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Abstract

Let G be an n-vertex plane graph with non-negative edge
weights, and let k terminal pairs be specified on h face
boundaries. We present an algorithm to find k non-crossing
walks in G of minimum total length that connect all terminal
pairs, if any such walks exist, in ZO(hz)nlogk time. The
computed walks may overlap but may not cross each other
or themselves. Our algorithm generalizes a result of Takahashi,
Suzuki, and Nishizeki [Algorithmica 1996] for the special case
h < 2. We also describe an algorithm for the corresponding
geometric problem, where the terminal points lie on the
boundary of h polygonal obstacles of total complexity n, again
in 2°0") time, generalizing an algorithm of Papadopoulou [Int.
J. Comput. Geom. Appl. 1999] for the special case h < 2. In
both settings, shortest non-crossing walks can have complexity
exponential in h. We also describe algorithms to determine in
O(n) time whether the terminal pairs can be connected by any
non-crossing walks.

1 Introduction

We consider the following extension of the classical
geometric shortest path problem: Given a set of k pairs
of terminal points (s;, t;) lying on a small number h of
obstacles in the plane, find a set of non-crossing walks
of minimum total length that connect the terminal pairs
without intersecting the obstacles. The walks may be
neither simple nor disjoint; however, they must not cross
each other or themselves. The obstacles can either be
formalized as a set of simple polygons in the plane, or as
a subset of faces in an edge-weighted planar graph G. In
the latter formulation, the output must be a set of walks
in G. (We give a more formal statement of the problem
in Section 2.)

Motivated by problems in VLSI design, Takahashi
et al. [27] describe an algorithm that finds shortest non-
crossing walks in a planar graph, when all terminals
lie on at most two obstacle faces, in O(nlogk) time.
They observed that when all the terminals lie on a single
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obstacle, the solution consists of shortest paths between
the terminal pairs. For the case of two obstacles, they
find 3 paths joining the obstacles, at least one of which
is not crossed by the shortest walks; see Figure 1. Thus,
by cutting along each of these paths in turn, they reduce
two-obstacle problem to three instances of the single-
obstacle case. The output walks could have complexity
Q(kn) in the worst case, however, their algorithm actually
computes an implicit representation of complexity O(n).
The geometric formulation of the shortest non-crossing
walks problem was proposed by Papadopoulou [22], who
described a linear-time algorithm, again for the special
case of at most two obstacles, using the same cutting
strategy as Takahashi et al. to reduce two obstacles to
one, and using a similar implicit output representation.
In a followup paper, Takahashi et al. [28] describe an
O(nlogn)-time algorithm for a rectilinear variant of the
geometric problem, where the domain is a rectangle with
many rectangular holes, and the terminals lie either on
the outer boundary or on the boundary of one hole.

Figure 1. Reducing two obstacles to one, after Takahashi et al. [27].

At the other extreme, Bastert and Fekete proved that
if the number of obstacles is allowed to be arbitrarily
large, finding shortest non-crossing walks in planar
graphs is NP-hard [1]. Polishchuk [23] proves that the
minmax variant of the geometric problem, where the
goal is to minimize the length of the longest path, is
strongly NP-hard in general, and weakly NP-hard even
when k = 2 (but the number of obstacles h is large).
Motivated by problems in air-traffic control, Polishchuk


jeffe@cs.uiuc.edu
nayyeri2@cs.uiuc.edu
http://www.cs.uiuc.edu/~jeffe/pubs/noncrossing.html

and Mitchell [24, 23] also considered a variant of the
problem where the output is a set of ‘thick paths’.

In this paper, we show that both formulations of the
shortest non-crossing walks problem are fixed-parameter
tractable with respect to the parameter h, the number
of obstacles. Specifically, in Section 5, we describe
an algorithm for the graph formulation that runs in
time Zo(hz)nlogk, and in Section 6, we describe an
algorithm for the geometric formulation that runs in
time 2°0")n, generalizing previous results for the special
case h < 2. Our key insight is the observation, in
Section 4, that in the set of shortest non-crossing walks,
each walk crosses any arbitrary shortest path at most 20
times. This crossing bound allows us to use algorithmic
tools previously developed to find shortest cycles in
combinatorial surfaces satisfying various topological
properties [3, 4, 5, 18]. Like earlier algorithms for
the case h < 2 [27, 22], our algorithms can be easily
modified to find non-crossing walks that minimize any
non-decreasing function of their lengths, such as the
maximum length or the sum of squared lengths.

2 Preliminaries
2.1 Background

Curves in the plane. Let § be a compact subset of
the plane. A curve in § is a continuous function
a: [0,1] — 8. The endpoints of a are the points a(0) and
a(1). We call a curve a simple if it is an injective function,
and closed if a(0) = a(1). The concatenation a - f3 of
two curves a and 8 with a(1) = (0) is the curve with
(a-B)t)=a(2t)ift <1/2and (a-B)(t) =p2t—1)
if t > 1/2. The reversal rev(a) of a is the curve
rev(a)(t) = a(1l — t). To be consistent with standard
graph nomenclature, we will refer to arbitrary curves as
walks and simple curves as paths. We frequently do not
distinguish between a path and its image in 8.

Two paths a and f in 8 cross if and only if there is
an open neighborhood A C 8 that is homeomorphic to
an open disc, such that AN a and AN B are nonempty
subpaths of a and 8, whose endpoints alternate around
the boundary of A; see Figure 2. In other words,
a and f cross if they cannot be perturbed within A to
become disjoint. Two walks cross if they contain crossing
subpaths; a walk is self-crossing if it contains two crossing
subpaths.

X > "ls\ /\‘.:"\:—

4 AN

Figure 2. Two paths crossing twice.

A homotopy between two walks a and f is a
continuous function h: [0,1] x [0,1] — 8 such that
h(0,-)=a, h(1,-) = B, h(-,0) = a(0) = B(0), and
h(-,1) = a(1) = £(1). If such a homotopy exists, we say
that a and 8 are homotopic, or in the same homotopy
class.

Graph embeddings. A surface (or more formally a 2-
manifold) § is a compact Hausdorff space in which every
point has an open neighborhood homeomorphic to the
plane. An embedding of a graph G on a surface § is a
function mapping the vertices of G to distinct points in §
and the edges of G to paths in 8 that are disjoint except
at common endpoints. The faces of the embedding are
maximal subsets of § that are disjoint from the image
of the graph. An embedding is cellular if each face is
homeomorphic to an open disk. A plane graph is an
embedding of a graph in either the plane or the sphere.

Any cellular embedding in an orientable surface can
be encoded combinatorially by a rotation system, which
records the counterclockwise order of edges incident to
each vertex. Conversely, every rotation system for a
graph G is consistent with a cellular embedding of G
in some orientable surface; in fact, we can recover the
faces of an embedding from its rotation system in linear
time [20]. A rotation system of a graph G = (V,E) is
planar if it is consistent with a planar embedding, or
equivalently (by Euler’s formula) if it has exactly 2— |V |+
|E| faces.

A walk in a graph G = (V,E) is an alternating se-
quence of vertices and edges whose consecutive elements
are incident; the endpoints of a walk are its initial and
final vertices. A walk is called a path if no vertex appears
more than once. Any embedding maps walks in G to
walks in 8, and paths in G to paths in §; two walks in an
embedded graph cross if their images in the embedding
Cross.

2.2 Problem Formulation

We consider two different variants of the shortest non-
crossing walks problem: a combinatorial formulation
proposed by Takahashi et al. [27], and a geometric
formulation considered by Takahashi et al. [28] and
Papadopoulou [22].

In the geometric formulation, the input consists of h
disjoint simple polygons P;, P,, ..., P, in the plane, called
obstacles, together with two disjoint sets S = {s;,...,s}
and T = {tq,..., t;} of points on the boundaries of the
obstacles, called terminals. Formally, we consider the
obstacles P; to be open sets. To simplify our presentation,
we assume without loss of generality that each terminal
is a vertex of some obstacle; let n denote the number
of obstacle vertices. A set of ST-walks is a set of walks



Q= {w;,w,,...,w.}in the free space § := R?\ (P, UP,U
-+-UP;), where each walk w; joins the corresponding pair
of terminals s; and t;. To make the definition of crossing
precise, we implicitly extend each walk w; infinitesimally
into the obstacles at their endpoints. Our goal is either
to compute a set of non-crossing ST-walks of minimum
total length, or to report correctly that no set of ST-walks
exists.

The combinatorial formulation is similar. The input
consists of an n-vertex plane graph G = (V, E); a weight
function w: E — R™; asubset H = {f}, f5, ..., fu} of faces
of G, called obstacles; and two disjoint sets of vertices
S ={s1,....s5x} and T = {tq,..., t;}, called terminals,
where each terminal is incident to a single obstacle face.
A set of ST-walks is a set of walks Q = {wq,...,w;}
in G, where each walk w; connects s; and t;. To make
the definition of crossing precise, we implicitly extend
each walk w; infinitesimally into the obstacles at their
endpoints. Equivalently, we assume without loss of
generality that each terminal has degree 1 and each
walk w; is forbidden to visit terminals s; or t; except at
its endpoints. It is convenient to think of the obstacles as
holes in the plane. Again, our goal is to compute a set of
non-crossing ST-walks in G of minimum total length, or
to report correctly that no such walks exist.

Figure 3. Shortest non-crossing walks.

When h = 1, shortest non-crossing ST-walks are
actually shortest paths joining corresponding terminals.
However, for any h > 2, there are inputs for which
shortest non-crossing ST-walks must be non-simple. On
the other hand, it is easy to prove that in any set of
shortest non-crossing ST-walks, each walk is non-self-
crossing.

2.3 Output Representation

Even when h = 1, the total complexity of the shortest non-
crossing ST-walks is (nk) in the worst case. To avoid
worst-case quadratic running time, Takahashi et al. [27]
and Papadopoulou [22] actually compute implicit repre-
sentations of the shortest ST-paths of complexity O(n).
Our algorithms compute similar representations for all h,
ultimately by reducing to the special case h = 1 and
invoking the earlier algorithms [27, 22] as subroutines.

Both Takahashi et al. [27] and Papadopoulou [22]
claim that their algorithms output a forest F, such that
for each i, the unique path from s; to t; in F is the
desired output path ;. However, this brief description
is problematic in both settings. If the output walks are
not paths, as in the example shown above, their union
cannot be forest; moreover, Polishchuk and Mitchell [24]
observed that the union of the output walks may contain
cycles even when h=1 and k = 3.

A close reading of Takahashi et al. [27] reveals that
edges of G may appear multiple times in their output
‘forest’; a single edge of G may appear in multiple
trees, or even multiple times in the same tree. A more
accurate description of their output structure is a non-
crossing forest: An abstract forest F, together with a
homomorphism from F to G that maps edges to edges,
leaves to terminal vertices, and terminal-to-terminal
paths to non-crossing walks. A non-crossing forest
represents a set of non-crossing ST-walks if and only
if every walk w; is the image of some path in F; in
particular, every pair of terminals s; and t; must lie in
the image of the same component of F. The algorithm of
Takahashi et al. for the single-obstacle problem (h = 1)
computes a non-crossing forest with multiplicity at most
two; that is, each edge of G is the image of at most
two edges in F. For any constant h, our combinatorial
algorithm computes a shortest non-crossing forest of
complexity O(n) that represents the shortest non-crossing
ST-walks.

After some additional post-processing, an explicit
representation of each walk can be extracted from the
non-crossing forest in time proportional to its complexity;
our reported running times suppress this output term.
Specifically, to compute the walk w; from s; to t;, we
first compute the path in F from s; to t; using fast least-
common-ancestor queries [2]; then for each edge on the
path in F in order, we report the corresponding edge of G.
The time required to set up the least-common-ancestor
data structure is dominated by the running time of our
main algorithm.

Papadopoulou’s algorithm for the geometric problem
with one obstacle incorrectly assumes that the union of
the shortest ST-paths is a forest [22, 24]; however, her
algorithm can be modified to correctly compute a geo-
metric non-crossing forest, in which the homomorphism
maps edges of F to line segments in the free space S.
Alternately, one can adapt the output representation
proposed by Polishchuk and Mitchell [24] for non-
crossing thick paths to the original thin-path problem.
Instead of a forest, their algorithm outputs the planar
graph defined by the union of the shortest ST-paths,
with additional information at the nodes that allow any
shortest path w; to be extracted in time proportional to



its complexity; we refer to Polishchuk and Mitchell [24]
for further details.

2.4 Crossing and Cutting Non-Crossing Walks

Our results require reasoning carefully about crossings
between different sets of non-crossing walks. To simplify
our arguments, we implicitly treat any set of non-crossing
walks as the limit of a sequence of well-behaved disjoint
simple paths, which intersect the obstacles only at their
endpoints.

Let S be a polygon with holes in the plane. A properly
embedded arc in § is a simple path whose endpoints lie
on the boundary of 8, and that is otherwise disjoint from
the boundary. Following Cabello and Mohar [3], we let
8 # a denote the surface obtained by cutting S along any
properly embedded arc a; each point of a becomes a pair
of boundary points in the new surface.? Topologically,
8 4 a is the closure of 8 \ a; geometrically, 8 4 a is a
degenerate simple polygon with holes.

Now let w be a non-self-crossing walk in 8§ whose
endpoints lie on 8. We intuitively define § + w as a
space whose topology is consistent with cutting along a
properly embedded arc close to w, but whose geometry
to be determined by w itself. More formally, let & be a
properly embedded arc homotopic to w, whose Hausdorff
distance to w is arbitrarily small. We define 8 # w to be
the topological space 8 - ¢ together with a continuous
function ¢ : 8§ # & — 8 that maps points on both copies
of & to the corresponding points in the original walk w
and is otherwise injective. The length of any walk «’ in
84 @ is now defined to be the length of the projected walk
¢(w”) in the original space 8. At the risk of confusing
the reader, we will use this formalism implicitly, without
further comment, throughout the paper.

For the graph formulation, we implicitly work in
the combinatorial surface model introduced by Colin
de Verdiére [8] and used by several other authors to
formulate optimization problems for surface-embedded
graphs [3, 4, 10, 9, 18]. For a simple path a in a plane
graph G between two obstacle vertices, let G -+ a denote
the plane graph obtained by cutting G along a; each
point of a becomes a pair of boundary points in G + a. If
the endpoints of a lie on two different obstacles, those
two faces are merged in G + a; otherwise, G + a is
disconnected. For a non-crossing walk w between two
vertices, G+ w is obtained by duplicating the vertices and
edges of w with appropriate multiplicity.

Similarly, when we reason about crossing between
different sets of walks, we implicitly perturb the walks
into simple paths, so that every crossing becomes a single
point of transverse intersection.

2We suggest the pronunciation “snip” for the symbol -#.

3 The Decision Problem

In this section, we describe a linear-time algorithm to
decide whether a given set of terminal pairs can be
connected by any non-crossing walks. We describe our
algorithm first for the combinatorial setting and then for
the (easier) geometric setting.

Recall that in the combinatorial setting, our input
consists of a plane graph G, together with 2k distinct
vertices Sy, ty, - .., Sk, tx, €ach of degree 1. Call any face
incident to a terminal vertex an obstacle. The obstacles
and terminal pairs naturally define an undirected (multi-
)graph C, called the connection graph, which has a
node for each obstacle face f; and k arcs a;,a,,...,q;,
where each arc q; joins the obstacles incident to the
corresponding terminals s; and t;. The counterclockwise
ordering of terminal vertices on each obstacle boundary
defines a combinatorial embedding C of the connection
graph.

Lemma 3.1. Let sy, ty,Sy,to,...,Sk, t; be vertices of de-
gree 1 in a plane graph G, and let C,, the combinatorial
embedding of their connection graph. G contains a set
of non-crossing ST -walks if and only if C is a planar
embedding.

Proof: First suppose there are non-crossing walks
w1, Wy,...,w in G, where each walk w; connects
terminals s; and ¢t;. As discussed in Section 2, we can
perturb these walks infinitesimally to obtain a set of
disjoint simple paths &, @, ..., @ in the plane, where
each path &; connects terminals s; and t;. Place a
point v; in the interior of each face f;. For each obstacle
face f;, extend all the paths &; ending at a terminal
incident to f; to the point v;. The extended paths define
a planar geometric embedding of the connection graph C
that is consistent with the combinatorial embedding C,.

Conversely, suppose the combinatorial embedding C,,
is planar. Fix an arbitrary sentinel point v; inside each
face f; of G, including the outer face. Because C is
planar, there is a geometric embedding of C that maps
each node of C to the corresponding sentinel point and
maps the arcs of C to disjoint simple paths a;,a,, ..., a;
on the sphere S2. Because the paths are disjoint,
there is a disk 6; of some small radius ¢ around each
sentinel point v; that intersects only the arcs ending
at v,. Within each disk &;, place a scaled copy f;
of the face f; around v;. For each terminal vertex s;

j
(resp. tj) on the boundary of f;, let 8 (resp. fj) denote

the corresponding point on the boundary of f;. Because
the arcs leaving v; have the same counterclockwise order
as the corresponding terminal vertices around f;, we
can continuously deform the arcs within each disk §;
so that each arc a; passes through the corresponding



points §; or t; and their incident edges. By applying
any continuous retraction from 2\ (f; U---U f;) to G,
we obtain a collection of non-crossing topological walks
@1, Dy,...,0 in G connecting the terminal pairs. These
are not walks in the graph-theoretic sense; they may
double back many times in the interior of an edge.
For each i, let w; be the graph-theoretic walk that
visits the vertices of G in the same order as &;. The
walks wq, w,, ..., w; are homotopic to the non-crossing
topological walks &, ®,,...,d; and therefore do not
Cross. O

This lemma suggests a simple linear-time algorithm to
determine if the terminal pairs can be connected by non-
crossing walks in G. We compute the counterclockwise
ordering of terminal vertices around each obstacle, by
traversing each obstacle boundary once, after which it
is easy to count the faces of C, in O(h + k) = O(n)
additional time [20]. The connection graph C has
h vertices and k edges, so by Euler’s formula, the
embedding C, is planar if and only if it has exactly
k —h — 2 faces.

Theorem 3.2. Let s,tq,59,t9,...,5, tx be vertices of
degree 1 in a plane graph G with n vertices. We can
decide whether G contains a set of non-crossing S T -walks
in O(n) time.

The algorithm and proof for the geometric setting are
nearly identical. Here, the input consists of h disjoint
closed polygonal obstacles P;,P,,...,P, in the plane,
of total complexity n, with 2k distinct terminal points
S1,t1,89,tg, ..., Sk, t on their boundaries. The connec-
tion graph C has a node for each obstacle P; and an
arc for each terminal pair (s;, t;). The counterclockwise
order of terminal points around each obstacle define a
combinatorial embedding C,. An easy modification of
the proof of Lemma 3.1 implies that there is a set of
non-crossing walks in R? \ (P; U--- U P,) connecting the
terminal pairs if and only if C, is a planar embedding.
(In fact, the proof is simpler.) Just as in the planar graph
setting, we can construct C, and determine whether it is
planar in O(n) time.

Theorem 3.3. Letsy, ty,Sy, to,...,S, t; be distinct termi-
nal points on the boundary of h disjoint closed polygonal
obstacles P, P,, ..., P, of total complexity n in the plane.
We can decide whether there is a set of non-crossing
ST-walks in R?\ (P, U---UP,) in O(n) time.

4 Crossing Bounds

In this section, we prove that each walk in a minimum-
length set of non-crossing walks crosses an arbitrary

shortest path 26 times in the worst case; this bound
does not depend on the the number of terminal pairs (k)
or the total complexity of the input (n).

Our upper bound proof (Section 4.1) uses an ex-
change argument, similar to arguments previously used
to characterize shortest noncontractible and nonsep-
arating cycles [3], shortest splitting cycles [4], and
minimum cuts in surface-embedded graphs [5], as well
as minimal realizations of string graphs (intersection
graphs of simple curves in the plane) [21, 26]. We give
an explicit upper bound proof only in the combinatorial
setting, but our proof can be easily modified (in fact,
simplified) to the geometric setting.

In particular, we use and refine an argument of
Schaefer and Stefankovi¢ [26, Theorem 3.2]. Let G =
(V,E) be an arbitrary graph, and let R be a set of pairs
of edges of G. A drawing of G in the plane is a weak
realization of the pair (G,R) if only pairs of edges in R
are allowed (but not required) to cross in the drawing.
Schaefer and Stefankovi¢ prove that if the pair (G,R)
has a weak realization, then it has a weak realization in
which the total number of crossings along any edge is at
most 2™, where m is the number of edges in G. As we
show below, their proof technique immediately implies
that any walk in a set of shortest ST-walks crosses a
shortest path at most 2% times. However, further work is
needed to reduce this crossing bound to a function of h
(the number of obstacles).

Our lower bound proof (Section 4.2) uses an explicit
construction inspired by a result of Hass et al. [13], but
more similar in retrospect to an earlier construction of
Kratchovil and Matousek [17].

4.1 Upper Bound
Fix an n-vertex plane graph G = (V,E), a weight
function w: E — R, and 2k distinct terminal vertices
S1,t1,.--,86, tx € V, each with degree 1. In light of
Theorems 3.2 and 3.3, we assume without loss of
generality that there is a set of non-crossing ST-walks.

Fix a set ¥ = {07, 0y, ..., 0} of non-crossing shortest
paths in G. Let Q = {w;, w,,...,w;} be a set of non-
crossing ST-walks in G that minimizes both the total
length of the walks and the total number of crossings
between walks w; and shortest paths o;. (In the
geometric setting, minimizing length also minimizes the
number of crossings, but the combinatorial setting is
more subtle.) Our goal is to prove that each walk w;
crosses each shortest path o; at most 20 times.

For each index j, the crossing sequence X(o;, ) is
a string over the alphabet {1,2,...,k} that records the
sequence of crossings between o; and walks in €, in
order along o;. A substring is a contiguous sequence of
symbols within a string. We call a substring of X(o;, Q)



even if any symbol appears an even number of times;
for example, ELESSL is an even substring of the word
SENSELESSLY.

The following key lemma follows directly from an ar-
gument of Schaefer and Stefankovi¢ [26, Theorem 3.2].

Lemma 4.1. For each j, the crossing sequence X (aj, Q)
contains no non-empty even substring.

Proof: Because subpaths of shortest paths are them-
selves shortest paths, it suffices to prove that the entire
crossing sequence X(o;,f2) is not a non-empty even
string. Suppose to the contrary that o; crosses each
walk in ©Q an even number of times, and crosses some
walk in Q at least once. We construct another set €’
of non-crossing ST-walks that is no longer than Q and
has fewer crossings with %, contradicting the assumed
optimality of €.

Following Schaefer and Stefankovi¢ [26], consider a
small ‘window’ W around o; that contains none of the
obstacles. By an application of the Jordan-Schonflies
theorem, we can assume without loss of generality
that W is a long horizontal ellipse, o; is a horizontal
line segment through the center of W, and for each
walk w;, each component of w; N W is a vertical line
segment. Removing these line segments partitions
each walk w; into an odd number of subwalks, which
we label alternately even and odd, with odd subwalks
containing the endpoints of w;. To construct the new
walk w;, we delete all subwalks within W, bring the even
subwalks into W by a circular inversion, and then reflect
the inverted subwalks across ¢’; to reconnect the odd
subwalks. See Figure 4 for an example.

Because the original even subwalks did not cross
outside W, their images inside W also do not cross.
Thus, Q' is indeed a set of non-crossing walks, with the
same endpoints as 2. Moreover, this surgery decreases
the number of crossings on o; by at least a factor of 2,
and it does not increase the number of crossings on
any other path in X. Because W is homeomorphic
to a disk and does not contain any obstacles, we can
replace each transformed subwalk within W with a line
segment without introducing any crossings. If we shrink
the height of the ellipse W to zero, then in the limit,
each transformed subwalk becomes a subpath of o}, and
therefore a shortest path. Thus, the total length of Q' is
not greater than the total length of Q. O

The next lemma now immediately implies that each
crossing sequence X (0, ) has length at most 2k,

Lemma 4.2 ([26, Lemma 3.1]). Any string of length at
least 2F with at most k distinct characters has a non-
empty even substring.

Figure 4. Shortening walks with an even crossing sequence, after
Schaefer and Stefankovi¢ [26]. Even subwalks are indicated by dashed
lines.

Proof: Let A be a string of length n = 2% over the
alphabet {x;,...,x;}. We define a sequence of k-bit
strings By,B,,...,B, as follows: B;[j] = 1 if and only
if x; appears an odd number of times in the prefix A[1..1],
and O otherwise. If some string B; is all zeros, the
substring A[1..i] is even. Otherwise, the pigeonhole
principle implies that strings B, and B, are equal for
some x < y, and the substring A[x + 1..y] iseven. O

We improve this crossing bound by considering each
walk in Q individually and essentially bundling portions
of the other k — 1 walks into a small number of homotopy
classes [11]. For each walk w; and each shortest path o;,
we define an overlay graph H;;, whose vertices are the
crossing points of w; and o}, and whose edges are the
subwalks of w; and o; between consecutive crossing
points. To simplify our following discussion, we color
each edge of H;; blue if it is a subwalk of w; and red if
it is a subpath of o;. The graph H;; has a natural planar
embedding, and therefore a well-defined dual graph Hl*J

Each face of this embedding has an even number
of sides, which alternate between red and blue. We
call a face of H;; empty if it does not contain any of
the h obstacle faces and non-empty otherwise; clearly
there are at most h non-empty faces. A face of H;; is
called a bigon if it has exactly two boundary edges, and
a quadrilateral if it has exactly four boundary edges.
The edges bounding any bigon or quadrilateral must
alternate between red and blue. The following lemma
mirrors a result of Pach and Téth [21, Lemma 2.1] in the
context of string graphs.



Lemma 4.3. No bigon in H;; is empty.

Proof: Suppose H;; has an empty bigon B, whose
boundary is composed of a blue edge b C w; and a red
edge r C 0;. Every other walk in 2 that intersects B must
cross r an even number of times, but cannot cross b. For
each walk w, € Q, we define a new walk w’ by replacing
any subwalk of w, inside B with the corresponding
subpath of r. In particular, w! is defined by replacing b
with r in w;. See Figure 5.

Figure 5. Removing an empty bigon.

Let Q' = {w],..., w;}. Because 0j is a shortest path,
each modified walk w’ is no longer than the original
walk w,. Moreover, the walks in Q’ cross the shortest
paths in ¥ fewer times than Q. To complete the proof, it
remains only to show that the modified walks in " do
not cross each other.

Suppose two modified walks w’ and «’, cross, then
they must cross at a subpath of r. That is, tﬁere must be
subpaths /. C w’ Nb and n/, € w’ Nb whose endpoints
alternate along the red path r. But then the Jordan
curve theorem implies that walks w, and w, must cross
within B, which is impossible. O

Let T;; denote the subgraph of blue edges of Hj;,
and let C;; denote the subgraph of red edges. The
subgraph T;; is actually a spanning tree of H;; thus, the
dual subgraph Ci*j is a spanning tree of the dual graph H l*]
In other words, the pair (T;;, C;;) is a tree-cotree decompo-
sition of H;; [12]. Following Schaefer et al. [25], we call
a vertex of C;; good if the corresponding face of H;; is an
empty quadrilateral, and bad otherwise. The following
lemma slightly improves a result of Schaefer et al. [25,
Lemma 2.2].

Lemma 4.4. The total degree of the bad vertices of Cl.*j
is at most 4h — 4.

Proof: Let { denote the number of leaves in C‘l’; Each
leaf of Cl.*j corresponds to a bigon in H;;; thus, Lemma 4.3
implies that £ < h. It follows that at most h — ¢ bad
vertices have degree 2. These vertices correspond to non-
empty quadrilaterals and their total degree is at most
2h—2(.

Now smooth out the degree-2 vertices in Ci*j, by
replacing any path through degree-2 vertices with a
single edge. The vertices of the resulting tree are the

bad vertices whose degrees we have not already counted.
Because this tree has { leaves, it has at most 2{ — 1
vertices, and therefore has at most 2/ — 2 edges. Thus,
the total degree of these vertices is at most 4¢ — 4.

We conclude that the total degree of the bad vertices
isatmost 2h+2{ —4 < 4h —4. O

The good vertices in Ci*j induce a collection of paths
in the dual; a good vertex has degree 2. We call the
sequence of quadrilateral faces dual to each induced
path a street.®> Because no street contains an obstacle,
any walk in  that intersects a street must enter at one
end, traverse the entire street, and exit at the other end;
otherwise, it would either cross w; or define an empty
bigon with oj.

We associate a unique label with each street, and then
extend the street labeling to a labeling of the edges of C;;
(that is, the subpaths of o) as follows. If an edge in C;;
intersects a street, either as one of the street’s ends or
by crossing through its interior, the edge inherits that
street’s label. Any edge that is adjacent to only bad faces
is assigned a special label #. The edge labeling is well-
defined, because no edge of C;; is adjacent to more than
one street. All edges of C;; with the same label cross
the same walks in €2 in the same order (up to reversal).
We call the sequence of edge labels along oj; the street
sequence S;;.

Figure 6. Three streets (shaded) defining the street sequence
121#1212#3#3#3. Black diamonds indicate obstacles.

Theorem 4.5. Each walk w; crosses each shortest
path o; at most 22"~ times.

Proof: Let s denote the number of streets in the overlay
graph H;;, and let x denote the number of times the
symbol # occurs in the street sequence S;;. We claim
that each walk w; crosses each shortest path o; at most
(x +1)2° times.

For the sake of argument, suppose some walk w; € Q
crosses some shortest path o; € X more than (x + 1)2°
times. Then the street sequence S;; has length greater
than (x + 1)2° and therefore contains a substring S’ of

3pach and Téth [21] call this sequence of faces an empty (e, f )-path
of four-cells.



length 2° that avoids the symbol #. Lemma 4.2 implies
that S’ contains a nonempty even substring S”. Let o” be
the subpath of o; that corresponds to S”. This subpath
starts and ends at crossings with w; and crosses w;
an odd number of times. Because any subwalk that
enters a street at one end must exit at the other end,
o crosses any walk w, with x # i an even number of
times. Therefore, if we remove the last symbol of the
crossing sequence X (o”, ), we obtain a non-empty even
substring of the crossing sequence X (o7, ©2), contradicting
Lemma 4.1.

It remains only to prove an upper bound for the
quantity (x + 1)2°. Every street in H;; starts and ends at
a red edge whose dual in C; is incident to exactly one
bad vertex, and each occurrence of the symbol # in S;;
corresponds to an edge of between two bad vertices C:‘J
Thus, Lemma 4.4 implies that 2s 4+ 2x < 4h — 4. We
conclude that (x +1)2° < (x +1)2%h27x <222,

4.2 Lower Bound

In this section, we prove by construction that shortest
non-crossing walks can cross a shortest path 2% times;
thus, the total complexity of shortest non-crossing walks
is exponential in h in the worst case. Our construction
was inspired by the construction by Hass et al. [13] of an
unknotted polygonal cycle in R® such that any piecewise-
linear spanning disk has exponential complexity. In
retrospect, our example also resembles a construction of
Kratchovil and Matousek [17] of a graph G = (V, E) and
a set R of edge pairs, such that any weak representation
of (G,R) has an exponential number of crossings.

Fix a positive integer n. Let G be a graph with
vertices {s;,tq,...,8,, tp, U, v, w}, with edges between v
and every other vertex and a loop edge {; at each
vertex s;. We embed G in the plane so that the counter-
clockwise order of neighbors around v is s;,u,s,,tq,
S35ty ey ty_o,Sp, tho1, ty, W, as shown in Figure 7. The
loops {; enclose the obstacle faces. We weight the edges
by setting w({;) := 2" for each i, setting w(uv) =
w(vw) = o0, and setting w(e) = O for every other edge e.

Figure 7. A plane graph in which the shortest non-crossing ST-walks
have exponential complexity.

We inductively construct a set of canonical non-
crossing ST-walks Q" = {w], w3,...,w;} in G as follows.
We first define a sequence a4, a,, ..., a; of closed walks
starting and ending at v. Specifically, we define a; to be

the empty walk, and for each i > 2, we define
a; :=rev(a;_1) - (v,8i-1) 41 - (si-1,v) - a_q.

where - denotes the concatenation operator. Finally, for
each i, we define w? :=(s;,v)-a;*(v,t;). Our embedding
ensures that the walks in 2* do not cross. Each walk co;f
traverses the loop {; exactly 2/~~! times if i < j, and
does not traverse {; at all if i > j, so each loop ¢; is
traversed 2"~ — 1 times altogether. Each walk coj crosses

the shortest path o from u to w exactly 2/~ times; thus,
o is crossed 2" — 1 times altogether.

The following lemma implies that Q* is the unique
minimum-length set of non-crossing walks connecting
the terminals in G.

Lemma 4.6. Let Q = {w;, w,,...,w,} be a minimum-
length set of non-crossing walks in G, such that each
walk w; connects terminals s; and t;. For all i and j,
walk w; traverses loop {; exactly |2/~""! | times.

Proof: We prove the lemma by backward induction on i.
The base case i = n is trivial. The loop ¢, cannot be
used in any optimal solution because it is longer than the
total length of the canonical solution. Assume inductively
that £;,, is traversed exactly |2/~""?| times by each w;.

Let §; be a path in the plane from t; to s; that
crosses {;, but no other edges of G, so that £, lies in the
interior of the cycle vt; - §; -s;v. (See Figure 8.) Let p;
denote the closed walk w; - 6;. The induction hypothesis
implies that «w; does not traverse the loop £, ; thus, £; 4
lies completely inside p;. On the other hand, for all
Jj >1i+1, the loop {; lies completely outside p;.

Figure 8. Defining the path 6;.

Walk w;,; starts inside p; and ends outside p;, it
must cross {; at least once. The Jordan Curve Theorem
implies that the only way to cross p; without crossing w;
is by traversing £;. Thus, w;, traverses {; at least once.

Fix an index j > i + 1. The induction hypothesis
implies that w; traverses £;,, at least 2/7'"2 times, and



therefore must enter and then exit p; at least 2/7:~2 times.
It follows that w; must traverse £; twice for each traversal
of £;,, and therefore at least 2/~"! times altogether. We
conclude that ¢; is traversed at least 2"~ — 1 times by Q.

Recall that each loop {; is traversed exactly 2" —1
times by the canonical walks Q*. Thus, the total length
of all canonical traversals of loops £,£,,...,£;_; is

i—1 i—1
22"1(2"—1—1) < 2"2(2"—1)1 < on,
j=1 j=1

Thus, if any walk w; traversed loop {; more than
|2/7171] times, © would have larger total length than the
canonical walks Q* and would therefore not be optimal.
We conclude that w; traverses loop ¢; exactly |2/~
times, as required. O

We can realize our lower bound example
geometrically as follows. The terminals are evenly
spaced points on a tiny circle, in cyclic order
51559, E15835 tay e esSpy tpe1s Lpe Each terminal is at
one end of a line segment (or a very skinny triangle)
pointing directly away form the center of the circle;
these segments are the obstacles. For each i, the segment
attached to s; has length 21", and the segment attached
to t; has infinite length. Figure 9 shows the canonical
solution for n = 3.

Figure 9. A geometric version of our exponential lower bound.

5 Planar Graph Algorithm

Now we describe our algorithm for the combinatorial
version of the shortest non-crossing walks problem. As
in the previous section, the input consists of an n-vertex
plane graph G = (V, E) with weighted edges, and two
disjoint sets S = {s1,85,...,5;:} and T = {tq,t,,...,t;}
of terminal vertices, each with degree 1. Let h denote
the number of obstacles. Again, we assume that the
input graph G contains at least one set of non-crossing
ST-walks.

Our algorithm ultimately reduces to a special case
already considered by Takahashi et al. [27], where for
each i, the terminals s; and t; lie on the same obstacle
(although different terminal pairs may lie on different

obstacles). In this case, shortest ST-walks consist of
non-crossing shortest paths joining the terminals. These
shortest paths can be computed using the following naive
algorithm: For each i from 1 to k, compute the shortest
path o; in G connecting s; and t;, and then replace G with
G +# o0;. Takahashi et al. describe a divide-and-conquer
algorithm (called ‘PATH2’) to compute a non-crossing
forest containing all the shortest paths between terminals
on a single face in O(nlogk) time.

Lemma 5.1. Shortest non-crossing ST-walks in an n-
vertex planar graph with k terminal pairs and h obstacles
can be computed in O(hnlogk) time, if for every index i,
terminals s; and t; lie on the same obstacle.

To solve the general problem, we adapt the approach
of Takahashi et al. [27] for the special case h = 2;
similar strategies have been used to find various optimal
topologically interesting cycles in combinatorial surfaces
[3,4,5, 18].

5.1 Spanning Walks

Recall from Section 3 that the obstacles and terminal
pairs naturally define a connection graph C whose nodes
correspond to the obstacles f; and whose arcs correspond
to the terminal pairs (s, t;). Let F be an arbitrary max-
imal spanning forest of the connection graph. Without
loss of generality, we can assume its edges correspond
to the first m terminal pairs (s1, t1),..., (8, t,); let S’ =
{s1,...,8n} and T’ = {t4,...,t,,}. Note that m <h—1.

Say that a walk is tight if it is a shortest walk
in its homotopy class. Results of Colin de Verdiére
and Lazarus [8, 10, 9] imply that in any minimum-
length set of non-crossing ST-walks, every walk is
tight; otherwise, we could make at least one walk
shorter without introducing any crossings. Conversely,
suppose €2 is a set of tight non-crossing S’ T”-walks; let {2
be a set of non-crossing ST-walks that includes £’; and
let © be a set of ST-walks homotopic to 2. Then either
the walks 2 are non-crossing, or there is a bigon whose
removal decreases the total number of crossings, exactly
as in Lemma 4.3.

Thus, given a set ' of tight non-crossing S’ T’-walks
each in the correct homotopy class, there is a minimum-
length set Q of non-crossing ST-walks that includes .
Moreover, we can compute ) by running the same-
obstacle algorithm on the graph G +# Q’, which has
exactly one obstacle for each connected component of
the connection graph C.

5.2 Enumerating Homotopy Classes

We enumerate all homotopy classes of non-crossing S’ T’-
walks that satisfy the crossing bound in Theorem 4.5 as



follows. We first compute a set 3 = {07, 05,...,0,_1}
of non-crossing shortest paths that connect the obstacle
faces fy, f1,-- -, fn_1- Specifically, we compute a shortest-
path tree rooted at an arbitrary vertex v, on obstacle f,
in O(n) time [14], and then for each i, we define o;
to be the shortest path from v, to any vertex on f; that
is not a terminal vertex. (This procedure may require
subdividing some edges in G.)

Let G # X denote the planar graph obtained by
cutting G along every shortest path o; € 2. Following
Chambers et al. [4], we represent G 4 ¥ compactly as an
abstract polygonal schema II, which is a convex polygon
with 2h + 2m — 2 = O(h) vertices: 2h — 2 path vertices
corresponding to the copies of each shortest path o; in
G+, plus the 2m terminals S"UT’. The boundary edges
of IT correspond to subpaths of the obstacle boundaries.

Call a set Q' of non-crossing S’T’-walks bigon free
if no walk in € defines an empty bigon with any
path in T; see Lemma 4.3. Any bigon-free set Q' of
non-crossing S’T’-walks in G can be represented by a
weighted triangulation of IT whose edges correspond to
certain subwalks of Q'. Specifically, an edge between
two path vertices represents a subwalk that consecutively
crosses the corresponding pair of shortest paths in X; an
edge between two terminals represents a walk between
those terminals that does not cross any path in 3; and
an edge between a terminal and a path vertex represents
a subwalk that starts at the terminal and immediately
crosses the corresponding shortest path. The weight of
each diagonal is the number of corresponding subwalks
appearing in Q’; if the walks in Q' satisfy Theorem 4.5,
then each diagonal has weight at most 200,

Figure 10. Representing non-crossing walks with an abstract
polygonal schema.

Conversely, a weighted triangulation corresponds
to a bigon-free set Q' of non-crossing S’T’-walks if
both vertices corresponding to any shortest path o
are incident to diagonals of equal total weight, and
each terminal is incident to exactly one diagonal with
weight 1. We call such a weighted triangulation valid if
in addition every diagonal has weight at most 2°™. The
polygon IT supports 2°™ unweighted triangulations, and

therefore 2°0"") valid weighted triangulations, which we
. 2 .
can enumerate in 2°) time.

5.3 Tight Spanning Walks

For each valid weighted triangulation A, we compute a
corresponding collection of tight non-crossing S’ T’-walks
by adapting an algorithm of Kutz [18]. The crossing
sequences of a bigon-free walk w is the sequence of
shortest paths in X that w crosses, in order along the
walk. Two bigon-free walks with the same endpoints
have the same crossing sequences if and only if they are
homotopic. We can easily extract the crossing sequences
X1,X,...,X,, of the m walks represented by A in 20"
time, by brute force. For each index i, let x; < 20W
denote the length of crossing sequence X;.

We can compute a shortest walk with a given crossing
sequence X; as follows. First, glue together x; copies
of G+ X along the copies of the shortest paths that w
crosses, to obtain a planar graph G of complexity O(x;n).
Then compute a shortest path &; in G between s; in
the initial copy of G + X and t; in the final copy of
G + %, using the linear-time shortest path algorithm of
Henzinger et al. [14]. Finally, project the path &; back
into G to obtain the walk w;.

Intuitively, we would like to run this shortest-walk
algorithm independently for each crossing sequence X;,
but there is no guarantee that the resulting walks would
not cross. Instead, we use a variant of the naive algorithm
suggested by Takahashi et al. for the same obstacle
case. Initially, let H = G # X. For each index i from 1
to m, compute the shortest walk w; in G with crossing
sequence X; by gluing together copies of H, replace G
with G # w;, and replace H with H # w;. After the first
iteration, the graph H may be disconnected, but it is
easy to adapt the gluing algorithm to only glue together
copies of the relevant components of G -4 ¥ to obtain
the graph G. Each iteration of this process increases the
complexity of the graphs G and H by at most 2°™n. Thus,
for each valid weighted triangulation A, we construct
a minimum-length set Q' of non-crossing S’T’-walks
consistent with A in 2°®n time.

5.4 Summing Up

Our algorithm spends O(n) time computing the short-
est paths ¥ and constructing the abstract polygonal
schema II. For each of the 2°(") valid weighted
triangulations A of II, we compute a set ' of tight non-
crossing walks consistent with A in time 2°®n. The
graph G .+’ has complexity at most 2°(n; thus, we can
extend Q' to a set of tight non-crossing ST-walks in time
0(2°Mnlogk) using Lemma 5.1. We conclude:



Theorem 5.2. Shortest non-crossing ST -walks in an n-

vertex planar graph with k terminal pairs and h obstacles
2

can be computed in 2°nlogk time and 2°®n space.

6 Geometric Algorithm

Now we describe the geometric version of our shortest
non-crossing ST-walk algorithm. The input consists of
h disjoint simple polygonal obstacles Py, P,, ..., P, in the
plane with total complexity n, along with two disjoint sets
S={sy,...,s.} and T = {t4,...,t;} of obstacle vertices.
Our goal is to find a minimum-length set of non-crossing
ST-walks in R*\ (P, U- - -UP;); we can clearly restrict our
search to the smaller work space W =0\ (P, U---UPy),
where [ is a large rectangle containing all the obstacles.
To simplify the algorithm, we assume the polygons are
in general position, so there is a unique shortest path
between any two vertices.

6.1 Same Obstacle Case

Consider the special case where each pair of matching
terminals s; and t; lies on the same obstacle. In this case,
the optimal set of non-crossing S T-walks consists of the
unique globally shortest paths between the terminal pairs,
which are unique because the polygons are in general
position. These paths can be computed one at a time
in O(knlogn) time using the shortest-path algorithm
of Hershberger and Suri [16]. Here we describe an
algorithm that runs in O(n) time when h is constant,
generalizing an algorithm of Papadopoulou [22] for the
special case h = 2. The main difficulty is determining the
homotopy class of each of the k shortest paths.

We first construct a set of disjoint line segments ¥ =
{o1,..., 04}, where for each index i, o; is the vertical
segment from the lowest vertex of P; to the boundary
of the next lower obstacle P; or the bounding box 0.
We can compute these segments in O(hn) time by brute
force. The space W' = W + 3 is a topological disk with
complexity O(n), which we can compute in O(n) time
from . We can compute a triangulation W’ in O(n)
time [7].

We observe that the shortest path between any two
points in W crosses each segment o; at most once. Our
algorithm now considers all homotopy classes of walks
that satisfy this crossing condition. There are O(h!) valid
crossing sequences, which we can enumerate in O(h!)
time.

For each crossing sequence X of length x, we glue
together x copies of the disk W’ along the crossed
segments, to obtain a larger topological disk WX of
complexity O(h! n). The disk W¥ is not a simple polygon,
but a boundary-triangulated 2-manifold [15], whose tri-
angulation is inherited from the triangulation of W’. We

compute the shortest paths in WX from each terminal s;
in the first copy of W’ to the corresponding terminal t;
in the last copy of W', using the linear-time single-
obstacle algorithm of Papadopoulou [22]. Papadopoulou
describes her algorithm only for simple polygons, but
it actually works for arbitrary boundary-triangulated 2-
manifolds, as it ultimately relies only on the standard
funnel algorithm for computing shortest paths [6, 19, 15].
The output of Papadopoulou’s algorithm is a geometric
non-crossing forest Fyx of complexity O(h!n) containing
the required shortest non-crossing paths in W*.

We now have O(h!) geometric non-crossing forests Fy,
one for each crossing sequence X. For each index i,
we can determine which forest Fy contains the shortest
path from s; to t;. For each forest Fy, we extract the
subforest F; containing the shortest ST-walks that have
crossing sequence X. Finally, we return the union of all
geometric non-crossing forests Fy.

Lemma 6.1. Shortest non-crossing ST -walks in the com-
plement of h polygonal obstacles with total complexity n
can be computed in h°®n time, if for every index i,
terminals s; and t; lie on the same obstacle.

6.2 General Case

Our solution strategy for the general case is the same as
in the graph setting. As in the same-obstacle case, we
construct a set & = {0y, ..., 03} of vertical line segments
that cut W into a topological disk, in O(hn) time. Let F be
an arbitrary maximal spanning forest of the connection
graph of the terminals; assume that the edges of F join
terminals S’ = {s,...,s,} and T’ = {tq,...,t,,}. We
enumerate all homotopy classes of tight S’ T’-walks that
cross each segment o ; at most 29 times using weighted

triangulations. For each of the 200%) valid weighted
triangulations A, we compute a set " of tight non-
crossing walks consistent with A in 2°™n time, using
the homotopic shortest path algorithm of Hershberger
and Snoeyink [15] in place of the planar graph algorithm
of Henzinger et al. [14]. Finally, we extend Q' to a set
of tight non-crossing S T-walks using the same-obstacle
algorithm in the space W4 Q'.

Theorem 6.2. Shortest non-crossing ST -walks in the
complement of h polygonal obstacles with total com-
plexity n can be computed in 2°")n time and 2°™n
space.

Acknowledgments. Thanks to the anonymous review-
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