

ear

eye eye

ear

cheek cheek

nose

mouth

chin

eye

ear

nape

Figure 4.7. Cat and (right-facing) dog reference anatomy; compare with
Figure 4.4.

A cycle in a 6-regular toroidal triangulation is straight
if it corresponds to a closed geodesic in the correspond-
ing lattice triangulation. Every straight cycle is non-
contractible.

Let C be a simple piecewise geodesic closed curved on
the torus (for example, a cycle in Γ ), arbitrarily directed,
and let u, v, w be three successive vertices of C . Let ev
be any lift of v, and let euev and evew be lifts of the edges
of C incident to v. The turning angle of C at u is the
signed counterclockwise angle, strictly between −π and π,
between the vectors eu�ev and ev�ew. In other words, when
walking along the cycle C in the indicated direction, the
turning angle is the angle one turns left at v (or right if the
angle is negative). The total turning angle of C is the sum
of the turning angles of the vertices of C .

LEMMA 4.7. Every simple non-contractible closed curve on
the flat torus has total turning angle zero.

Lemma 4.7 follows immediately from classical results
of Reinhart [75]. In short, the total turning angle (which
Reinhart calls the “winding number”) is an isotopy invariant
of closed curves, and every simple non-contractible closed

curve on the flat torus is isotopic to a closed geodesic.
Lemma 4.7 implies in particular that every straight cycle
has total turning angle zero.

LEMMA 4.8. If a bad triangulation contains one dog, it
contains a straight cycle of vertices whose links are dogs.

Proof. Let Γ be a bad triangulation and let v1 be any
vertex of Γ whose link is a dog. Label the vertices of v’s
link as shown in Figure 4.8; for example, u1 = nose(v1),
v2 =mouth(v1), and w1 = chin(v1).

Edges u1v1 and v1w1 are flippable, and therefore edges
v1v2, u1v2, and w1v2 are not flippable. Thus, no opposite
pair of edges incident to v2 are both flippable. It follows
that the link of v2 is a dog, whose ear vertex is v1.

Edges u0v1, v0v1, and v1w0 are not flippable, so edges
u0v0 and v0w0 must be flippable. Thus, the link of v0 is
also a dog, whose mouth vertex is v1.

u0

v0

w0

u1

v1

w1

v2

Figure 4.8. One dog induces a straight cycle of dogs.

Continuing by induction in both directions, we find
a bidirectional sequence . . . , v−1, v0, v1, v2, . . . of vertices
whose links are dogs, where the center vi of each dog is
the mouth of the previous dog and the ear of the next dog.
Because Γ is finite, this sequence must eventually repeat,
forming a straight cycle.

We can now finally prove the main result of this section.

THEOREM 4.1. Bad triangulations do not exist.

Proof. Let Γ be a bad triangulation. We derive a contra-
diction by showing that Γ contains a non-contractible cy-
cle whose vertices all have cat links, whose edges are all
non-flippable, and finally whose turning angle is non-zero,
contradicting Lemma 4.7.

First, suppose Γ contains at least one dog. Following
the proof of Lemma 4.6, suppose v1 is a vertex whose
vertex is a dog and u1 = nose(v1). Then v2 =mouth(v1) is
also a neighbor of u1. The previous lemma now implies
a straight cycle of dogs D = . . . , v0, v1, v2, v3, . . . , where
vi = mouth(vi−1) = ear(vi+1) for every index i. For each
index i, the link of ui = nose(vi) is a cat. Thus, we find a
straight cycle C = . . . , u0, u1, u2, u3, . . . of vertices, parallel
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u1 u2u0

v2v0 v1

Figure 4.9. One cat induces a straight cycle of cats.

to the cycle D of dog vertices, all of whose links are cats, as
shown in Figure 4.9. Every edge uiui+1 in C is unflippable.

On the other hand, if Γ contains no dogs, then we
can construct a straight cycle C = . . . ,u0, u1, u2, . . . of cat
vertices starting with any unflippable edge u0u1. Again,
every edge uiui+1 in C is unflippable.

Without loss of generality, suppose u2 is the left eye
of u1, and thus u0 is the right cheek of u1. (Symmetric
arguments apply if u2 is the right eye, right cheek, or left
cheek of u1.) The triple u0u1u2 is oriented counterclock-
wise, as shown in Figure 4.10; otherwise, the right cheek
of u1 would lie in the visibility kernel of the link of u1. It
follows by induction that for every index i, vertex ui+1 is the
left eye of ui , and thus every triple ui−1uiui+1 is oriented
counterclockwise. We conclude that the total turning angle
of C is positive, contradicting Lemma 4.7.

ear

eye eye

ear

cheek cheek

Figure 4.10. Concave chains inside any cat.

5 Equilibrium Pseudomorphs

As pointed out in Section 3, when computing a recursive
pseudomorph between two triangulations Γ0 and Γ1, we
must contend with the fact that while each triangulation
must contain a good vertex, there may be no way to
safely collapse the same vertex along the same edge in
both triangulations. It is relatively straightforward to
adapt Cairns’ approach for planar graphs to the torus, by
recursively computing pseudomorphs from both Γ0 and Γ1
to a suitable intermediate triangulation; unfortunately,
the resulting pseudomorph from Γ0 to Γ1 consists of an
exponential number of steps.

Instead, our algorithm introduces one intermediate
triangulation isotopic to both Γ0 and Γ1, namely an equilib-
rium triangulation Γ∗ guaranteed by Y. Colin de Verdière’s
generalization of Tutte’s spring embedding theorem (Theo-
rem 2.1). In this section, we describe how to collapse an
arbitrary edge e in an equilibrium triangulation to obtain a
simpler equilibrium triangulation. This operation allows
us to recursively compute a pseudomorph from either Γ0
or Γ1 to Γ∗ using only a linear number of steps, as described
in Section 3.2.

Intuitively, we continuously increase the weight of e
to∞ and maintain the equilibrium triangulation. We show
that the resulting “spring collapse” moves all vertices of
the equilibrium embedding along geodesics parallel to e,
as shown in Figure 5.1; in particular, edge e collapses
to a single vertex. It follows that straightforward linear
interpolation from one equilibrium triangulation to the
other is a parallel linear pseudomorph.

Figure 5.1. Increasing the weight of any edge e to infinity collapses e and
moves every vertex parallel to e.

For any triangulation Γ and any assignment of positive
weights λ(e) to the edges of Γ , let Eq(Γ ,λ) denote the
geodesic embedding isotopic to Γ that is in equilibrium
with respect to the weight vector λ, as guaranteed by
Theorem 2.1. (At the top level of recursion, we can safely
assume that λ(e) = 1 for every edge e, but as we point
out in Section 5.2, we cannot maintain that assumption in
deeper recursive calls.) For each vertex v of Γ , let p∗(v,λ)
denote the coordinates of v in Eq(Γ ,λ), obtained by solving
linear system (?). To define the embedding Eq(Γ ,λ) and
its coordinates p∗(v,λ) uniquely, fix p∗(o,λ) = (0,0) for
some arbitrary vertex o.

5.1 Parallel Motion. The following lemma states intu-
itively that changing a single edge weight λ(e) moves
each vertex of the equilibrium embedding Eq(Γ ,λ) along a
geodesic parallel to e.

LEMMA 5.1. Let λ and λ′ be arbitrary positive edge weights
such that λ(e) 6= λ′(e) for some edge e, and λ(e′) = λ′(e′) for
all edges e′ 6= e. Let de be a dart of e with tail u and head v.
Then for every vertex w, the vector p∗(w,λ′) − p∗(w,λ) is
parallel to the embedding of edge e in Eq(Γ ,λ).
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Proof. Arbitrarily index the vertices of Γ from 1 to n. By the
definition of crossing vectors, edge e appears in Eq(Γ ,λ) as
the projection of an edge in the universal cover between
p∗(u,λ) and p∗(v,λ)+ x(de). Fix a non-zero vector σ ∈ R2

orthogonal to the vector p∗(v,λ) − p∗(u,λ) + x(de) and
thus orthogonal to edge e in Eq(Γ ,λ). For each vertex i,
let zi = p∗(i,λ) · σ and z′i = p∗(i,λ′) · σ, and for each
dart d, let χ(d) = x(d) ·σ. Our choice of σ implies that
zu − zv = χ(de). We need to prove that z′i = zi for every
vertex i.

The real vector Z = (zi)i is a solution to the linear
system LZ = H, where L is the n× n weighted Laplacian
matrix

Li j =



















∑

tail(d)=i

−λ(d) if i = j

∑

tail(d)=i
head(d)= j

λ(d) if i 6= j

and H ∈ Rn is a vector whose ith entry is

Hi =
∑

tail(d)=i

−λ(d)χ(d).

(In fact, Z is the unique solution such that zo = 0.) Similarly,
Z ′ = (z′i)i is the unique solution to an analogous equation
L′Z ′ = H ′ with z′o = 0, where L′ and H ′ are defined mutatis
mutandis in terms of λ′ instead of λ.

We prove that Z ′ = Z as follows. Let δ = λ′(de) −
λ(de). The Laplacian matrices L and L′ differ in only four
locations:

L′i j − Li j =







−δ if i = j = u or i = j = v
δ if {i, j}= {u, v}
0 otherwise

More concisely, we have L′ = L − δ (ev − eu) (ev − eu)T ,
where ei denotes the ith standard coordinate vector. Sim-
ilarly, we have H ′ = H + δ · χ(de) · (ev − eu). It follows
that

L′Z = LZ −δ (ev − eu) (ev − eu)
T Z

= H −δ (ev − eu) (zv − zu)
= H +δ (ev − eu)χ(de)
= H ′,

which completes the proof.

We note in passing that a nearly identical lemma
applies to internally 3-connected plane graphs; changing
the weight of one edge e moves the vertices of any Tutte
embedding along lines parallel to e. Surprisingly, this
observation appears to be new.

5.2 Spring Collapses. Now fix a toroidal triangulation Γ
and edge weights λ. Let euv be an arbitrary edge of Γ with
endpoints u and v, and let Γ ′ be the result of collapsing u
to v along euv . Let a, b, c, d be the edges in the star of uv
in Γ , as shown in Figure 5.2. Edges a and b collapse to a
single edge ab in Γ ′, and edges c and d collapse to a single
edge cd in Γ ′. Now define weights for the edges of Γ ′ as
follows:

λ′(e) :=







λ(a) +λ(b) if e = ab
λ(c) +λ(d) if e = cd
λ(e) otherwise

a b

d c

u v

ab

cd

uv

Figure 5.2. Collapsing u to v.

The new equilibrium embedding Eq(Γ ′,λ′) has the
same image as the limit of Eq(Γ ,λ) as we increase λ(euv) to
infinity and keep all other edge weights fixed. Lemma 5.1
implies that as we continuously increase λ(euv), the vertices
of Eq(Γ ,λ)move continuously along geodesics parallel to e.

5.3 Geodesic Interpolation. This continuous deforma-
tion from Eq(Γ ,λ) to Eq(Γ ′,λ′) is not a parallel linear pseu-
domorph, because the vertices do not necessarily move
at fixed speeds.To define a parallel linear pseudomorph,
we simply move each vertex at constant speed along its
corresponding geodesic. That is, for every vertex w and all
real numbers 0≤ t ≤ 1, let

pt(w) = (1− t) · p∗(w,λ) + t · p∗(w,λ′),

and let Γt denote the geodesic drawing of G with vertex
coordinates pt(v) and the same crossing vectors as Γ . The
following lemma implies that Γt is actually an embedding
for all 0 < t < 1. (Alamdari et al. used a similar obser-
vation [1, Corollary 7.2].) It follows that the continuous
family of drawings Γt is a parallel linear pseudomorph from
Γ0 = Eq(Γ ,λ) to Γ1 = Eq(Γ ′,λ′).

LEMMA 5.2. Let p0p1, q0q1, and r0r1 be arbitrary parallel
segments in the plane. For all real 0 ≤ t ≤ 1, define
pt = (1 − t)p0 + t p1 and qt = (1− t)q0 + tq1 and rt =
(1 − t)r0 + t r1. If the triples p0, q0, r0 and p1, q1, r1 are
oriented counterclockwise, then for all 0≤ t ≤ 1, the triple
pt , qt , rt is also oriented counterclockwise.
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Proof. Without loss of generality, assume that segments
p0p1, q0q1, and r0r1 are horizontal. Thus, we can write
pt = (px t , p y), and similarly for qt and rt . The triple
pt , qt , rt is oriented counterclockwise if and only if the
following determinant is positive:

∆(t) :=

�

�

�

�

�

�

1 px t p y
1 qx t q y
1 r x t r y

�

�

�

�

�

�

Routine calculation implies

∆(t) =

�

�

�

�

�

�

1 (1− t) px0 + t px1 p y
1 (1− t)qx0 + t qx1 q y
1 (1− t) r x0 + t r x1 r y

�

�

�

�

�

�

= (1− t)

�

�

�

�

�

�

1 px0 p y
1 qx0 q y
1 r x0 r y

�

�

�

�

�

�

+ t

�

�

�

�

�

�

1 px1 p y
1 qx1 q y
1 r x1 r y

�

�

�

�

�

�

= (1− t) ·∆(0) + t ·∆(1)

Thus, the function∆(t) has exactly one real root. It follows
that if ∆(0) > 0 and ∆(1) > 0, then ∆(t) > 0 for all
0≤ t ≤ 1.

6 Zippers

Even if the original input triangulations Γ0 and Γ1 are simple,
collapsing edges eventually reduces them to triangulations
with parallel edges and loops. Every loop in a geodesic
toroidal triangulation is a closed geodesic. The base case of
our recursive algorithm is a special type of geodesic toroidal
triangulation that we call a zipper, in which every vertex
is incident to a loop. (This class of graphs were previously
considered by Gonçalves and Lévêque [45, Fig. 44].)

Consider any zipper Z with n vertices, for some positive
integer n. If n = 1, then Z consists of a single vertex, three
loop edges, and two triangular faces. Otherwise, the loops
in Z are disjoint closed geodesics, so they must be parallel.
It follows that each vertex of Z is incident to exactly one
loop. In either case, the n loops in Z decompose the
torus into n annuli, each of which is decomposed into two
triangles by two boundary-to-boundary edges. Figure 2.1
shows three two-vertex zippers, and Figure 6.1 shows a
zipper with five vertices.

Figure 6.1. A five-vertex zipper. Doubled red edges are loops.

6.1 Structure. The following results motivate our choice
of zippers as a base case of our recursive algorithm.

LEMMA 6.1. In every geodesic toroidal triangulation, every
vertex incident to a loop has degree at least 6.

Proof. Let Γ be a geodesic toroidal triangulation, let v be a
vertex of Γ incident to a loop, let d0 be either of the darts
of that loop.

Let ∂ f denote the clockwise facial walk around the
face f to the right of d0. Because the interior of f is an
open disk, ∂ f is contractible. Because Γ is a triangulation,
∂ f consists of exactly three darts d0, d1, and d2, where
head(di) = tail(di+1 mod 3) for each index i. Because Γ is a
geodesic triangulation, every face is incident to three distinct
edges. It follows that d2 6= rev(d1).

Symmetrically, the counterclockwise walk around the
face to the left of d0 consists of three darts d0, d ′1, d ′2, where
d ′2 6= rev(d ′1). Thus, at least six distinct darts head into v:
in counterclockwise cyclic order, d0, rev(d1), d2, rev(d0),
d ′2, rev(d ′1).

5

d0

d1

d2

f

d2́

d1́

v

d1d1́

ℓ

eʹ

e
f

v

w

f ʹ

eʹ

(a) (b)

Figure 6.2. (a) Proof of Lemma 6.1. (b) Proof of Lemma 6.2

LEMMA 6.2. Every 6-regular triangulation that contains a
loop is a zipper.

Proof. Again, let Γ be a 6-regular triangulation, and let v
be a vertex of Γ incident to a loop `. The previous proof
implies that v is incident to two edges on either side of `.
Let e and e′ be the edges incident to v on one side of `; the
edges `, e, and e′ enclose a triangular face f . Thus, e and e′

share another common endpoint w. (Except in the trivial
case where Γ has only one vertex, v and w are distinct.)
Because e and e′ are adjacent in cyclic order around v, there
is another triangular face f ′ with e and e′ on its boundary;
the third edge of f ′ is a loop through w. The lemma now
follows by induction.

COROLLARY 6.1. Every triangulation that contains a loop
but is not a zipper contains a vertex of degree at most 5 that
is not incident to a loop.

5If v is the only vertex of Γ , then d ′2 = d1 and d ′1 = d2, and thus v is
incident to only three distinct edges, which are all loops. Otherwise, v is
incident to at least five distinct edges, only one of which is a loop.
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Figure 6.3. Morphing one zipper into another. Doubled red edges are loops.

6.2 Morphing Zippers. We next describe a straightfor-
ward approach to morphing between arbitrary isotopic zip-
pers, which requires at most two parallel linear morphing
steps.

Let Z and Z ′ be arbitrary isotopic zippers with n
vertices. If n= 1, then Z and Z ′ differ only by translation,
so assume otherwise. Ladegaillerie [57–59] proved that
two embeddings of the same graph G on the same surface
are isotopic if and only if the images of any cycle in G in
both embeddings are homotopic. Two geodesic loops on
the flat torus are homotopic if and only if they are parallel.
Thus, Ladegaillerie’s theorem implies that the loops in Z
and Z ′ are all parallel to a common vector σ.

In the first parallel morphing step, we translate all
vertices in Z along geodesics orthogonal to σ until each
loop has the same image as the corresponding loop in Z ′.
Then in the second parallel morphing step, we translate all
vertices along their respective loops to move all vertices
and edges to their proper positions in Z ′. See Figure 6.3 for
an example. In both stages, Lemma 5.2 implies that linear
interpolation between the old and new vertex coordinates
yields an isotopy.

7 Converting Pseudomorphs to Morphs

In this section, we adapt a perturbation strategy of Alamdari
et al. [1], which transforms their pseudomorphs between
planar triangulations into morphs, to geodesic triangula-
tions on the flat torus.

To explain our adaptation, we must first give a brief
sketch of their algorithm. Let Γ0 be the initial planar input
triangulation. The input to their perturbation algorithm is
a pseudomorph consisting of a (direct) collapse of a good
vertex u to a neighbor v, a morph (not a pseudomorph)
consisting of k parallel linear steps Γ ′0   Γ

′
1   · · ·   Γ

′
k,

and finally the reverse of a collapse of u to v resulting in
the final triangulation Γk. The output is a proper morph
from Γ0 to Γk, consisting of k+ 2 parallel linear steps.

Alamdari et al. proceed as follows. Let P be the
link of u in the initial triangulation Γ0. For each index i,
let vi and Pi respectively denote the images of v and P

in the intermediate triangulation Γ ′i . For each index i, a
position ui is found within the visibility kernel of Pi so
that for all i, the vector ui�ui+1 is parallel to vi�vi+1 (the
direction of the parallel linear morph Γ ′i   Γ

′
i+1). For

vertices of degree 3 and 4, it is simple to place u as a certain
convex combination of the vertices in P. The strategy for
vertices of degree 5 is more complicated. First, a value ε is
computed such that for each index i, the intersection of the
disk of radius ε centered at vi and the visibility kernel of Pi
consists of a full sector of the disk; call this intersection Si .
A specific position ui is then chosen within each region Si .

A close examination of their paper reveals that the
strategy for vertices of degree 5 generalizes to vertices u
of arbitrary degree (greater than 2). In particular, the
definition of ui depends solely on ε and the positions of
the edges in Pi incident to vi .

The radius ε is computed as follows. For each index i,
we need a positive distance εi > 0 smaller than the
minimum distance from v to any edge of the kernel of Pi
that is not incident to v, at any time during the morphing
step Γ ′i   Γ

′
i+1. It suffices to compute the minimum distance

from v to the lines supporting edges of Pi not incident
to v. The squared distance to each of these lines at any
time t can be expressed as the ratio f (t)/g(t) of two
quadratic polynomials f and g. Alamdari et al. argue
that a lower bound 0 < δ ≤ mint

p

f (t)/g(t) can be
computed in constant time in an appropriate real RAM
model [1]. Then εi is the minimum of these lower bounds δ.
Altogether computing εi takes O(deg(u)) time. Finally,
ε =min1≤i≤k εi .

Once the radius ε is known, computing each sector Si
in O(deg(u)) time is straightforward.

The point u0 can be chosen arbitrarily within S0. For
each index i in increasing order, Alamdari et al. describe
how to choose a point ui+1 ∈ Si+1 in O(1) time, such that
the vector ui�ui+1 is parallel to the vector vi�vi+1. This
part of the algorithm makes no reference to the rest of
the triangulation; it works entirely within the sectors Si
and Si+1. Moreover, no part of this algorithm relies on u
being directly collapsed to v, only that vertices u and v have
the same image in the triangulations Γ ′i and Γ ′i+1.
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We apply this perturbation technique to the toroidal
pseudomorphs computed in Section 3.2 as follows. Recall
that our pseudomorph consists of a direct collapse, a
recursively computed pseudomorph, and a reversed spring
collapse. First we (recursively) perturb the recursive
pseudomorph into a proper morph Γ ′0  · · ·  Γ

′
k consisting

of k parallel linear morphs. We then compute the sectors Si
and the radius ε exactly as described above. To perturb
the initial direct collapse from u to v, we move u to an
arbitrary point in the intersection of S0 and the edge e
along which u is collapsed. We compute the intermediate
positions ui for u exactly as described above, working
entirely within the local coordinates of the sectors Si .
Finally, to perturb the reversed spring collapse, we first
move u from uk to a new point u′k in the visibility kernel so
that the image of the collapsing edge e becomes parallel to
the direction of the original spring collapse, after which we
simply interpolate to the final triangulation, as described
in Section 5.3. Because the vertices move along parallel
geodesics, Lemma 5.2 implies that this final interpolation
is a parallel linear morph. Altogether, we obtain a morph
consisting of k+ 3 parallel linear morphs. We emphasize
that the additional step moving uk to u′k is the only
significant difference from the algorithm presented by
Alamdari et al.

Unrolling the recursion, we can perturb our pseudo-
morph between two n-vertex toroidal triangulations into
a proper morph consisting of O(n) parallel linear morph-
ing steps in O(n2) time. The overall time to compute this
morph is still dominated by the time needed to compute
O(n) equilibrium triangulations for the spring collapses.

THEOREM 7.1. Given any two isotopic geodesic toroidal
triangulations Γ0 and Γ1 with n vertices, we can compute a
morph from Γ0 to Γ1 consisting of O(n) parallel linear morphs
in O(n1+ω/2) time.

8 Not Just Triangulations

Finally, it remains to describe how to morph between em-
beddings that are not triangulations. Following existing
work in the planar setting, we extend the given embed-
dings Γ0 and Γ1 to triangulations, and then invoke our ear-
lier triangulation-morphing algorithm. The main difficulty
is that it may not be possible to triangulate both Γ0 and Γ1
using the same diagonals, because corresponding faces,
while combinatorially identical, may have different shapes.

Two different techniques have been proposed to over-
come this hurdle in the planar setting. The first method
subdivides each pair of corresponding faces into a compati-
ble triangulation, introducing additional vertices if neces-
sary [2,47,80–82]; however, this technique increases the
complexity of the graph to O(n2) [8]. The second technique
uses additional morphing steps to convexify faces to that

they can be compatibly triangulated without additional
vertices [1,7]. While the subdivision technique generalizes
to toroidal embeddings (at least when all faces are disks), it
is unclear how to generalize existing morphing techniques.

We introduce a third technique, which avoids both
subdivision and additional morphing steps by exploiting
Theorem 2.1. We emphasize that our method can also be
applied to 3-connected straight-line plane graphs, giving a
new and arguably simpler approach for the planar case as
well.

THEOREM 8.1. Given any two isotopic essentially 3-
connected geodesic toroidal embeddings Γ0 and Γ1 with n
vertices, we can compute a morph from Γ0 to Γ1 consisting of
O(n) parallel linear morphs in O(n1+ω/2) time.

Proof. Let Γ∗ be an equilibrium embedding isotopic to Γ0
and Γ1 as given by Theorem 2.1. It suffices to describe how
to morph from Γ0 to Γ∗; to morph from Γ0 to Γ1 one can
simply first morph from Γ0 to Γ∗ and then from Γ∗ to Γ1.

Arbitrarily triangulate the faces of Γ0; this can be
done in O(n) time using Chazelle’s algorithm [26], or
in O(n log n) time in practice. Because each face of Γ∗ is
convex, we can triangulate Γ∗ in the exact same manner.
The result is two isotopic geodesic toroidal triangulations T0
and T∗. Given a morph between T0 and T∗ as promised
by Theorem 7.1, we obtain a morph between Γ0 and Γ∗
by simply ignoring the edges added when triangulating.
In particular, the morph is specified by a sequence of
geodesic triangulations T0, T1, . . . , Tk = T∗, and dropping
the additional edges from each triangulation Ti results in a
geodesic embedding Γi isotopic to Γ0.

The number of parallel morphing steps remains O(n),
and the running time is dominated by the computation
of the morph between T0 and T∗, which is O(n1+ω/2) by
Theorem 7.1.

Finally, Theorem 8.1 immediately yields the first proof
of the following corollary:

COROLLARY 8.1. Two essentially 3-connected geodesic em-
beddings on the flat torus are isotopic if and only if they are
isotopic through geodesic embeddings.

9 Conclusions and Open Questions

We have described the first algorithm to construct a morph
between two isotopic geodesic graphs on the flat torus. Key
tools in our algorithm include a geometric analysis of 6-
regular triangulations on the torus, as well as repeated use
of a generalization of Tutte’s spring embedding theorem
by Y. Colin de Verdière [28] (Theorem 2.1). Several
of our applications of spring embeddings also apply to
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planar morphs and therefore provide a new approach to
compute linear-complexity morphs between straight-line
plane graphs.

Because it relies heavily on Theorem 2.1, our algorithm
requires that the input embeddings are essentially 3-
connected. If a given toroidal embedding Γ is not essentially
3-connected, an isotopic equilibrium drawing Γ∗ still exists,
but it may not be an embedding; nontrivial subgraphs can
collapse to geodesics or even points in Γ∗. Morphing less
connected toroidal embeddings remains an open problem.

It is natural to ask whether any of our results can be
extended to higher-genus surfaces. Y. Colin de Verdière
actually generalized Tutte’s theorem to graphs on arbitrary
Riemannian 2-manifolds without positive curvature [28].
However, the resulting equilibrium embedding is the
solution a certain convex optimization problem that, in
general, cannot be formulated as solving a linear system. At
a more basic level, our analysis of cats and dogs in Section 4
relies on the average vertex degree being exactly 6, a
property that holds only for graphs on the torus or the Klein
bottle. Even the existence of “parallel” morphs requires an
orientable locally Euclidean metric.

Our results share two closely related limitations with
existing planar morphing algorithms. First, planar morphs
involving either Cairns-style edge collapses or spring em-
beddings require high numerical precision to represent
exactly. Second, while edge collapses yield planar morphs
with low combinatorial complexity, the resulting morphs
are not good for practical visualization applications [63].
Because our algorithm uses both edge collapses and spring
embeddings, it suffers from the same numerical precision is-
sues and (we expect) the same practical limitations. Floater,
Gotsman, and Surazhsky’s barycentric interpolation tech-
nique [42, 47, 80, 81] yields better results in practice for
planar morphs, but as we discussed in Section 1.1, their
technique does not immediately generalize to the torus.

Finally, there are several variants and special cases
of planar morphing for which generalization to the flat
torus would be interesting, including morphing with bent
edges [63], morphing orthogonal embeddings [12,15,43,
44], and morphing weighted Schnyder embeddings [11].
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A Relaxed Coordinate Representations

The coordinate representation described in Section 2.3,
while intuitive, is much more constrained than necessary.
Here we describe a more relaxed representation that allows
morphs to be described entirely in terms of changing
vertex coordinates, while still encoding the non-trivial
topology of the embedding. Similar representations have
been traditionally used to model periodic (or “dynamic”)
graphs [27,31,48–50,52,56,73,74,85], and more recently
to model periodic bar-and-joint frameworks [16,17,33,53,
64,72,77,78].
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We also observe that this representation leads naturally
to a linear-time algorithm to test whether two given toroidal
embeddings are isotopic. Our algorithm is arguably simpler
than the more general linear-time isotopy algorithm of
É. Colin de Verdière and de Mesmay [29]. We emphasize
that both of these isotopy algorithms are non-constructive;
they do not construct an isotopy if one exists. Rather, both
algorithms test topological conditions that characterize
isotopy [57–59].

A.1 Translation Vectors and Equivalence. To represent
a geodesic embedding Γ of a graph G on the flat torus T, we
associate a coordinate vector p(v) ∈ R2 with every vertex
v of G and a translation vector τ(d) ∈ Z2 with every dart
d of G. We do not require vertex coordinates to lie in the
unit square; instead, each coordinate vector p(v) records
the coordinates of an arbitrary lift ev of v to the universal
cover eΓ . The translation vector of each dart encodes which
lifts of its endpoints are connected in eΓ . Specifically, for
each dart d in G, the universal cover eΓ contains an edge
between p(tail(d)) and p(head(d)) +τ(d), and therefore
also contains and edge between p(tail(d)) + (i, j) and
p(head(d))+τ(d)+(i, j) for all integers i and j. Translation
vectors are antisymmetric: τ(d) = −τ(rev(d)).

Coordinate representations are not unique; in fact,
each toroidal embedding has an infinite family of equivalent
representations. Two coordinate representations (p,τ)
and (p′,τ′) with the same underlying graph are equivalent,
meaning they represent the same geodesic embedding (up
to translation), if and only if

∆(d) := p(head(d)) +τ(d)− p(tail(d))
= p′(head(d)) +τ′(d)− p′(tail(d))

for every dart d. The vector ∆(d), which we call the
displacement vector of d, is the difference between the
head and tail of any lift of d to eΓ .

Let (p,τ) be any coordinate representation of Γ . Given
arbitrary integer vector π(v) ∈ Z2 for each vertex of G,
we can define a new coordinate representation (pπ,τπ) as
follows, for every vertex v and dart d:

pπ(v) = p(v) +π(v)
τπ(d) = τ(d) +π(tail(d))−π(head(d))

Easy calculation implies that the representations (p,τ) and
(pπ,τπ) are equivalent. This transformation is a multidi-
mensional generalization of the reweighting or repricing
strategy proposed by Tomizawa [83] and Edmonds and
Karp [36] for minimum-cost flows, and later used by John-
son to compute shortest paths [51].

Every geodesic toroidal embedding has a unique
canonical coordinate representation (p,τ), where p(v) ∈

[0, 1)2 for every vertex v. In this canonical coordinate repre-
sentation, each translation vector τ(d) encodes how dart d
crosses the boundaries of the fundamental square; in other
words, canonical translation vectors are crossing vectors,
exactly as described in Section 2.3.

A.2 Normalization and Isotopy Testing. Let Γ0 and
Γ1 be two isotopic geodesic toroidal embeddings of the
same graph G, given by coordinate representations (p0,τ0)
and (p1,τ1) respectively. To simplify the presentation of
our morphing algorithm, we implicitly assume that the
translation vectors in both representations are identical:
τ0(d) = τ1(d) for every dart d. This assumption allows
us to describe, reason about, and ultimately compute a
morph from Γ0 to Γ1 entirely in terms of changes to the
vertex coordinates; all translation vectors remain fixed
throughout the morph.

If necessary, we can enforce this assumption in O(n)
time using the following normalization algorithm. Let
(p0,τ0) and (p1,τ1) be the given coordinate representa-
tions of Γ0 and Γ1, respectively. First, construct an arbitrary
spanning tree T of the underlying graph G, directed away
from an arbitrary root vertex r. For every vertex v, let P(v)
denote the unique directed path in T from r to v. For each
vertex v, let

π(v) =
∑

d∈P(v)

(τ1(d)−τ0(d)).

We can compute the vectors π(v) for all vertices in O(n)
time by preorder traversal of T . Finally, we replace
the target representation (p1,τ1) with the equivalent
representation (pπ1 ,τπ1 ).

LEMMA A.1. For all darts d in T , we have τπ1 (d) = τ0(d).

Proof. Let d be any dart in T directed from some vertex u
to one of its children v in T . Straightforward calculation
implies

π(u)−π(v) =
∑

d ′∈P(u)

(τ1(d
′)−τ0(d

′))

−
∑

d ′∈P(v)

(τ1(d
′)−τ0(d

′))

= τ0(d)−τ1(d)

and therefore τπ1 (d) = τ1(d) + π(u) − π(v) = τ0(d). A
similar calculation (or antisymmetry) implies that τπ1 (d) =
τ0(d) for every dart d directed from a vertex to its parent
in T .

THEOREM A.1. Γ0 and Γ1 are isotopic if and only if τπ1 (d) =
τ0(d) for every dart d.
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Proof. We exploit a theorem of Ladegaillerie [57–59],
which states that two embeddings are isotopic if and
only if every cycle in one embedding is homotopic to the
corresponding cycle in the other embedding.

For any dart d in the underlying graph G, let ∆0(d)
and ∆1(d) denote the displacement vectors of d in Γ0 and
Γ1, respectively. (We emphasize that displacement vectors
are independent of the coordinate representation.) For any
directed cycle C in G, let∆0(C) and∆1(C) denote the sum
of the displacement vectors of its darts:

∆0(C) :=
∑

d∈C

∆0(d) ∆1(C) :=
∑

d∈C

∆1(d)

The vector ∆0(C) is the integer homology class of C in Γ0.
Two cycles on the torus are homotopic if and only if they
have the same integer homology class; in particular, the
image of C in Γ0 is contractible if and only if∆0(C) = (0, 0).
Ladegaillerie’s theorem implies that Γ0 and Γ1 are isotopic
if and only if ∆0(C) =∆1(C) for every cycle C .

The spanning tree T defines a set of fundamental
cycles that span the cycle space of G. Specifically, for each
dart d that is not in T , the fundamental directed cycle
CT (d) consists of d and the unique directed path in T from
head(d) to tail(d). Every directed cycle in G (indeed every
circulation in G) can be expressed as a linear combination
of fundamental cycles. It follows by linearity that Γ0 and Γ1
are isotopic if and only if every fundamental cycle has the
same integer homology class in both embeddings, or in
other words, if and only if ∆0(CT (d)) = ∆1(CT (d)) for
every dart d ∈ G \ T .

Straightforward calculation implies that the homology
class of any cycle is also equal to the sum of the trans-
lation vectors of its darts with respect to any coordinate
representation:

∆0(C) =
∑

d∈C

τ0(d)

∆1(C) =
∑

d∈C

τ1(d) =
∑

d∈C

τπ1 (d).

In particular, for any non-tree dart d 6∈ T , we immediately
have

∆0(CT (d))−∆1(CT (d)) =
∑

d ′∈CT (d)

�

τ0(d
′)−τπ1 (d

′)
�

= τ0(d)−τπ1 (d)

Thus, τπ1 (d) = τ0(d) for every dart d if and only if
∆0(C) = ∆1(C) for every fundamental cycle C , which
completes the proof of the theorem.

Theorem A.1 and our normalization algorithm imme-
diately imply an O(n)-time algorithm to test whether two

given coordinate representations (p0,τ0) and (p1,τ1) rep-
resent isotopic toroidal embeddings of the same graph G.
Our algorithm is arguably simpler than the isotopy algo-
rithm of É. Colin de Verdière and de Mesmay [29], which
is also based on Ladegaillerie’s theorem [57–59]. On the
other hand, our isotopy algorithm is specific to geodesic
embeddings on the flat torus; whereas, É. Colin de Verdière
and de Mesmay’s algorithm works for arbitrary combinato-
rial embeddings of graphs on arbitrary 2-manifolds.
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