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Combinatorial Optimization of Cycles and Bases

Jeff Erickson

Abstract. We survey algorithms and hardness results for two important
classes of topology optimization problems: computing minimum-weight cy-

cles in a given homotopy or homology class, and computing minimum-weight
cycle bases for the fundamental group or various homology groups.

1. Introduction

Identification of topological features is an important subproblem in several
geometric applications. In many of these applications, it is important for these
features to be represented as compactly as possible.

For example, a common method for building geometric models is to reconstruct
a surface from a set of sample points, obtained from range finders, laser scanners, or
some other physical device. Gaps and measurement errors in the point cloud data
induce errors in the reconstructed surface, which often take the form of spurious
handles or tunnels. For example, the original model of David ’s head constructed
by Stanford’s Digital Michelangelo Project [130] has 340 small tunnels, none of
which are present in the original marble sculpture [101]. Because most surface
simplification and parametrization methods deliberately preserve the topology of
the input surface, topological noise must be identified, localized, and removed before
these other algorithms can be applied [74,101,191,193].

Another example arises in VLSI routing [46,86,129], map simplification [53,
54,81], and graph drawing [70,75]. Given a rough sketch of one or more paths
in a planar environment with fixed obstacles—possibly representing roads or rivers
near cities or other geographic features, or wires between components on a chip—
we want to produce a topologically equivalent set of paths that are as short or as
simple as possible, perhaps subject to some tolerance constraints.

Similar optimization problems also arise in higher-dimensional simplicial com-
plexes. For example, several researchers model higher-order connectivity properties
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of sensor networks using simplicial complexes. In one formulation, complete cover-
age of an area by a sensor network is indicated by the presence of certain nontriv-
ial second homology classes in the associated simplicial complex [57,58,89,178];
smaller generators indicate that fewer sensors are required for coverage. Moreover,
if coverage is incomplete, holes in the network are indicated by nontrivial one-
dimensional homology classes; localizing those holes makes repairing or routing
around them easier.

Similar topological optimization problems arise in shape analysis [63,64], low-
distortion surface parametrization [99,174,184], probabilistic embedding of high-
genus graphs into planar graphs [20, 128, 171], computing crossing numbers of
graphs [117], algorithms for graph isomorphism [116], approximation of optimal
traveling salesman tours [60,88] and Steiner trees [16–18], data visualization and
analysis [31, 32, 50], shape modeling [33], localization of invariant sets of differ-
ential equations [113], minimal surface computation [71,176], image and volume
segmentation [24,92,94,119], and sub-sampling point cloud data for topological
inference [154].

This survey gives an overview of algorithms and hardness results for four classes
of topological optimization problems:

Optimal Homotopy Basis: Given a space Σ and a basepoint x, find an
optimal set of loops whose homotopy classes generate the fundamental
group π1(Σ, x).

Homotopy Localization: Given a cycle γ in a space Σ, find a shortest
cycle in Σ that is homotopic to γ.

Optimal Homology Basis: Given a space Σ and an integer p, find an
optimal set of p-cycles whose homology classes generate the homology
group Hp(Σ).

Homology Localization: Given a p-cycle c in a space Σ, find an optimal
p-cycle in Σ that is homologous to c.

In the interest of finiteness, the survey is limited to exact and efficient algorithms for
these problems; I do not even attempt to cover the vast literature on approximation
algorithms, numerical methods, and practical heuristics for topological optimiza-
tion. For similar reasons, the survey attempts only to give a high-level overview of
the most important results; many crucial technical details are mentioned only in
passing or ignored altogether.

I assume the reader is familiar with basic results in algebraic topology (cell
complexes, surface classification, homotopy, covering spaces, homology, relative
homology, Poincaré-Lefschetz duality) [103, 150, 175], graph algorithms (graph
data structures, depth-first search, shortest paths, minimum spanning trees, NP-
completeness) [52,122,179], and combinatorial optimization (flows, cuts, circula-
tions, linear programming, LP duality) [4,122,166].

2. Input Assumptions

2.1. Combinatorial spaces. Our focus on efficient, exact algorithms nec-
essarily limits the scope of the problems we can consider. With one exception,
we consider only combinatorial topological spaces as input: finite cell complexes
whose cells do not have geometry per se, but where each cell c has an associated
non-negative weight w(c). For simplicity of exposition, we restrict our attention to
simplicial complexes; however, most of the algorithms we discuss can be applied
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with little or no modification to finite regular CW-complexes. For questions about
homotopy, we consider only paths, loops, and cycles in the 1-skeleton; the weight
(or ‘length’) of a cycle is the sum of the weights of its edges. For questions about
homology, the output is either a subcomplex of the p-skeleton, whose weight is the
sum of the weights of its cells, or a real or integer p-chain, whose cost is the weighted
sum of its coefficients.

Unless noted otherwise, the time bounds reported here assume that the input
complex is (effectively) represented by a sequence of boundary matrices, each stored
explicitly in a standard two-dimensional array. (For sparse complexes, representing
each boundary matrix using a sparse-matrix data structure leads to faster algo-
rithms, at least in practice, especially in combination with simplification heuris-
tics [10, 30, 56, 84, 113, 147, 194, 195].) For each index i, we let ni denote the
number of i-dimensional cells in the input complex, and we let n denote the total
number of cells of all dimensions.

2.2. Combinatorial surfaces. For problems related to homotopy of loops
and cycles, we must further restrict the class of input spaces to combinatorial
2-manifolds. Classical results of Markov and others [136–138] imply that most
computational questions about homotopy are undecidable for general 2-complexes
or manifolds of dimension 4 and higher. Thurston and Perelman’s geometrization
theorem [123,145,182] implies that the homotopy problems we consider are de-
cidable in 3-manifolds [23,139,159]; however, the few explicit algorithms that are
known are extremely complex, and no complexity bounds are known. The homol-
ogy problems we consider are all decidable for arbitrary finite complexes, but (not
surprisingly) they can be solved more efficiently in combinatorial 2-manifolds than
in general spaces.

To simplify exposition, this survey explicitly considers only orientable surfaces;
however, most of the results we describe apply to non-orientable surfaces with little
or no modification.

The surface algorithms we consider are most easily described in the language of
topological graph theory [90,125,144]. An embedding of an undirected graph G on
an abstract 2-manifold Σ maps vertices of G to distinct points in Σ and edges of G
to interior-disjoint curves in Σ. The faces of an embedding are maximal connected
subsets of Σ that are disjoint from the image of the graph. An embedding is
cellular (or 2-cell [144]) if each of its faces is homeomorphic to an open disk. A
combinatorial surface is simply a cellular embedding of a graph on an abstract
2-manifold.

Any cellular embedding of a graph on an orientable surface can be represented
combinatorially by a rotation system, which encodes the cyclic order of edges around
each vertex. To define rotation systems more formally, we represent each edge uv
in G by a pair of directed edges or darts u�v and v�u; we say that the dart u�v
leaves u and enters v. A rotation system is a pair (σ, ρ) of permutations of the
darts, such that σ(u�v) is the next dart leaving u after u�v in counterclockwise
order around u (with respect to some fixed orientation of the surface), and ρ is the
reversal permutation ρ(u�v) = v�u. The permutation σ ◦ ρ encodes the clockwise
order of darts around each 2-cell.

Any cellularly embedded graph with n0 vertices, n1 edges, and n2 faces lies on
a surface Σ with Euler characteristic χ = n0−n1 +n2 = 2− 2g. Assuming without
loss of generality that no vertex has degree less than 3, it follows that n1 = O(n0+g)
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and n2 = O(n0 + g). Let n = n0 +n1 +n2 denote the total complexity of the input
surface.

Any graph G embedded on any surface Σ has an associated dual graph G∗,
defined intuitively by giving each edge of G a clockwise quarter-turn around its
midpoint. More formally, the dual graph G∗ has a vertex f∗ for each face f of G,
and two vertices in G∗ are joined by an edge e∗ if and only if the corresponding
faces of G are separated by an edge e. The dual graph G∗ has a natural cellular
embedding in the same surface Σ, determined by the rotation system (σ ◦ ρ, ρ).
Each face v∗ of this embedding corresponds to a vertex v of the primal graph G.
Duality can be extended to the darts of G by defining (u�v)∗ = (`∗)�(r∗), where
` and r are respectively the faces on the left and right sides of u�v. See Figure 1.

Figure 1. A portion of an embedded graph G and its dual G∗,
with one dart and its dual emphasized.

For any subgraph H of G, we abuse notation by letting H∗ denote the corre-
sponding subgraph of the dual graph G∗, and letting G \ H denote the subgraph
of G obtained by deleting the edges of H. In particular, we have (G\H)∗ = G∗\H∗.

For algorithms that act on combinatorial surfaces, we assume that the input is
a data structure of size O(n) that efficiently supports standard graph operations,
such as enumerating neighbors of vertices in constant time each, both in the primal
graph and in the dual graph. Several such data structures are known [12,100,131,
148,189]. It is straightforward to determine the Euler characteristic, and therefore
the genus, of a given surface in O(n) time by counting vertices, edges, and faces.

To simplify our exposition, we implicitly assume that shortest vertex-to-vertex
paths are unique in every weighted graph we consider. This assumption can be
enforced automatically using standard perturbation techniques [149], but in fact,
none of the algorithms we describe actually require this assumption.

2.3. Why not solve the real problem? The problems we consider are ob-
viously well-defined for continuous geometric spaces, such as piecewise-linear or
Riemannian surfaces (with some appropriate discrete or implicit representation).
Unfortunately, at least with the current state of the art, these spaces permit only
inefficient or approximate solutions.

Almost all the algorithms we describe here rely heavily on the ability to compute
exact shortest paths. Shortest paths in combinatorial spaces can be computed in
O(n log n) time using Dijkstra’s algorithm in the 1-skeleton. In general Riemannian
surfaces, shortest paths have no analytic representation, and therefore cannot be
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computed exactly even in principle. For piecewise-linear surfaces, existing shortest-
path algorithms, both exact [42, 133, 143, 158, 164, 165, 177] and approximate
[1,5], are efficient only under the assumption that any shortest path crosses each
edge of the input complex at most a constant number of times. (Some common
numerical algorithms [118,170] require even stronger geometric assumptions.) The
crossing assumption is reasonable in practice—for example, it holds if the input
complex is PL-embedded in some ambient Euclidean space (in which case any
shortest path crosses any edge at most once), or if all face angles are larger than
some fixed constant—but it does not hold in general.

As an elementary bad example, consider the piecewise-linear annulus defined by
identifying the non-horizontal edges of the Euclidean trapezoid with vertices (0, 0),
(1, 0), (x, 1), (x+ 1, 1), for some arbitrarily large integer x, as shown in Figure 2.
(Essentially the same example appears as Figure 1 in Alexandrov’s seminal paper on
convex polyhedral metrics [7].) The shortest path in this annulus between its two
vertices is a vertical segment that crosses the oblique edge x− 1 times. All existing
shortest-path algorithm require at least constant time for each crossing; thus, their
total running time is unbounded as a function of the combinatorial complexity of
the input.

Figure 2. A shortest path in a piecewise-linear annulus

Even for piecewise-linear surfaces embedded in R3, shortest-path algorithms
can only be efficient in a model of computation that supports exact constant-time
real arithmetic, including square roots. Even for polyhedra with integer vertices,
most vertex-to-vertex geodesics have irrational lengths, representable analytically
only with deeply nested radicals. Admittedly, this does not appear to be a signif-
icant problem in practice; it is relatively easy to implement existing shortest-path
algorithms to compute paths that are optimal up to floating-point precision [177].

Subject to those caveats, a few of the algorithms we describe for combinatorial
surfaces can be extended to embedded piecewise-linear surfaces, with some loss of
efficiency, by replacing Dijkstra’s algorithm with a piecewise-linear shortest-path
algorithm. For example, Erickson and Whittlesey’s algorithm [80] (described in
Section 3.2) can be modified to compute an optimal homotopy basis with a given
basepoint, in an embedded piecewise-linear surface, in O(n2) real arithmetic oper-
ations. However, for most of the problems we consider, no efficient algorithms are
known for piecewise-linear surfaces.

—— Part I. Homotopy ——

3. Homotopy Bases

Suppose we are given an undirected graph G with non-negatively weighted
edges, a cellular embedding of G on an orientable surface Σ of genus g, and a
vertex x of G. A homotopy basis is a set of 2g loops based at x whose homotopy
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classes generate the fundamental group π1(Σ, x). Our goal in this section is to
compute a homotopy basis of minimum total length.

The standard structure for a homotopy basis is a system of loops, which is a set
{`1, `2, . . . , `2g} of 2g loops in Σ, each with basepoint x, such that the subsurface
Σ \ (`1 ∪ `2 ∪ · · · ∪ `2g) is an open topological disk; see Figure 3. The resulting disk
is called a (reduced) polygonal schema.

Figure 3. A homotopy basis that is not a system of loops, a non-
canonical system of loops, and a canonical system of loops for a
surface of genus 2.

Suppose we assign each loop `i an arbitrary orientation. Each loop `i appears
as two paths on the boundary of the polygonal schema, once in each orientation.
The cyclic sequence of these directed boundary paths is the gluing pattern of the
polygonal schema. We obtain a one-relator presentation of π1(Σ, x), in which the
loops `i are generators and the gluing pattern is the relator.

Many statements and proofs of the surface-classification theorem [6,22,156]
rely on the existence of a canonical system of loops with the gluing pattern

`1 `2 ¯̀
1

¯̀
2 `3 `4 ¯̀

3
¯̀
4 · · · `2g−1 `2g ¯̀

2g−1 ¯̀
2g;

see the bottom of Figure 3. We emphasize that most of the algorithms we describe
do not compute canonical systems of loops; indeed, it is open whether the shortest
canonical system of loops can be computed in polynomial time. Fortunately, most
applications of systems of loops do not require this canonical structure.

3.1. Without Optimization. If we don’t care about optimization, we can
compute a system of loops for any combinatorial surface in O(n) time, using a
straightforward extension of the textbook algorithm [168,169] to construct a (non-
minimal) presentation of the fundamental group of an arbitrary cell complex. The
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algorithm was first described explicitly by Eppstein [76], but is implicit in earlier
work of several authors [65,98,161,172,180].

A spanning tree of G is a connected acyclic subgraph of G that includes every
vertex of G; a spanning cotree of G is a subgraph C such that the corresponding
dual subgraph C∗ is a spanning tree of G∗.

A tree-cotree decomposition [13] is a partition of G into three edge-disjoint
subgraphs: a spanning tree T , a spanning cotree C, and the leftover edges L =
G\(T∪C). In any tree-cotree decomposition (T, L,C) of any graph embedded on an
orientable surface of genus g, the set L contains exactly n1−(n0−1)−(n2−1) = 2g
edges. (In particular, if g = 0, then L = ∅, and we recover the classical result that
the complement of any spanning tree of a planar graph is a spanning cotree [187].)
For each edge e in G, let `x(T, e) denote the loop obtained by concatenating the
unique path in T from x to one endpoint of e, the edge e itself, and the unique path
in T back to x. The set of 2g loops L = {`x(T, e) | e ∈ L} is a system of loops.

We can construct a tree-cotree decomposition in O(n) time by computing an
arbitrary spanning tree T of G, for example by breadth- or depth-first search, and
then computing an arbitrary spanning tree C∗ of the dual subgraph (G \ T )∗.
(Alternatively, we can compute a spanning tree C∗ of G∗ first, and then compute a
spanning tree T of G\C.) The sequence of edges traversed by any loop `x(T, e) can
then be extracted from T and e in O(1) time per edge. Thus, we can construct a
system of loops in O(n+k) time, where k denotes the total complexity of the output
(the sum over all loops of the number of edges in each loop). Each loop `x(T, e)
traverses each edge of the combinatorial surface at most twice, so k = O(gn), and
this bound is tight in the worst case.

Theorem 3.1. Given a combinatorial surface Σ with complexity n and genus
g, we can construct a homotopy basis for Σ in Θ(n+ k) = O(gn) time.

3.2. Optimization. To construct the minimum-length homotopy basis with
a given basepoint x, Erickson and Whittlesey [80] modify the previous algorithm
by choosing a particular greedy tree-cotree decomposition (T, L,C). In this greedy
decomposition,

• T is the shortest-path tree rooted at the basepoint x, and
• C∗ is a maximum-weight spanning tree of the dual subgraph (G \ T )∗,

where the weight of each dual edge e∗ is the length of the corresponding
primal loop `x(T, e).

We call the system of loops defined by this tree-cotree decomposition the greedy
system of loops. Erickson and Whittlesey [80] proved that the greedy system of
loops is the shortest system of loops with basepoint x using a complex exchange
argument. Here we describe a simpler proof due to Colin de Verdière [47].

A pointed homology basis is a set of 2g loops with a common basepoint x
whose homology classes generate the first homology group H1(Σ;Z2) ∼= (Z2)2g.
The Hurewicz theorem implies that any homotopy basis (and therefore any system
of loops) is also a pointed homology basis. Thus, it suffices to prove that the greedy
system of loops is the pointed homology basis of minimum total length.

The core of Colin de Verdière’s proof is the following exchange argument, which
extends a similar characterization of shortest non-contractible and non-separating
cycles by Thomassen [181]. For any loop `, let [`] denote the homology class of `,
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which we identify as a vector in (Z2)2g. A set of 2g loops is a pointed homology basis
if and only if the corresponding set of 2g homology classes is linearly independent.

Lemma 3.2. Every loop in a minimum-length pointed homology basis has the
form `x(T, e) for some edge e, where T is the shortest-path tree rooted at x.

Proof. We regard the graph G as a continuous metric space, in which any
edge of length w is isometric to the real interval [0, w]. Let α denote the reversal
of any directed path α. Let α · β denote the concatenation of two directed paths α
and β with matching endpoints.

�

�

� � �

Figure 4. Three paths from x to y.

Fix a loop ` with basepoint x and a pointed homology basis L that contains `.
Let y be the midpoint of `, so that ` can be decomposed two paths from x to y
of equal length. Call these paths α and β, so that ` = α · β; see Figure 4. If we
assume shortest vertex-to-vertex paths are unique, the point y lies in the interior
of an edge of G.

Suppose there is a third path γ from x to y that is shorter than both α and β,
as illustrated in Figure 4. Then the loops `[ = α · γ and `] = γ · β are both shorter
than ` = α · β. We immediately have [`] = [`[] + [`]], which implies that either
L ∪ {`]} \ {`} or L ∪ {`[} \ {`} is a pointed homology basis of smaller total length
than L. Thus, L is not a minimum-length pointed homology basis.

We conclude that if ` is a member of any minimum-length pointed homology
basis, then α and β must be shortest paths from x to y. It follows that ` =
`x(T, e), where T is the shortest-path tree rooted at x and e is the edge of G that
contains y. �

We are now faced with the following problem: From the set of O(n) loops
`x(T, e), extract a subset of 2g loops of minimum total length whose homology
classes are linearly independent. Erickson and Whittlesey [80] observe that the
loops `x(T, e1), `x(T, e2), . . . , `x(T, ek) have linearly independent homology classes
if and only if deleting those loops from the surface Σ leaves a connected subsurface,
or equivalently, if the dual subgraph (G \ T )∗ \ {e∗1, e∗2, . . . , e∗k} is connected. Thus,
we seek the minimum-weight set of 2g edges in the dual subgraph (G \ T )∗ whose
deletion leaves the graph connected. These are precisely the edges that are not in
the maximum-weight spanning tree of (G \ T )∗.

The greedy tree-cotree decomposition can be constructed in O(n log n) time
using textbook algorithms for shortest-path trees and minimum spanning trees. If
g = O(n1−ε) for some constant ε > 0, the time bound can be reduced to O(n),
using a more recent shortest-path algorithm of Henzinger et al. based on graph
separators [105] and a careful implementation of Bor̊uvka’s minimum-spanning
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tree algorithm [21,135]. The greedy system of loops can be extracted from this
decomposition in O(1) time per output edge.

Theorem 3.3. Given a combinatorial surface Σ with complexity n and genus g,
and a vertex x of Σ, we can construct a system of loops with basepoint x, of mini-
mum total length, in O(n log n+k) = O(n log n+gn) time, or in O(n+k) = O(gn)
time if g = O(n1−ε) for some constant ε > 0.

If no basepoint is specified in advance, we can compute the globally shortest
system of loops in O(n2 log n+ k) time by running the previous algorithm at every
vertex. No faster algorithm is known.

3.3. Related Results. The tree-cotree algorithm can also be used to con-
struct a system of loops in the dual graph G∗. Using this dual system of loops, one
can label each edge of G with a string of length O(g), in O(gn) time, so that the
concatenation of labels along any path encodes the homotopy type of that path.
A version of this encoding can be used to quickly determine whether two paths or
cycles of length k are homotopic in O(n+ k) time, via Dehn’s algorithm [59,61].

Figure 5. A system of five arcs for a surface with genus 2 and
two boundary components

A slightly different substructure is needed to cut a surface with boundary into
a disk. An arc in a surface Σ with boundary is a path whose endpoints lie on the
boundary of Σ; a set of arcs {α1, α2, . . . , αβ} such that Σ \ (α1 ∪ α2 ∪ · · · ∪ αβ) is
a topological disk is called a system of arcs. See Figure 5. Euler’s formula implies
that if Σ has genus g and b boundary components, then any system of arcs for Σ
has exactly β = 2g + b − 1 elements; the number β is the first Betti number of
Σ. The minimum-length system of arcs can be constructed in O(n log n + k) =
O(n log n + (g + b)n) time using a variant of the greedy tree-cotree construction
[34,48,79]. In fact, this greedy system of arcs is the minimum-length basis for the
relative homology group H1(Σ, ∂Σ;Z2).

A cut graph is a subgraph X of the graph G such that Σ \X is homeomorphic
to an open disk; for example, the union of all loops in a system of loops is a cut
graph. Colin de Verdière [47] also described a similar greedy algorithm to compute
the minimum-length cut graph with a prescribed set of vertices of degree greater
than two. Computing the minimum-length cut graph with no prescribed vertices
is NP-hard [78].

The algorithms described so far in this section do not necessarily construct
canonical systems of loops. Brahana’s proof of the surface classification theo-
rem [22] describes an algorithm to transform any system of loops into a canonical
system by cutting and pasting the polygonal schema; a more efficient transforma-
tion algorithm was later described by Vegter and Yap [185]. Lazarus et al. [126]
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described the first direct algorithm to construct a canonical system of loops in
O(gn) time. The minimum-length system of loops homotopic to a given system
can be computed in polynomial time by an algorithm of Colin de Verdière and
Lazarus [48,49]. However, it is open whether the globally shortest canonical ho-
motopy basis can be computed in polynomial time.

4. Shortest Homotopic Paths and Cycles

The shortest homotopic path problem asks, given a path π in some combinato-
rial surface Σ, to compute the shortest path in Σ that is homotopic to π. Similarly,
the shortest homotopic cycle problem asks, given a cycle γ in some combinatorial
surface Σ, to compute the shortest cycle in Σ that is homotopic to γ. The input
and output curves need not be paths and cycles in the graph-theoretic sense; they
may visit vertices and edges multiple times.

The definition of the universal cover Σ̃ of Σ implies that the shortest path
homotopic to any path π is the projection of the shortest path in Σ̃ between the
endpoints of some lift π̃ of π. This characterization does not directly yield an
algorithm, however, because the universal cover is usually infinite. Algorithms to
solve the homotopic shortest path problem instead first construct a finite, simply-
connected, and ideally small relevant region of Σ̃, and then compute a shortest path
between the endpoints of π̃ within this relevant region.

A slightly different strategy is needed to compute shortest homotopic cycles,
because cycles lift to infinite paths in the universal cover; we discuss the necessary
modifications in Section 4.4.

4.1. Warm up: Polygons with Holes. The earliest algorithms for comput-
ing shortest homotopic paths and cycles considered the Euclidean setting, where the
the input path π is a chain of k line segments, and the environment is a polygon P
with holes of total complexity n. Hershberger and Snoeyink [106] described an ef-
ficient algorithm for this special case, simplifying an earlier algorithm of Leiserson
and Maley [129]. Hershberger and Snoeyink’s algorithm proceeds in five stages,
illustrated in Figures 6 and 7 on the next page.

First, in a preprocessing phase, triangulate the polygon P and assign each
diagonal in the triangulation a unique label. The triangulation can be computed
in O(n log n) time using textbook computational geometry algorithms [55]; faster
algorithms are known when the number of holes is small [11,39,167].

Second, compute the crossing sequence of the input path π: the sequence of
labels of diagonals crossed by the path, in order along the path. This stage is
straightforward to implement in O(k + x) time, where x = O(kn) is the length of
the crossing sequence.

Third, reduce the crossing sequence of π by repeatedly removing adjacent pairs
of the same diagonal label; the reduced crossing sequence can be computed in O(x)
time. The reduction is justified by the observation that the shortest path in any
homotopy class cannot cross the same diagonal e twice consecutively; otherwise,
replacing the subpath between the two crossings with a sub-segment of e would
yield a shorter homotopic path. The reduction of the crossing sequence mirrors a
homotopy from π to the (unknown) shortest homotopic path π′. See Figure 6.

Fourth, construct the sleeve of triangles defined by the reduced crossing se-
quence of π. The sleeve is a topological disk (but not necessarily a simple Euclidean
polygon) constructed by gluing together copies of the triangles in the triangulation
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Figure 6. Reducing a crossing sequence

of P . Specifically, we start with a copy the triangle containing the starting point of
π, and then for each label in the reduced crossing sequence, we attach a new copy
of the triangle just beyond the corresponding diagonal. See Figure 7. The sleeve
can be constructed in O(1) time per triangle, or O(x) time altogether.

Figure 7. The sleeve defined by the reduced crossing sequence in
Figure 6, and the shortest path within this sleeve

Finally, compute the shortest path in the sleeve between the endpoints of π;
this is the shortest path in P homotopic to π. This shortest path can be computed
in O(1) time per sleeve triangle using the funnel algorithm independently proposed
by Tompa [183], Chazelle [38], Lee and Preparata [127], and Leiserson and Maley
[129]. Although the funnel algorithm was designed to compute shortest paths in
simple Euclidean polygons, it works without modification in any simply-connected
domain obtained by gluing Euclidean triangles along common edges, provided all
triangle vertices lie on the boundary.

Theorem 4.1 (Hershberger and Snoeyink [106]). Let P be any polygon with
holes with total complexity n, and let π be a polygonal chain with k edges. The
shortest path in P homotopic to π can be computed in O(n log n+ kn) time.

4.2. Surfaces with Boundary. Colin de Verdière and Erickson [48] describe
algorithms to compute shortest homotopic paths and cycles in arbitrary combina-
torial surfaces. For surfaces with boundary, their algorithm follows almost exactly
the same outline as Hershberger and Snoeyink’s.

Here we sketch a variant of their algorithm for surfaces with boundary, essen-
tially due to Colin de Verdière and Lazarus [49]. Suppose we are given a combina-
torial surface Σ with complexity n, genus g, and b boundary components. In the
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preprocessing phase, we first compute a greedy system of arcs {α1, α2, . . . , αβ} for
Σ in O(n log n+ (g + b)n) time, as described in Section 3.3.

The greedy system of arcs has the following important property, motivated by
results of Hass and Scott [102]. We say that two paths σ and τ form a bigon if
some subpath of σ and some subpath of τ are homotopic.

Lemma 4.2. For any path π, there is a shortest path homotopic to π that does
not define a bigon with any arc in the greedy system of arcs.

Proof. Recall that the greedy system of arcs is the minimum-length collection
of arcs that generates the relative homology group H1(Σ, ∂Σ;Z2). It follows that
each arc αi in the greedy system of arcs is a shortest path in its relative homology
class, and therefore in its homotopy class.

Define the crossing number of a path π to be the total number of times π
crosses the arcs αi in the greedy system.

Figure 8. Let bigons by bygones.

If π forms a bigon with some arc αi in the greedy system of arcs, we can replace
some subpath of π with a homotopic subpath of αi, as shown in Figure 8. This
new path is homotopic to π, is no longer than π, and has smaller crossing number
than π. It follows that among all shortest paths homotopic to π, the path with
smallest crossing number does not define a bigon with any arc αi. �

Now suppose we are given a path π with complexity k. We compute the signed
crossing sequence of the directed input path π with respect to these arcs; each
time π crosses an arc αi from left to right (respectively, from right to left), the
signed crossing sequence contains the symbol i+ (respectively, i−). The signed
crossing sequence is then reduced by repeatedly removing pairs of the form i+i−

or i−i+. As in the Euclidean setting, the reduction mirrors a homotopy of π that
removes bigons one at a time; Lemma 4.2 implies that the reduced crossing sequence
of π is the crossing sequence of some shortest path homotopic to π.

To construct the relevant region R of the universal cover, we glue together a
sequence of x+1 copies of the polygonal schema D = Σ\ (α1∪α2∪· · ·∪αβ), where
x = O((g+ b)k) is the length of the reduced crossing sequence. The relevant region
is a combinatorial disk with complexity O(nx) = O((g+b)nk). Finally, we compute
the shortest path in R between the first vertex of π in the first copy of D to the
last vertex of π in the last copy of D, using a linear-time shortest-path algorithm
for planar graphs [105].

Theorem 4.3 (Colin de Verdière and Erickson [48]). Let Σ be a combinatorial
surface with genus g and b ≥ 1 boundary components, and let π be a path of k
edges in Σ. The shortest path in Σ homotopic to π can be computed in O(n log n+
(g + b)nk) time.
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4.3. Surfaces without Boundary. For orientable surfaces with no bound-
ary, Colin de Verdière and Erickson require a different decomposition of the surface
into disks. For surfaces with genus at least 2, their preprocessing algorithm com-
putes a tight octagonal decomposition of the given surface Σ in O(gn log n) time.
This is a set of O(g) cycles {γ1, γ2, . . .}, each as short as possible in its homotopy
class, that decompose the surface into octagons meeting four at a vertex; see Fig-
ure 9. The algorithm to construct this decomposition is fairly technical and relies
on several other results [29,49,78,85].

Figure 9. A tight octagonal decomposition.

Figure 10. The universal cover of a tight octagonal decomposition.

The universal cover of a tight octagonal decomposition is combinatorially iso-
morphic to a regular tiling of the hyperbolic plane by right-angled octagons. In
particular, each cycle in the decomposition lifts to a family of infinite geodesics in
the universal cover Σ̃, each of which crosses any other shortest path in Σ̃ at most
once. Evoking the regular hyperbolic structure, Colin de Verdière and Erickson call
these infinite geodesics lines. These lines are drawn as circular arcs in Figure 10,
following the Poincaré disk model of the hyperbolic plane.

Now let π be a given path in Σ, and let π̃ be an arbitrary lift of π to Σ̃. Let X
denote the set of lines (lifts of cycles γi) that π̃ crosses, and let X ′ be the set of

lines that π̃ crosses an odd number of times. Any path in Σ̃ between the endpoints
in π̃ must cross every line in X ′ an odd number of times. Moreover, an easy variant
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of Lemma 4.2 implies that the shortest such path crosses each line in X ′ exactly
once and does not cross any line not in X ′. For this reason, we call the lines in X ′

relevant.

Figure 11. The relevant lines and relevant region of a lifted path.

Let R(X) denote the complex of octagons reachable from the initial point of π̃
by crossing only (a subset of) lines in X; see Figure 11. A classical result of
Dehn [59] implies that R(X) is the union of at most O(|X|) octagons. Colin de
Verdière and Erickson describe an incremental algorithm to construct R(X) in O(x)
time, where x is the length of the signed crossing sequence of π with respect to the
cycles γi [48]. Equivalently, x is the total number of times the lifted path π̃ crosses
the lines in X. Because the cycles in the tight octagonal decomposition may share
edges, a single edge in the input path may cross Θ(g) cycles simultaneously; thus,
we have an upper bound x = O(kg).

The subset X ′ can be identified in O(x) time by performing a breadth-first
search in the dual 1-skeleton of R(X). Alternatively, X ′ can be identified directly by
reducing the signed crossing sequence of π with respect to the cycles γi. The crossing
sequence can no longer be reduced by merely canceling bigons—see the example
in Figure 11—but the regular hyperbolic tiling allows fast reduction in O(x) time
using techniques from small cancellation theory [134,140]. Let x′ denote the length
of the reduced crossing sequence; again, because x′ ≤ x, we have x = O(kg).

Finally, let R(X ′) denote the complex of octagons reachable from the initial
point of π̃ by crossing only (a subset of) lines in X ′; again, this complex can be
constructed in O(x′) time. After filling each octagon in R(X ′) with the corre-
sponding planar portion of the input graph G, Colin de Verdière and Erickson’s
algorithm computes the shortest path π̃′ between the endpoints of π̃ in the re-
sulting planar graph [105]. The projection of π̃′ to the original graph G is the
shortest path homotopic to π. Altogether, the query phase of their algorithm runs
in O(x+x′n) = O(gnk) time, where as usual k is the number of edges in the input
path.

Theorem 4.4 (Colin de Verdière and Erickson [48]). Let Σ be an orientable
combinatorial surface with genus g ≥ 2 and no boundary, and let π be a path of k
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edges in Σ. The shortest path in Σ homotopic to π can be computed in O(gn log n+
gnk) time.

For shortest homotopic paths on the torus, where no hyperbolic structure is
possible, a similar algorithm runs O(n log n+nk2) time. Instead of a tight octagonal
decomposition, the algorithm cuts the surface into a disk with a system of loops,
where each loop is as short as possible in its homotopy class. Shortest homotopic
paths in any non-orientable surface Σ can be computed by searching the oriented
double cover of Σ.

4.4. Shortest Homotopic Cycles. As promised, we now describe the nec-
essary modifications to find shortest homotopic cycles. We cannot directly apply
the previous algorithm, because any lift of a non-contractible cycle to the universal
cover is an infinite path; see Figure 9.

Let γ be a non-contractible cycle in some combinatorial surface Σ. In the
simplest nontrivial special case of this problem, Σ is a combinatorial annulus and γ
is one of its boundary cycles; we call any cycle homotopic to γ a generating cycle.
Using an argument similar to Lemma 4.2, Itai and Shiloach [110] observed that the
shortest generating cycle crosses any shortest path between the two boundary cycles
exactly once. Thus, one can compute the shortest generating cycle by cutting Σ
along a shortest path σ between the two boundaries; duplicating every vertex and
edge of σ; and then, for each vertex v of σ, computing the shortest path between
the two copies of v in the resulting planar graph. See Figure 12.

Figure 12. Finding the shortest nontrivial cycle in an annulus by
cutting it along a shortest boundary-to-boundary path.

Itai and Shiloach applied Dijkstra’s shortest-path algorithm at each vertex of σ,
immediately obtaining a running time of O(n2 log n) [110]. Reif [160] improved the
running time of this algorithm to O(n log2 n) using a divide-and-conquer strategy.
Frederickson [85] further improved the running time to O(n log n) using a recur-
sive separator decomposition [132] to speed up the shortest-path computations.
The same improvement can be obtained using more recent algorithms for shortest
paths [105,121] and maximum flows [19,77] in planar graphs. Most recently, Ital-
iano et al. [111] improved the running time to O(n log log n) using a more careful
separator decomposition and other algorithmic tools for planar graphs [82,85,142].

Colin de Verdière and Erickson [48] describe a reduction from the more general
shortest homotopic cycle problem to this special case. At a very high level, the
algorithm identifies an infinite periodic relevant region R in the universal cover that
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contains a lift of the shortest homotopic cycle. The algorithm actually constructs
one period R0 of this infinite relevant region, identifies corresponding boundary
paths of R0 to obtain a combinatorial annulus A, and finally computes the shortest
generating cycle of A. Yin et al. [192] sketch a similar algorithm to compute
shortest homotopic cycles; however, their description omits several key details and
offers no time analysis.

More concretely, suppose the surface Σ has genus 2 and no boundary. Let
γ : R/Z → Σ denote the input cycle, and let γ̃ : R → Σ̃ be one of its lifts to the

universal cover. There is a translation τ : Σ̃ → Σ̃ such that τ(γ̃(t)) = γ̃(t + 1) for
all t. Fix an arbitrary lift ṽ0 of some vertex v of γ, and for each positive integer i,
let ṽi = τ(ṽi+1). The set X ′ of all lines in the tight octagonal tiling of Σ̃ that
separate ṽ0 from ṽ4 can be computed using the same algorithm as for shortest
homotopic paths. Let `2 be any line that separates ṽ0 and ṽ1 from ṽ2 and ṽ3, and
let `3 = τ(`2); both of these lines lie in the set X ′. Let R(X ′) be the complex
of octagons reachable from ṽ0 by crossing only lines in X ′. Finally, let R0 be the
portion of R(X ′) that lies between `2 and `3; identifying the segments of `2 and `3
on the boundary of R0 gives us the annulus A.

Combining Colin de Verdière and Erickson’s reduction with the O(n log log n)-
time algorithm of Italiano et al. for the annulus [111] gives us the following result.

Theorem 4.5. Let Σ be a combinatorial surface with genus g and b bound-
aries, and let γ be a cycle of k edges in Σ. The shortest cycle homotopic to γ
can be computed in O(n log n+ (g + b)nk log log nk) time if b > 0, in O(gn log n+
gnk log log gnk) time if b = 0 and g > 1, and in O(n log n+ nk2 log lognk) time if
g = 1 and b = 0.

No efficient algorithm is known for computing shortest homotopic paths in
non-orientable surfaces.

—— Part II. Homology ——

5. General Remarks

We now turn from homotopy to homology. Unlike the homotopy problems
we have considered so far, questions about homology are decidable for any finite
regular cell complex. Not surprisingly, however, these problems can be solved more
efficiently for combinatorial 2-manifolds than for general complexes, so we consider
algorithms for surfaces separately.

Before we consider any algorithms, we must carefully define the functions we
wish to optimize. Fix a simplicial complex Σ and a coefficient ring R. A p-chain
is a formal linear combination of oriented p-simplices in Σ, which we identify with
a vector c = (c1, c2, . . . , cnp

) ∈ Rnp . Fix a vector w = (w1, w2, . . . , wnp
) ∈ Rnp

that assigns a non-negative weight to each p-cell in Σ. In the interest of developing
exact optimization algorithms, we restrict our attention to two definitions of the
“weight” of a p-chain:

• The weighted L0-norm is the sum of the weights of all cells with non-zero
coefficients:

‖c‖0,w :=
∑
i:ci 6=0

wi,
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• The weighted L1-norm is the weighted sum of the absolute values of the
coefficients:

‖c‖1,w :=
∑
i

wi |ci|.

The weighted L0-norm is well-defined for any coefficient ring R; the weighted L1-
norm is well-defined only when R is a sub-ring of the reals. We call a p-chain
unitary if every coefficient lies in the set {−1, 0, 1}; the weighted L0- and L1-norms
of a chain are equal if and only if the chain is unitary.

Formally, a p-cycle is any p-chain that lies in the kernel of the boundary
map ∂p : Rnp → Rnp−1 . However, when we seek p-cycles or homology bases with
minimum weighted L0-norm, it is convenient to conflate any p-cycle c with the
subset of p-cells with non-zero coefficients ci. To avoid confusion over the multi-
ple meanings of the word “cycle”, we consistently refer to the elements of a pth
homology class as p-cycles, and closed walks in the 1-skeleton of Σ as loops.

Finally, a pth homology basis is a minimum-cardinality set of p-cycles whose
homology classes generate the pth homology group Hp(Σ;R). We define the weight
of a homology basis to be the sum of the weighted L0-norms of its constituent p-
cycles. Although the total L1-norm of a homology basis is well-defined when R ⊆ R,
the corresponding optimization problem is uninteresting. If R = Z, then every p-
cycle in the L1-minimal homology basis is unitary; thus, the L1-minimal homology
basis is also the L0-minimal homology basis. On the other hand, if R contains
numbers arbitrarily close to zero (for example, if R = Q), there are homology bases
whose weighted L1-norm is arbitrarily close to zero.

6. Homology Bases

Let Σ be an arbitrary simplicial complex with weighted cells, and let p be a
positive integer. Our goal in this section is to find a pth homology basis whose total
weighted L0-norm is as small as possible. Because we are optimizing the weighted
L0-norm, we need not distinguish between a p-cycle and the subset of p-cells with
non-zero coefficients. In particular, any first homology basis for Σ is a minimal set
of simple loops in the 1-skeleton of Σ; we seek to minimize the total length of these
loops. See Figure 13.

Figure 13. A first homology basis for a surface of genus 2.

6.1. Surfaces. For combinatorial surfaces, any system of loops is also a first
homology basis, for any coefficient ring; thus, Eppstein’s tree-cotree algorithm con-
structs a homology basis for any combinatorial surface in O(n+ k) = O(gn) time.
We can reduce the output size by replacing each loop `x(T, e) with the unique sim-
ple loop in the graph T ∪ {e}, but the output size is still Θ(gn) in the worst case.
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However, the minimum-weight first homology basis is not necessarily consistent
with any tree-cotree decomposition.

Erickson and Whittlesey [80] describe an efficient algorithm to compute the
optimal first homology basis with respect to any coefficient field, generalizing an
earlier algorithm of Horton [108] to compute the shortest cycle basis of an edge-
weighted graph. Their algorithm is simplified by the following observation of Dey
et al. [66]: Every generator in the optimal homology basis is also a generator in the
optimal homotopy basis for some basepoint. Thus, in O(n2 log n+gn2) time, we can
compute a set of O(gn) candidate loops that must include the optimal homology
basis. Again, the n2 log n term can be removed from the running time if g = n1−ε

for any ε > 0. The homotopy basis algorithm automatically computes the length
of each candidate loop.

We can also compute vectors of length 2g that encode the homology class of
each candidate loop using an elementary form of Poincaré duality. Recall that we
associate two darts u�v and v�u with each edge uv of the embedded graph G.
We first construct a dual homology basis {λ∗1, λ∗2, . . . , λ∗2g} using an arbitrary tree-
cotree decomposition (T, L,C); each element λ∗i of the dual homology basis is a
loop in the dual graph G∗, obtained by adding an edge in L∗ to the dual spanning
tree C∗. We orient the loops λ∗i arbitrarily. We then label each dart u�v in the
primal graph with a vector h(u�v) ∈ R2g, called the homology signature of the
edge, whose ith coordinate is +1 if the dart crosses λ∗i from left to right, −1 if
the dart crosses λ∗i from right to left, and 0 otherwise. The homology class of any
directed loop γ in G is then the sum of the homology signatures of its edges. By
accumulating homology signatures along every root-to-leaf path in every shortest-
path tree, we can compute the homology classes of all O(gn) candidate loops in
O(gn2) total time.

We are now faced with a standard matroid optimization problem: Given a
collection of O(gn) vectors, each with non-negative weight, find a subset of mini-
mum total weight that generates the vector space R2g. This problem can be solved
by a greedy algorithm, similar to Kruskal’s classical minimum-spanning-tree algo-
rithm [124]. Starting with an empty basis, we consider the vectors one at a time in
order of increasing weight; whenever we encounter a vector that is linearly indepen-
dent of the vectors already in the basis, add it to the basis. Sorting the vectors takes
O(gn log n) comparisons, and for each vector, we need O(g2) arithmetic operations
to test linear independence.

Theorem 6.1 (Erickson and Whittlesey [80]). Let Σ be a combinatorial surface
with complexity n and genus g. An optimal first homology basis for Σ, with respect
to any coefficient field, can be computed in O(n2 log n + gn2 + g3n) time, or in
O(gn2 + g3n) time if g = O(n1−ε) for any ε > 0.

The restriction to coefficient fields is unfortunately necessary. For coefficient
rings without division, homology groups are not vector spaces, and thus a maximal
linearly independent set of homology classes is not necessarily a basis. Gortler and
Thurston [91] have shown that Erickson and Whittlesey’s greedy algorithm can
return a set of 2g loops that do not generate the first homology group, although
they lie in independent Z-homology classes, even when g = 2. It is natural to
conjecture that computing an optimal Z-homology basis is NP-hard, but no such
result is known, even for more general complexes.
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6.2. Complexes. If we do not care about optimization, we can compute a
homology basis of any dimension, for any simplicial complex, over any coefficient
ring R, using the classical Poincaré-Smith reduction algorithm [155, 173], which
requires O(n3) arithmetic operations over the coefficient ring R. This is not the
fastest algorithm known. Homology over any field can be computed by an algo-
rithm of Bunch and Hopcroft [25], whose complexity is dominated by the time
to multiply two n × n matrices; the fastest algorithm known for that problem re-
quires only O(n2.376) arithmetic operations [51]. On the other hand, these running
times are misleading when R = Z, as careless implementations can produce inter-
mediate integers with exponentially many bits in the worst case [83]. The first
polynomial-time algorithm for computing integer homology was described by Kan-
nan and Bachem [114]; for a sample of more recent results, see Dumas et al. [68,69]
and Eberly et al. [72].

Chen and Freedman [41] and Dey et al. [66] extend Erickson and Whittlesey’s
greedy strategy to compute optimal first homology bases with Z2 coefficients, for
an arbitrary simplicial complex, in polynomial time. Instead, both algorithms
modify the input complex by gluing disks to all loops in the evolving basis. A new
loop γ is accepted into the evolving basis if and only if gluing a disk to γ decreases
the rank β1 of the first homology group. Chen and Freedman’s algorithm [41]
recomputes β1 from scratch at each iteration, using an algorithm for sparse Gaussian
elimination over finite fields [190]; their algorithm runs in O(β1n

3 log2 n) time with
high probability. Dey et al. [66] exploit persistent homology [73,74,195] to achieve
a running time of O(n4). Both algorithms can be extended to compute optimal
homology bases over any coefficient field ; in this more general setting, the algorithm
of Dey et al. [66] requires O(n4) arithmetic operations. Again, the restriction to
coefficient fields is necessary; no polynomial-time algorithm or NP-hardness result
is known for computing optimal Z-homology bases.

Chen and Friedman further generalize their algorithm to compute minimum-
cost bases for higher-dimensional homology groups, where the cost of a single gen-
erator is the radius of the smallest ball that contains it [41]. However, for the
arguably more natural weighted L0-norm, they also prove that computing optimal
pth homology bases (over Z2) is NP-hard, for any p ≥ 2 [40].

7. Homology Localization over Z2

We now turn to finding optimal representatives in a single given homology
class. The complexity of this problem depends critically on the choice of coefficient
ring. Somewhat surprisingly, in light of results for homology bases, optimization
over finite fields turns out to be significantly harder than optimization either over
the reals or (at least for manifolds) the integers.

We first consider one-dimensional homology over Z2. With this coefficient
field, a 1-chain in any simplicial complex Σ is a subgraph of the 1-skeleton; a 1-
cycle is a subgraph in which every vertex has even degree (henceforth, an even
subgraph); a 1-boundary is the boundary of the union of a subset of 2-cells; and
two even subgraphs are Z2-homologous if and only if their symmetric difference is a
boundary subgraph. The weight of an even subgraph is just the sum of the weights
of its edges; this is equivalent to the weighted L0-norm. Our goal in this section is
to find a minimum-weight even subgraph Z2-homologous to a given even subgraph.
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Unfortunately, any reasonable variant of this problem is NP-hard, even in com-
binatorial surfaces. An argument of Chambers et al. [34] can be modified to show
that finding the minimum-weight connected even subgraph Z2-homologous to a
given simple loop is NP-hard, by reduction from the Hamiltonian cycle problem
in planar grid graphs [109]. A refinement of this argument by Cabello et al. [28]
implies that finding the shortest simple cycle in a given Z2-homology class is NP-
hard. Later Chambers et al. [36] proved that finding the optimal even subgraph
Z2-homologous to a given simple loop is NP-hard, by reduction from the minimum
cut problem in graphs with negative edges [141]. For more general complexes, Chen
and Friedman [40] prove that even approximating the minimum-weight even sub-
graph in a given Z2-homology class by a constant factor is NP-hard, even when the
rank of the first Z2-homology group is 1, by reduction from the nearest codeword
problem [9].

However, for combinatorial surfaces with constant genus, it is possible to find
minimal representatives in every Z2-homology class in O(n log n) time. Specifically,
Erickson and Nayyeri [79] describe an algorithm to compute either the shortest loop
or the shortest even subgraph in a given Z2-homology class in 2O(g)n log n time,
simplifying and improving an earlier algorithm by Chambers et al. [34] that runs
in gO(g)n log n time.

Erickson and Nayyeri’s algorithm first constructs the Z2-homology cover Σ,
which is the unique connected covering space of Σ whose group of deck transforma-
tions is H1(Σ;Z2) ∼= (Z2)2g. They give two different but equivalent descriptions of
the construction, one in terms of voltage graphs [95, Chapter 4], the other directly
topological. We sketch the second formulation here. The construction is easier to
visualize for a simple surface with boundary; see Figure 14.
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Figure 14. Constructing the Z2-homology cover of a pair of pants.

Let {`1, `2, . . . , `2g} be any system of loops for Σ, such as the one constructed
from a tree-cotree decomposition by Eppstein’s algorithm; for surfaces with bound-
ary, we use a system of arcs instead, as shown in Figure 14. The surface D :=
Σ \ (`1 ∪ · · · ∪ `2g) is a topological disk; each loop `i appears on the boundary of D
as two boundary segments `+i and `−i . For each homology class h ∈ (Z2)2g, we
create a disjoint copy (D,h) of D; for each index i, let (`+i , h) and (`−i , h) denote
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the copies of `+i and `−i in the disk (D,h). (In Figure 14, each copy (D,h) is labeled
by a 2-bit string representing the homology class h.) For each index i, let bi denote
the 2g-bit vector whose ith bit is equal 1 and whose other 2g − 1 bits are all equal
to 0. The Z2-homology cover Σ is constructed by gluing the copies of D together
by identifying boundary paths (`+i , h) and (`−i , h⊕ bi), for every index i and every
homology class h, where ⊕ represents bitwise exclusive-or. (For example, in Figure
14, the copies D00 and D01 are glued together along a copy of `1.) The resulting
combinatorial surface has n = 22gn vertices, each labeled by a pair (v, h) for some
vertex v in Σ and some homology class h, and genus g = 22g(g− 1) + 1. The entire
construction takes 2O(g)n time.

Because each connected component of an even subgraph has a closed Euler
tour, we can reasonably regard any even subgraph as a collection of vertex-disjoint
loops. We define the Z2-homology class of a loop as the Z2-homology class of its
carrier : the subgraph of edges that the loop traverses an odd number of times.
The weight of a loop is defined as the sum of the weights of its edges, counted
with appropriate multiplicity ; thus, if a loop traverses any edge more than once, its
weight is larger than the weight of its carrier.

First consider the related problem of finding the shortest loop in a given Z2-
homology class; we emphasize that we must consider loops that repeat edges, be-
cause the shortest loop in a given Z2-homology class need not be simple. Let `
be any loop in Σ, and let [`] denote its Z2-homology class. The loop ` is the pro-
jection of a path in Σ from (v, 0) to (v, [`]), where v is any vertex in `. Thus,
the shortest loop in homology class h is the projection of the shortest path in Σ
from some vertex (v, 0) to the corresponding vertex (v, h). This shortest path
can be found in O(n · n log n) = 2O(g)n2 log n time by computing a shortest-
path tree at every vertex (v, 0). Erickson and Nayyeri [79] reduce the running
time to O(gn log n) = 2O(g)n log n using more complex shortest-path data struc-
tures [26,27,121].

The minimum-weight even subgraph in any Z2-homology class has at most g
connected components, each of which is (the carrier of) the shortest loop in its own
Z2-homology class. To find the optimal even subgraph, Erickson and Nayyeri first
compute the shortest loop in every Z2-homology class and then assemble the com-
ponents using a simple dynamic programming algorithm. Specifically, let C(h, k)
denote the minimum total weight of any set of at most k loops whose homology
classes sum to h. This function obeys the recurrence

C(h, k) = min
h′

(
C(h′, k − 1) + C(h⊕ h′, 1)

)
,

where h′ ranges over all Z2-homology classes. The base cases are C(0, k) = 0 and
C(h, 1), which has already been computed for each h. The dynamic programming
algorithm computes C(h, g) in 2O(g) additional time.

Theorem 7.1 (Erickson and Nayyeri [79]). Given a combinatorial surface Σ
with complexity n and genus g, the minimum-weight even subgraph of Σ in any (in
fact, every) Z2-homology class can be computed in 2O(g)n log n time.

This algorithm can be used directly to compute minimum cuts in surface-
embedded graphs. Fix a graph G, where every edge has a non-negative capacity,
and two vertices s and t. An (s, t)-cut is a subset of edges of G that contains
at least one edge in every path from s and t. Itai and Shiloach [110] proved
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that the minimum-capacity (s, t)-cut in an undirected planar graph G is dual to
the minimum-cost cycle that separates faces s∗ and t∗ in the dual graph G∗. Thus,
minimum cuts in undirected planar graphs can be computed by finding the shortest
generating cycle in an annulus, as described in Section 4.4. Chambers et al. [36]
generalized Itai and Shiloach’s result to higher-genus surfaces, by proving that the
minimum-capacity (s, t)-cut is dual to the minimum-weight even subgraph in G∗

that is Z2-homologous with the boundary of s∗ in the punctured surface Σ\(s∗∪t∗).
This result together with Theorem 7.1 immediately implies the following.

Theorem 7.2 (Erickson and Nayyeri [79]). Given an undirected graph G with
non-negative edge capacities, embedded on a surface Σ with genus g, and two vertices
s and t, a minimum (s, t)-cut in G can be computed in 2O(g)n log n time.

Alternatively, recent results of Italiano et al. [111] also improve the running
time of the algorithm of Chambers et al. [34] from gO(g)n log n to gO(g)n log log n.
The resulting algorithm is faster than Erickson and Nayyeri’s algorithm for graphs
of constant genus, but it is also considerably more complex.

No similar algorithm is known for directed graphs. We consider the dual
maximum-flow problem in Section 8.5.

Finally, Erickson and Nayyeri’s algorithm can be generalized to p-manifold com-
plexes of dimension any p > 2, using an arbitrary basis for first cohomology group
H1(Σ;Z2) ∼= Hp−1(Σ;Z2) (or the first relative cohomology group H1(Σ, ∂Σ;Z2) ∼=
Hp−1(Σ;Z2) if the manifold has boundary) in place of a system of loops or arcs.
Each element of such a cohomology basis is a subgraph of the 1-skeleton of the
complex. Thus, the cohomology basis can be used to construct the 1-skeleton
of the Z2-homology cover using the same voltage-graph construction. The data
structures used to accelerate shortest-path computations in surface graphs have
no higher-dimensional analogue; otherwise, the remainder of the algorithm is un-
changed. If we use the standard Poincaré-Smith reduction algorithm to compute the
(relative) cohomology basis, the resulting algorithm requires O(n3) + 2O(β)n2 log n
real arithmetic operations, where β is the rank of the first Z2-homology group.

8. Homology Localization over R and Z

We now switch to finding representatives in real and integer homology classes
whose weighted L1-norm is minimized. For homology over the reals, optimal ho-
mologous chains can be computed in polynomial time via linear programming.
If the input complex satisfies certain conditions—in particular, if the input is an
orientable (p+1)-manifold—the resulting linear programs actually have integral so-
lutions and thus can be used without modification to find optimal representatives
in integer homology classes. In general, however, finding optimal Z-homologous
chains is NP-hard.

8.1. Real homology via linear programming. Fix a simplicial complex Σ
and a non-negative integer p ≥ 0. To simplify notation, let m and n respectively
denote the number of p-simplices and (p + 1)-simplices in Σ. In real simplicial
homology, a p-chain is a formal linear combination of oriented p-simplices in Σ,
which we identify with a real vector c = (c1, c2, . . . , cm) ∈ Rm. Two p-chains are
R-homologous if their difference (as vectors) lies in the kernel of the boundary map
∂p+1 : Rn → Rm. Given a p-chain c and a weight vector w ∈ Rm, our goal is to
find a p-chain x with minimum weighted L1-norm that is R-homologous to c.
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This optimization problem can be solved in polynomial time by formulating it
as a linear program as follows [62,176]:

(LP)

minimize
∑
i(x

+
i + x−i ) · wi

subject to x+ − x−= c+ [∂p+1]y

x+≥ 0

x−≥ 0

Here, the variable x = x+ − x− ∈ Rm represents the output p-chain, the variable
y ∈ Rn represents an unknown (p + 1)-chain, and [∂p+1] is the m × n boundary
matrix. The output vector x is split into two non-negative vectors x+ and x− so
that the weighted L1-norm can be represented as a linear objective function.

We emphasize that this linear programming formulation does not require the
input p-chain c to have zero boundary. Thus, for example, we can use this for-
mulation to find a minimal surface with prescribed boundary in (the 2-skeleton
of) a triangulation of R3, by letting c be any 2-chain with the desired bound-
ary [62,71,176].

8.2. Integer homology is hard. Althaus and Fink [8] proved that find-
ing minimum Z-homologous unitary 2-chains is NP-hard, by reduction from 3-
dimensional matching [87,115]. Dunfield and Hirani [71] removed the coefficient
restriction, proving NP-hardness by reduction from 1-in-3-SAT [87,163]; their proof
simplifies an earlier proof by Agol et al. [3] that finding a minimum-area surface
with a given boundary in a piecewise-linear 3-manifold is NP-hard.

The minimum-cost representative in a given integer homology class is the so-
lution to an integer program, obtained by adding the constraints x+,x− ∈ Zm
and y ∈ Zn to the linear program (LP). Integer programming is well-known to
be NP-hard in general [87,115]. However, some interesting families of of integer
programs can be solved in polynomial time, and these can be exploited to compute
optimal Z-homologous p-chains in polynomial time in certain families of spaces.

8.3. Total unimodularity. A matrix is totally unimodular if every square
minor has determinant −1, 0, or 1. Cramer’s rule implies that for any totally
unimodular matrix A and any integer vector b, every vertex of the polyhedron
{x | Ax = b,x ≥ 0} is integral [107]. Thus, any linear program with a totally
unimodular constraint matrix A and an integral constraint vector b has an integral
solution. In other words, a totally unimodular integer program can be solved in
polynomial time by dropping the integrality constraint and solving the resulting
linear program.

Call a simplicial complex totally p-unimodular if its (p+ 1)th boundary matrix
[∂p+1] is totally unimodular. For such complexes, the linear program (LP) auto-
matically has integral solutions, and thus can be used to find optimal Z-homologous
chains in polynomial time [62].

Total unimodularity is of central importance in combinatorial optimization,
but its first application was actually topological. In the same paper that first
describes the standard reduction algorithm to compute homology [155], Poincaré
observed (in modern terminology) that the pth homology group Hp(Σ;Z) of any
totally p-unimodular simplicial complex Σ is torsion-free. This observation is a
straightforward consequence of the reduction algorithm; each diagonal element in
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the Smith normal form of any matrix is the greatest common divisor of all sub-
determinants of a certain size [173].

Poincaré also described a simple condition involving cycles of elements in the
boundary matrix that implies total unimodularity. Poincaré’s condition is more
easily explained in topological terms. Following Dey et al. [62], a cycle complex is
a pure simplicial complex whose dual 1-skeleton is a cycle, and a Möbius complex
is a non-orientable cycle complex. For example, a 2-dimensional Möbius complex
is a triangulation of the Möbius band with all vertices on the boundary, and 1-
dimensional Möbius complexes do not exist. Poincaré proved by induction that
any simplicial complex Σ with no (p+1)-dimensional Möbius subcomplex is totally
p-unimodular [155, Section 6]. (It follows immediately that the incidence matrix
of any directed graph—that is, the 1st boundary matrix of any 1-dimensional sim-
plicial complex—is totally unimodular; this theorem is often attributed to Heller
and Tomkins [104].)

As observed by Dey et al. [62], Poincaré’s theorem implies that all orientable
(p + 1)-manifolds (possibly with boundary) are totally p-unimodular, as are all
simplicial complexes embedded in Rp+1. It follows that optimal Z-homologous
p-chains in such complexes can be computed in polynomial time. We discuss a
more efficient algorithm for these special cases in the next section. Grady [93,94]
sketches a slightly weaker condition than total p-unimodularity that still supports
polynomial-time solutions.

Dey et al. [62] recently extended these results in several directions. First, they
proved that a complex Σ is totally p-unimodular if and only if the relative homology
group Hp(L,L0) is torsion-free for all pure subcomplexes L0 ⊂ L ⊆ Σ such that L0

has dimension p and L has dimension p+ 1. Note that a (p+ 1)-dimensional cycle
complex L is a Möbius complex if and only if Hp(L, ∂L) has nontrivial torsion.
They also proved that any 2-dimensional complex is totally 1-unimodular if and
only if it has no Möbius subcomplex; this equivalence does not extend to higher
dimensions.

Finally, Dey et al. [62] proved that optimal unitary Z-homologous p-chains in
totally p-unimodular complexes can be computed in polynomial time, by adding the
constraints x+ ≤ 1 and x− ≤ 1 to (LP) and solving the resulting linear program.
The solution x to this augmented linear program is not necessarily the homologous
chain with minimum weighted L0-norm [62, Remark 3.11].

8.4. Manifolds and circulations. Motivated by a problem in minimal sur-
face construction, Sullivan [176] developed a polynomial-time algorithm for the
special case where Σ is an orientable (p+ 1)-manifold, exploiting both linear pro-
gramming duality and Poincaré duality. For example, when p = 2, Sullivan’s al-
gorithm finds minimum-weight homologous 2-chains (intuitively, discrete surfaces)
in triangulated 3-manifolds. Essentially the same algorithm was rediscovered by
Bueller et al. [24,92,119]; see also recent related results of Grady [93,94].

Let G denote the dual 1-skeleton of Σ; this graph has a vertex for every (p+1)-
cell of Σ and an edge for every p-cell of Σ. Conveniently, G has n vertices and m
edges. Recall that each edge e in G is represented by a symmetric pair of directed
edges or darts; each dart is dual to one of the orientations of the p-cell whose dual
edge is e. The dual of (LP) is another linear program, which has a dual variable
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for each dart:

(LP∗)

maximize
∑
u�v ϕu�v cu�v

subject to
∑
u ϕu�v =

∑
u ϕv�u for every vertex v

ϕu�v ≤ wuv for every dart u�v
ϕu�v ≥ 0 for every dart u�v

Here, wuv the weight of the p-cell whose dual edge is uv, and cu�v is the coefficient
of the input chain c for the oriented p-cell whose dual dart is u�v. In particular,
we have cu�v = −cv�u for every dart u�v.

Up to a sign change, this dual linear program describes the standard minimum-
cost circulation problem. Intuitively, the dual variable ϕu�v represents an amount
of flow traversing edge uv from u to v; without loss of generality, we can assume
that either ϕu�v = 0 or ϕv�u = 0 for every edge uv. The equality constraint
states that the total flow into any vertex equals the total flow out of that vertex; a
vector ϕ that satisfies this constraint is called a circulation. Restated in topological
language, a circulation ϕ is a real 1-cycle in G, or equivalently, a real 1-cocycle in
the primal complex Σ. The weight of the corresponding p-cell in Σ is interpreted
as the capacity of the dual edge uv; a circulation ϕ that satisfies the capacity and
non-negativity constraints is said to be feasible. In the objective function, each
coefficient of the input chain c is interpreted as the cost of sending one unit of flow
in either direction across the corresponding dual edge.

Several specialized algorithms are known for the minimum-cost circulation
problem that are faster than general-purpose linear programming algorithms [4,
166]. Sullivan [176] described an algorithm (independently proposed by Röck [162]
and by Bland and Jensen [14]) that runs in O(mn2 log n) time if the input chain c
is unitary, and a second algorithm that runs in O(mn) time if in addition ev-
ery p-cell has weight 1. The fastest algorithm known (in terms of m and n)
for the general minimum-cost circulation problem, due to Orlin [153], runs in
O(m2 log n + mn log2 n) time. Each of these algorithms either returns or can be
modified to return a solution x to the primal linear program (LP) along with the
minimum-cost circulation ϕ. Moreover, if the input p-chain c is integral, the p-
chain x output by these algorithms is also integral, which implies that x is also the
optimal Z-homologous p-chain.

Theorem 8.1 (Sullivan [176] and Orlin [153]). Let Σ be an orientable combi-
natorial (p+1)-manifold Σ with n (p+1)-cells and m p-cells, and let c be an integer
p-chain in Σ. A p-chain Z-homologous to c with minimum weighted L1-norm can
be computed in O(m2 log n+mn log2 n) time.

8.5. Back to surfaces. Finally, we we describe a recent algorithm of Cham-
bers et al. [37] to compute optimal R-homologous circulations (real 1-cycles) in
combinatorial surfaces. Their algorithm is a generalization of algorithms for com-
puting maximum flows in planar graphs, which have been an object of study for
more than 50 years; see Weihe [188] or Borradaile and Klein [15,19] for a detailed
history. Unlike the algorithms described in the previous sections, this algorithm
requires that the input chain is a 1-cycle; that is, its boundary must be empty.

Let G be a cellularly embedded graph on some orientable surface Σ. Given
a circulation c in G, our goal is to compute another circulation φ with minimum
weighted L1-norm that is homologous with c. Like Sullivan’s algorithm [176], the
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algorithm of Chambers et al. considers the LP-dual formulation as a minimum-cost
circulation problem in the dual graph G∗, as described by (LP∗). We emphasize
that the primal and dual circulation problems are distinct. In the primal circulation
problem, the edges of G have non-negative weights but infinite capacities; whereas,
in the dual problem, the edges of G∗ have both weights (costs) and non-negative
capacities. Specifically, the cost of each dual dart in G∗ is the coefficient of the
input chain c for the corresponding primal dart in G, and the capacity of each
dual dart is the weight of the corresponding primal dart. Moreover, in the primal
problem, the solution φ is restricted to a particular homology class; whereas, the
dual problem imposes no such restriction.

Homology between circulations in G∗ can be characterized in terms of cycles
in the primal graph G as follows. A cocycle λ∗ in G∗ is any subgraph dual to a
directed cycle λ in G. For any flow ϕ, let ϕ(λ∗) =

∑
u�v∈λ∗ ϕu�v denote the total

flow through the edges of λ∗. Chambers et al. [37] observe that two circulations ϕ
and ψ are homologous if and only if φ(λ) = ψ(λ) for every cocycle λ.

Recall that a circulation ϕ is feasible if ϕu�v ≤ wu�v for every dart u�v in G∗;
call a homology class of circulations feasible if it contains a feasible circulation. Let
w(λ∗) denote sum of the capacities of the edges in any cocycle λ∗. Generalizing an
observation of Venkatesan [186] for planar networks, Chambers et al. [37] prove
that the homology class of a circulation ϕ is feasible if and only if ϕ(λ∗) ≤ w(λ∗)
for every cocycle λ∗. Moreover, this condition can be checked by solving a single-
source shortest path problem in the primal graph G, but with different, possibly
negative, edge weights. Because the necessary edge weights may be negative, Di-
jkstra’s algorithm cannot be used to solve this shortest-path problem; Chambers
et al. describe a suitable shortest-path algorithm that runs in O(g2n log2 n) time,
generalizing an earlier algorithm for planar graphs by Klein et al. [120,146]. Their
algorithm returns either a feasible circulation homologous to ϕ or a cocycle that is
over-saturated by ϕ.

To simplify notation, let c(ϕ) :=
∑
u�v ϕu�vcu�v denote the total cost of a

circulation ϕ in G∗; this is the objective function in (LP∗). The input circula-
tion c can be expressed as a weighted sum of directed cycles. It follows that the
dual cost function is homology-invariant ; that is, c(ϕ) = c(ψ) for any homologous
circulations ϕ and ψ in G∗. Moreover, for each cocycle λ in G, the inequality
ϕ(λ∗) ≤ w(λ∗) is a linear constraint on the homology class of ϕ. Thus, the set of
all feasible homology classes is a convex polyhedron in H1(Σ,R) ∼= R2g, and finding
the feasible homology class of minimum cost is a (2g)-dimensional linear program-
ming problem. More careful analysis reveals that this linear program is just a linear
projection of the O(n)-dimensional min-cost circulation linear program (LP∗) into
the homology subspace R2g.

Unfortunately, this linear program appears to have nO(g) non-redundant con-
straints, so it cannot be solved directly, but it can be solved using implicit meth-
ods that apply the new shortest-path algorithm as a membership and separation
oracle. If the edge capacities are integers less than C, the central-cut ellipsoid
method [96, 97] solves the linear program in O(g8n log2 n log2 C) time. Alterna-
tively, multidimensional parametric search [2,44,45,152], together with a parallel
shortest-path algorithm of Cohen [43], gives us a combinatorial algorithm that runs
in gO(g)n3/2 arithmetic operations, for arbitrary capacities. When g is constant,
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both time bounds are faster by roughly a factor of
√
n than the fastest minimum-

cost circulation algorithms for general sparse graphs [67,153].
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[96] Martin Grötschel, László Lovász, and Alexander Schrijver, The ellipsoid method and its

consequences in combinatorial optimization, Combinatorica 1 (1981), no. 2, 169–197.
[97] , Geometric algorithms and combinatorial optimization, 2nd ed., Algorithms and

Combinatorics, no. 2, Springer-Verlag, 1993.

[98] Xianfeng Gu, Steven J. Gortler, and Hughes Hoppe, Geometry images, ACM Trans. Graph-
ics 21 (2002), no. 3, 355–361.



COMBINATORIAL OPTIMIZATION OF CYCLES AND BASES 31

[99] Xianfeng Gu and Shing-Tung Yau, Global conformal surface parameterization, Proc. Euro-

graphics/ACM SIGGRAPH Symp. Geom. Process., 2003, pp. 127–137.

[100] Leonidas J. Guibas and Jorge Stolfi, Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams, ACM Trans. Graphics 4 (1985), no. 2, 75–123.
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fixed dimension, J. Algorithms 13 (1992), no. 1, 79–98.



COMBINATORIAL OPTIMIZATION OF CYCLES AND BASES 33

[153] James B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Oper. Res. 41

(1993), no. 2, 338–350.

[154] Steve Y. Oudot, Leonidas J. Guibas, Jie Gao, and Yue Wang, Geodesic Delaunay triangu-
lations in bounded planar domains, ACM Trans. Algorithms 6 (2010), article 67.
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[156] , Cinquième complement à l’analysis situs, Rendiconti del Circulo Matematico di

Palermo 18 (1904), 45—110, English translation in [157].

[157] , Papers on topology: Analysis Situs and its five supplements, History of Mathemat-
ics, vol. 37, American Mathematical Society, 2010, Translated from the French and with an

introduction by John Stillwell.

[158] Konrad Polthier and Marchis Schmies, Geodesic flow on polyhedral surfaces, Data Visualiza-
tion: Proc. Eurographics Worksh. Scientific Visualization, Springer Verlag, 1999, pp. 179–

188.
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