
Building Spacetime Meshes over Arbitrary Spatial Domains∗

Jeff Erickson† Damrong Guoy‡ John M. Sullivan§ Alper Üngör¶

Submitted to Engineering with Computers: February 28, 2003

Revised and resubmitted: November 21, 2004

Abstract

We present an algorithm to construct meshes suitable for spacetime discontinuous Galerkin
finite-element methods. Our method generalizes and improves the ‘Tent Pitcher’ algorithm of
Üngör and Sheffer. Given an arbitrary simplicially meshed domain X of any dimension and a
time interval [0, T], our algorithm builds a simplicial mesh of the spacetime domain X × [0, T],
in constant time per element. Our algorithm avoids the limitations of previous methods by
carefully adapting the durations of spacetime elements to the local quality and feature size of
the underlying space mesh.

1 Introduction

Many simulation problems consider the behavior of an object or region of space over time. The most
common finite element methods for this class of problem use a meshing procedure to discretize space,
yielding a system of ordinary differential equations in time. A time-marching or time-integration
scheme is then used to advance the solution over a series of fixed time steps. In general, a distinct
spatial mesh may be required at each time step, due to the requirements of an adaptive analysis
scheme or to track a moving boundary or interface within the domain.

A relatively new approach to such simulations suggests directly meshing in space-time [10, 17,
23]. For example, a four-dimensional space-time mesh would be required to simulate an evolving
three-dimensional domain. Usually, the time dimension is not treated in the same way as the spatial
dimensions, in part because it can be scaled independently. Moreover, the numerical methods that
motivate our research impose additional geometric constraints on the meshes to support a linear-
time solution strategy. Thus, traditional meshing techniques do not apply.

∗This work was supported in part by The Center for Process Simulation and Design at the University of Illinois,
Urbana-Champaign, under NSF ITR grant DMR-0121695. A preliminary version of this paper was presented at the
11th International Meshing Roundtable [8].

†Department of Computer Science, University of Illinois at Urbana-Champaign, jeffe@uiuc.edu. Also supported
in part by a Sloan Fellowship and NSF CAREER award CCR-0093348.

‡Center for Simulation of Advanced Rockets, Computational Science and Engineering Program, University of
Illinois at Urbana-Champaign, guoy@uiuc.edu. Also supported in part by DOE grant LLNL B341494.

§Department of Mathematics, University of Illinois at Urbana-Champaign, jms@uiuc.edu. Also supported in part
by NSF grant DMS-00-71520.

¶Center for Geometric and Biological Computing, Department of Computer Science, Duke University, un-
gor@cs.duke.edu. This research was performed while this author was a student at the University of Illinois, with the
additional support of a UIUC Computational Science and Engineering Fellowship.

2 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

Figure 1. A space-time discontinuous Galerkin finite element mesh.

In this paper, we develop the first algorithm to build graded space-time meshes over arbitrary
simplicially meshed domains in arbitrary dimensions. Our algorithm does not impose a fixed global
time step on the mesh; rather, the duration of each space-time element depends on the local feature
size and quality of the underlying space mesh. Our approach is a generalization of the ‘Tent Pitcher’
algorithm of Üngör and Sheffer [20], but avoids the restrictions of that method by imposing some
additional constraints. Our algorithm builds space-time meshes in constant time per element.

The paper is organized as follows. In Section 2, we formalize the space-time meshing problem
and describe several previous results. Section 3 explains the high-level advancing front strategy
of our meshing algorithm. In Sections 4 and 5, we develop our algorithm for building three-
dimensional space-time meshes over triangulated planar domains. We generalize our algorithm to
higher dimensions in Section 6. In Section 7, we describe our implementation and present some
experimental results. Finally, we conclude in Section 8 by suggesting several directions for further
research.

2 Space-Time Discontinuous Galerkin Meshing

The formulation of our space-time meshing problem relies on the notions of domain of influence and
domain of dependence. Imagine dropping a pebble into a pond; over time, circular waves expand
outward from the point of impact. These waves sweep out a cone in space-time, called the domain
of influence of the event.

More generally, we say that a point p̂ in space-time depends on another point q̂ if the salient
physical parameters at p̂ (temperature, pressure, stress, momentum, etc.) can depend on the cor-
responding parameters at q̂, that is, if changing the conditions at q̂ could change the conditions
at p̂. The domain of influence of p̂ is the set of points that depend on p̂; symmetrically, the domain

of dependence is the set of points that p̂ depends on. At least infinitesimally, these domains can
be approximated by a pair of circular cones with common apex p̂. For isotropic problems without
material flow, this double cone can described by a scalar wave speed c(p̂) ∈ IR, which specifies how
quickly the radius of the cones grows as a function of time. If the characteristic equations of the

Building Spacetime Meshes over Arbitrary Spatial Domains 3

ti
m

e
Figure 2. The cone constraint: Any boundary facet separates the domain of influence (above) from the domain of
dependence (below).

analysis problem are linear and the material properties are homogeneous, the wave speed is constant
throughout the entire space-time domain; in this case, we can choose an appropriate time scale so
that c(p̂) = 1 everywhere. For more general problems, the wave speed varies across space-time as
a function of other physical parameters, and may even be part of the numerical solution.

These notions extend to finite element meshes in space-time. We say that an element △ in
space-time depends on another element △′ if any point p̂ ∈ △ depends on any point q̂ ∈ △′. This
relation naturally defines a directed dependency graph whose vertices are the elements of the mesh.
Two elements in the mesh are coupled if they lie on a common directed cycle in (the transitive
closure of) the dependency graph.

Space-time discontinuous Galerkin (DG) methods have been proposed by Richter [13], Lowrie
et al. [10], and Yin et al. [23] for solving systems of nonlinear hyperbolic partial differential equa-
tions. These methods provide a linear-time element-by-element solution, avoiding the need to solve
a large system of equations, provided no two elements in the underlying space-time mesh are cou-
pled. In particular, every pair of adjacent elements must satisfy the so-called cone constraint : Any
boundary facet between two neighboring elements separates the cone of influence from the cone of
dependence of any point on the facet. See Figure 2. Intuitively, if a boundary facet satisfies the
cone constraint, information can only flow in one direction across that facet. In a totally decoupled
mesh, the dependency graph describes a partial order on the elements, and the solution can be
computed by considering the elements one at a time according to any linear extension of this par-
tial order. Alternatively, the solutions within any set of incomparable elements can be computed
in parallel.

Discontinuous Galerkin methods impose no a priori restrictions on the shape of the individual
elements; mixed meshes with tetrahedral, hexahedral, pyramidal, and other element shapes are
acceptable. However, it is usually more convenient to work with very simple convex elements such
as simplices. Experience indicates that ill-conditioning is likely if the elements are non-convex, and
subdividing non-convex regions into simple convex elements is useful for efficient integration. (For
further background on DG methods, we refer the reader to the recent book edited by Cockburn,
Karniadakis, and Shu [6], which contains both a general survey [5] and several papers describing
space-time DG methods and their applications.)

To construct an efficient mesh with convex elements, we have found it preferable to relax the
cone constraint in the following way. We construct a mesh of simplicial elements, but not all facets
meet the cone constraint. Instead, elements are grouped into patches (of bounded size). The
boundary facets between patches by definition satisfy the cone constraint, so patches are partially
ordered by dependence, and can be solved independently.

4 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

However, the internal facets between simplicial elements within a patch may violate the cone
constraint. Thus, DG methods require the elements within the patch to be solved simultaneously.
Since each patch contains a constant number of elements, the system of equations within it has
constant size, which implies that we can still solve the underlying numerical problem in linear time
by considering the patches one at a time.

Richter [13] observed that the dissipation of DG methods increases as the slope of boundary
facets decreases below the local wave speed. Thus, our goal is to construct an efficient simplicial
mesh, grouped into patches each containing few simplices, such that the boundary facets of each
patch are as close as possible to the cone constraint without violating it.

Previous Results. Most previous space-time meshing algorithms construct a single mesh layer
between two space-parallel planes and repeat this layer (or its reflection) at regular intervals to fill
the simulation domain. The exact construction method depends on the type of underlying space
mesh. For example, given a structured quad space mesh, the space-time meshing algorithm of
Lowrie et al. [10] constructs a layer of pyramids and tetrahedra. Similarly, Üngör et al. [19, 22] build
a single layer of tetrahedra and pyramids over an acute triangular mesh, and Sheffer et al. [15, 22]
describe an algorithm to build a single layer of hexahedra over any (unstructured) quad mesh. All
such layer-based approaches suffer from a global time step imposed by the smallest element in the
underlying space mesh. This requirement increases the number of elements in the mesh, making the
DG method less efficient; it also increases the numerical error of the solution, since many internal
facets must lie significantly below the constraint cone.

A few recent algorithms do not impose a global time step, but instead allows the durations of
space-time elements to depend on the size of the underlying elements of the ground mesh. The
first such algorithm, due to Üngör et al. [21], builds a triangular mesh for a (1 + 1)-dimensional
space-time domain by intersecting the constraint cones at neighboring nodes. This method does
not easily generalize to higher dimensions. The most general space-time meshing algorithm to date
is the ‘Tent Pitcher’ algorithm of Üngör and Sheffer [20]. Given a simplicial space mesh in any fixed
dimension, where every dihedral angle is strictly less than 90◦, Tent Pitcher constructs a space-time
mesh of arbitrary duration. Moreover, if every dihedral angle in the space mesh is larger than some
positive constant, each patch in the space-time mesh consists of a constant number of simplices.

Unfortunately, the acute simplicial meshes that Tent Pitcher requires are difficult to construct,
if not impossible, except in a few special cases. Bern et al. [2] describe two methods for building an
acute triangular mesh for an arbitrary planar point set, and methods are known for special planar
domains such as triangles [12], squares [3, 7], and some classes of polygons [9, 11]. However, no
method is known for general planar domains or even for point sets in higher dimensions. It is an
open problem whether the cube has an acute triangulation; see [18] for recent related results.

New Results. In this paper, we present a generalization of the Tent Pitcher algorithm that
extends any simplicial space mesh in IRd, for any d ≥ 1, into a space-time mesh of arbitrary
duration. Like the Tent Pitcher algorithm, our algorithm does not rely on a single global time step.
Our algorithm avoids the requirement of an acute ground mesh by carefully adapting the duration
of space-time elements to the quality of the underlying simplices in the space mesh.

3 The Advancing Front

Our algorithm is designed as an advancing front procedure, which alternately constructs a patch
of the mesh and invokes a space-time discontinuous Galerkin method to compute the required

Building Spacetime Meshes over Arbitrary Spatial Domains 5

Figure 3. Pitching a series of tents over a planar triangulation.

solution within that patch. To simplify the algorithm description, we assume that the wave speed
is constant throughout space-time; specifically, by choosing an appropriate time scale, we will
assume that c(p̂) = 1 everywhere. Our algorithm can be easily adapted to handle changing wave
speeds, provided the wave speed at any point is a non-increasing function of time. We discuss the
necessary changes for non-constant wave speeds at the end of Section 5.

The input to our algorithm is a simplicial ground mesh M of some spatial domain X ⊂ IRd,
with the appropriate initial conditions stored at every element. The advancing front M̂ is the graph
of a continuous time function t : X → IR whose restriction to any element of the ground mesh
is linear. Any any stage of our algorithm, each element of the front satisfies the cone constraint
‖∇t‖ ≤ 1. We will assume the initial time function is constant, but more general initial conditions
are also permitted.

To advance the front, our algorithm chooses a vertex that is a local minimum with respect to
time, that is, a vertex p̂ = (p, t(p)) such that t(p) ≤ t(q) for every neighboring vertex q̂. (Initially,
every vertex on the front is a local minimum.) To obtain the new front, this vertex is moved

6 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

forward in time to a new point p̂′ = (p, t′(p)) with t′(p) > t(p). We call the volume between the
the old and new fronts a tent. The elements adjacent to p̂ on the old front make up the inflow

boundary of the tent; the corresponding elements on the new front comprise the patch’s outflow

boundary. We decompose the tent into a patch of simplicial elements, all containing the common
edge p̂p̂′, and pass this patch, along with the physical parameters at its inflow boundary, to a DG
solver. The solver returns the physical parameters for the outflow boundary, which we store for use
as future inflow data. The solution parameters in the interior and inflow boundary of the tent can
than be written to a file (for later analysis or visualization) and discarded. This advancing step is
repeated until every node on the front passes some target time value.

If the front has several local minima, we could apply any number of heuristics for choosing
one; Üngör and Sheffer outline several possibilities [20]. The correctness of our algorithm does
not depend on which local minimum is chosen. In particular, if any vertex has the same time
value as one of its neighbors, we can break the tie arbitrarily. Our implementation computes the
mesh in phases. In each phase, we select a maximal independent set S of local minima and then
lift each minimum in S, in some arbitrary order. This approach seems particularly amenable to
parallelization, since the minima in S can be treated simultaneously by separate processors.

4 Pitching Just One Triangle

To complete the description of our algorithm, it remains only to describe how to compute the new
time value for each vertex to be advanced, or less formally, how high to pitch each tent. We first
consider the special case where the ground mesh consists of a single triangle. As we will show in
the next section, this special case embodies all the difficulties of space-time meshing over general
planar domains.

Let p, q, r be three points in the plane. At any stage of our algorithm, the advancing front
consists of a single triangle △p̂q̂r̂ whose vertices have time coordinates t(p), t(q), t(r). Suppose
without loss of generality that t(p) < t(q) < t(r) and we want to advance p̂ forward in time.
We must choose the new time value t′(p) so that the resulting triangle △p̂′q̂r̂ satisfies the cone
constraint ‖∇t‖ ≤ 1.

To simplify the derivation, suppose q = (0, 0) and t(q) = 0. The time values t′(p) and t(r) can
then be written as t′(p) = p ·∇t and t(r) = r ·∇t, where ∇t is the gradient of the new time function.
We can write this gradient vector as

∇t = µv̄ + νn̄,

where v̄ is the unit vector parallel to the vector r, and n̄ is the unit vector orthogonal to v̄ with
sign chosen so that n̄ · p > 0. The vector µv̄ is just the gradient of the time function restricted to
segment qr, so µ = t(r)/‖r‖. The cone constraint implies that ‖∇t‖ =

√

µ2 + ν2 ≤ 1 and therefore
ν ≤

√

1− µ2. Thus, the cone constraint is equivalent to the following inequality:

t′(p) = p · ∇t

= µp · v̄ + νp · n̄

≤ µp · v̄ +
√

1 + µ2 p · n̄

=
t(r)

‖r‖
p · v̄ +

√

‖r‖2 − t(r)2

‖r‖
p · n̄

=
t(r)

‖r‖2
p · r +

√

‖r‖2 − t(r)2

‖r‖2
|p× r|

Building Spacetime Meshes over Arbitrary Spatial Domains 7

Here, p × r denotes the two-dimensional cross product p1r2 − p2r1, which is just twice the signed
area of △pqr. To simplify the notation slightly, let wp denote the distance from p to←→qr, and define
wq and wr analogously:

wp =
2|△pqr|

‖r − q‖
, wq =

2|△pqr|

‖p − r‖
, wr =

2|△pqr|

‖q − p‖
.

Then the previous inequality can be rewritten as

t′(p) ≤
t(r)

‖r‖2
p · r +

√

‖r‖2 − t(r)2

‖r‖
wp. (1)

More generally, if q 6= (0, 0) and t(q) 6= 0, the cone constraint is equivalent to the following
inequality.

t′(p) ≤ t(q) +
t(r)− t(q)

‖r − q‖2
(p− q) · (r − q)

+

√

‖r − q‖2 − (t(r)− t(q))2

‖r − q‖
wp

(2)

We have similar inequalities for every other ordered pair of vertices, limiting how far forward in
time the lowest vertex can be moved past the middle vertex. We will collectively refer to these six
inequalities as the cone constraint.

To ensure that our algorithm can create a mesh up to any desired time value, we must also
maintain the following progress invariant :

The lowest vertex of△p̂q̂r̂ can always be lifted above the middle vertex without violating
the cone constraint.

This invariant holds trivially at the beginning of the algorithm, when t(p) = t(q) = t(r) = 0. Let
us assume inductively that it holds at the moment we want to lift p̂. Üngör and Sheffer [20] proved
that if △pqr is acute, then satisfying the cone constraint automatically maintains this invariant,
but for obtuse triangles, this is not enough.

To maintain our progress invariant, it suffices to ensure that in the next step of the algorithm,
the new lowest vertex q̂ can be lifted above r̂ without violating the cone constraint. In other words,
if we replace t(q) with t(r), the new triangle’s slope must be strictly less than 1. By substituting
t(r) for t(q) in the cone constraint (2) and making the inequality strict, we obtain the following:

t′(p) < t(r) + wp (3)

We have similar inequalities for every other ordered pair of vertices, limiting how far forward in
time the lowest vertex can be moved past the highest vertex. We will collectively refer to these six
inequalities as the weak progress constraint.

The weak progress constraint has a simple geometric interpretation, which we can see by looking
at the lifted triangle in space-time; see Figure 4. Let Γ be the cone of dependence of the lifted
point p̂′; this cone intersects the plane t = t(r) in a circle γ of radius t′(p)− t(r). Any plane π
through p̂′ that satisfies the cone constraint is disjoint from Γ; in particular, the intersection line
of π with the plane t = t(r) does not cross γ. Now let q̂′ = (q, t(r)). If the plane p̂′q̂′r̂ satisfies the
cone constraint, then the line through q̂′ and r̂ does not cross γ. Thus, the progress invariant holds
after we lift p̂ only if t′(p)− t(r) < wp.

8 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

r

q

p

t'(p)−t(r)

wp

Figure 4. If the circle around p does not touch the line through q and r, then q̂ can be lifted above r̂ in the next step.

Our algorithm lifts p̂ to some point p̂′ that satisfies both the cone constraint and the weak
progress constraint, where t′(p) > t(q). By the progress invariant, this does not violate the cone
constraint. If t′(p) ≥ t(r), then the weak progress constraint implies that the progress invariant still
holds. If t′(p) < t(r), then the progress invariant also still holds, because t(r)− t′(p) < t(r)− t(q).
Thus, by induction, the progress invariant is maintained at every step of our algorithm.

Unfortunately, the weak progress constraint does not guarantee that we can reach any desired
time value; in principle, the advancing front could converge to some finite limit. To guarantee
significant progress at every step of the algorithm, we need a slightly stronger constraint. Our
implementation uses the inequality

t′(p) ≤ t(r) + (1− ε)wp (4)

where ε is a fixed constant in the range 0 < ε ≤ 1/2. We have a similar inequality for every other
ordered pair of vertices, and we collectively refer to these six inequalities as the progress constraint.

With this stronger constraint in place, we have the following result.

Lemma 1. If the cone constraint and progress constraint hold beforehand, we can lift p̂ at least

εwp above q̂ without violating either constraint.

Proof: Without loss of generality, assume that q = (0, 0) and t(q) = 0. We want to prove that
setting t′(p) = εwp does not violate the cone constraint (in its simpler form (1)) or the progress
constraint (4). Recall our assumption that t(r) ≥ t(q) = 0. Because ε ≤ 1/2, we have

t′(p) = εwp ≤ (1− ε)wp ≤ t(r) + (1− ε)wp,

so the progress constraint is satisfied.

Our proof that the cone constraint is satisfied has two cases, depending on the sign of p · r.
Suppose p · r ≥ 0. The previous progress constraint implies that t(r) ≤ (1− ε)wr. Because ε > 0
and wr ≤ ‖r‖, we have t(r)2 ≤ (1− ε)2w2

r ≤ (1− ε2)‖r‖2, which implies that

ε ≤

√

‖r‖2 − t(r)2

‖r‖
.

Since t(r) ≥ 0, we have

t′(p) = εwp ≤

√

‖r‖2 − t(r)2

‖r‖
wp ≤

t(r)

‖r‖2
p · r +

√

‖r‖2 − t(r)2

‖r‖
wp.

Thus, the cone constraint (1) is satisfied when p · r ≥ 0.

Building Spacetime Meshes over Arbitrary Spatial Domains 9

Now suppose p · r < 0, as in Figure 4. Let u be the closest point to p on the line←→qr, and let
θ = ∠uqp. The following identities are immediate:

|qu| = −
p · r

‖r‖
, wp = |pu|, wr = ‖r‖ sin θ, sin θ =

wp

‖p‖
, cos θ =

|qu|

‖p‖
.

Straightforward algebraic manipulation implies the inequality

ε ≤ −(1− ε) cos θ +

√

1− (1− ε)2 sin2 θ

for any 0 ≤ ε ≤ 1. Thus, we have

t′(p) = εwp ≤ −(1− ε)wp cos θ +

√

1− (1− ε)2 sin2 θ wp

= −(1− ε)
|qu|

‖p‖
wp +

√

1−

(

(1− ε)
wp

‖p‖

)

2

wp.

The previous progress constraint implies that t(r) ≤ (1− ε)wr = (1− ε)wp‖r‖/‖p‖, or equivalently,

(1− ε)
wp

‖p‖
≥

t(r)

‖r‖
.

Combining these two inequalities, we conclude that

t′(p) ≤ −
t(r)

‖r‖
|qu|+

√

1−
t(r)2

‖r‖2
wp =

t(r)

‖r‖2
p · r +

√

‖r‖2 − t(r)2

‖r‖
wp.

Thus, the cone constraint (1) is also satisfied when p · r < 0. �

Theorem 2. Given any three points p, q, r ∈ IR2, any real value T > 0, and any constant 0 < ε ≤
1/2, our algorithm generates a tetrahedral mesh of the prism △pqr × [0, T], where every internal

facet satisfies the cone constraint. The number of tetrahedra is at most TP/2Aε, where P is the

perimeter and A is the area of △pqr.

Proof: Our algorithm repeatedly lifts the lowest vertex of△p̂q̂r̂ to the largest time value satisfying
the cone constraint (2), the progress constraint (4), and a termination constraint t ≤ T . Each time
we lift a point, our algorithm creates a new tetrahedron. By Lemma 1, a new point becomes the
lowest vertex, so the algorithm halts only when all three vertices reach the target plane t = T .
Moreover, whenever t(p) ≤ t(q) ≤ t(r), the algorithm chooses a new time value t′(p) ≥ t(q)+εwp ≥
t(p) + εwp, except possibly when t′(p) = T . Thus, p̂ is lifted at most T/εwp = T‖q− r‖/2Aε times
before the algorithm terminates. �

5 Arbitrary Planar Domains

We now extend our meshing algorithm to more complex planar domains. The input is a triangular
ground mesh M of some planar domain X. As we described in Section 3, our algorithm maintains
a polyhedral front M̂ with a lifted vertex p̂ = (p, t(p)) for every vertex p ∈M . To advance the
front, our algorithm chooses a local minimum vertex p̂ and lifts it to a new point p̂′ = (p, t′(p)).

The new time value t′(p) is simply the largest value that satisfies the cone constraints and
progress constraints for every triangle in the ground mesh that contains p. The chosen time value

10 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

t′(p) is the value that would be chosen by at least one of these triangles in isolation. It follows that
p̂′ is not a local minimum in the modified front. Moreover, by our earlier arguments, the progress
invariant is maintained in every triangle adjacent to p. It follows immediately that our algorithm
can generate meshes to any desired time value.

Specifically, let ωp denote the minimum distance from p to←→qr, over all triangles △pqr in the
ground mesh. Lemma 1 implies the following result.

Theorem 3. Given any triangular mesh M over any domain X ⊂ IR2, any real value T > 0,
and any constant 0 < ε ≤ 1/2, our algorithm generates a space-time mesh for the domain X ×
[0, T]. The number of patches is at most (T/ε)

∑

p∈M 1/ωp, and number of tetrahedra is at most

(6T/ε)
∑

p∈M 1/ωp.

Our analysis of the number of patches and elements is conservative, since it assumes that each
step of the algorithm advances a vertex by the minimum amount guaranteed by Lemma 1. We
expect most advances to be larger in practice, especially in areas of the ground mesh without large
angles. Our experiments were consistent with this intuition; see Section 7.

Most of the parameters of the cone constraint, and all of the parameters of the progress con-
straint, can be computed in advance from the ground mesh alone. Thus, the time to compute each
new time value t′(p) is a small constant times the degree of p in the ground mesh, and the overall
time required to build the mesh is a small constant times the number of mesh elements.

Non-constant Wave Speeds

Although we have described our algorithm under the assumption that the wave function c(p̂) is
constant, this assumption is not necessary. If elements of the ground mesh have different (but
still constant) wave speeds, our algorithm requires only trivial modifications. The situation fits
well with discontinuous Galerkin methods, which compute solutions with discontinuities at element
boundaries. If the wave speed varies within a single element, even discontinuously, the only neces-
sary modification is to compute and use the maximum wave speed over each entire element. Similar
modifications suffice if the wave speed at any point in space can decrease over time.

If the mesh has only acute angles, the progress constraint is redundant and arguments of Üngör
and Sheffer [20] imply that our algorithm works even if the wave speed can increase over time,
as long as the wave speed is Lipschitz continuous. Unfortunately, their analysis breaks down for
obtuse meshes because of the progress constraint, and indeed our algorithm can get stuck. We
expect that a refinement of our progress constraint would allow for increasing wave speeds, but
further study is required.

6 Higher Dimensions

Our meshing algorithm extends in an inductive manner to simplicial meshes in higher dimensions.
As in the two-dimensional case, it suffices to consider the case where the ground mesh consists of
a single simplex △ in IRd. At each step of our algorithm, we increase the time value of the lowest
of the simplex’s d + 1 vertices as much as possible so that the cone constraint ‖∇t‖ ≤ 1 is satisfied
and we can continue inductively as far into the future as we like.

Let p, q, r1, r2, . . . , rd−1 denote the vertices of △ in increasing time order, breaking ties arbitrar-
ily. Our goal is to lift p̂ above q̂ without violating the cone constraint. Let F be the facet of △
that excludes p, and let H be the hyperplane spanning F . Let p

H
be the projection of p onto H,

Building Spacetime Meshes over Arbitrary Spatial Domains 11

and let p
F

be the closest point in F to p. Observe that ∠pp
H
p

F
is a right angle. See Figure 5. Let

∇
H

t denote the gradient vector of the time function restricted to H. Finally, define

σ
F

=
‖p− p

H
‖

‖p − p
F
‖
.

If p
H

lies inside F , then p
H

= p
F

and σ
F

= 1; otherwise, p
H
6= p

F
and σ

F
= sin ∠p

H
p

F
p.

pZ

pH

∇H t

p

q=pF

r1

r2

F

HZ

Figure 5. Defining the points p
H
, p

F
, and p

Z

The higher-dimensional analogue of the weak progress constraint is described by the following
lemma.

Lemma 4. If ‖∇
H

t‖ < σ
F
, then we can lift p̂ above q̂ without violating the cone constraint

‖∇t‖ ≤ 1.

Proof: Suppose ‖∇
H

t‖ < σ
F
. Without loss of generality, assume that q = (0, 0, . . . , 0) and t(q) = 0.

Let n̄ be the unit normal vector of H with p · n̄ > 0,

n̄ =
p− p

H

‖p− p
H
‖
.

Since the time function t is linear, changing only t(p) is equivalent to leaving t fixed on the hy-
perplane H and changing the directional derivative ∂t/∂n̄. To prove the lemma, we show that
setting

∂t

∂n̄
= cos ∠p

H
p

F
p =
‖p

H
− p

F
‖

‖p− p
F
‖

(5)

gives us a new time function that satisfies the cone constraint with t(p) > 0.

Let Z be the set of points in H where t = 0. Since t(q) = 0, Z is the (d− 2)-flat orthogonal to
∇

H
t that passes through q. Moreover, because t ≥ 0 everywhere in F , Z is a supporting (d− 2)-flat

of F . Let p
Z

be the closest point in Z to p (or to p
H
); this might be the same point as p

F
, p

H
, or q.

Observe that ∠pp
H
p

Z
is a right angle. See Figure 5.

We can express the time gradient ∇t as follows:

∇t = ∇
H

t +
∂t

∂n̄
n̄.

Equation (5) implies that

∇t = ∇
H

t +
‖p

H
− p

F
‖

‖p − p
F
‖

n̄.

12 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

Since these two components of ∇t are orthogonal, we can express its length as follows.

‖∇t‖2 = ‖∇
H

t‖2 +
‖p

H
− p

F
‖2

‖p − p
F
‖2

<
‖p − p

H
‖2

‖p − p
F
‖2

+
‖p

H
− p

F
‖2

‖p− p
F
‖2

= 1

So the new time function satisfies the cone constraint.

We can express the time value t(p) as follows:

t(p) = t(p
H
) + ‖p− p

H
‖

∂t

∂n̄

= t(p
H
) +
‖p− p

H
‖ ‖p

H
− p

F
‖

‖p − p
F
‖

If t(p
H
) ≥ 0, then clearly t(p) > 0. Suppose t(p

H
) < 0. The vector p

H
− p

Z
is orthogonal to Z and

therefore anti-parallel to ∇
H

t. Thus,

t(p
H
) = ∇

H
t · (p

H
− p

Z
)

= −‖∇
H

t‖ ‖p
H
− p

Z
‖

≥ −
‖p− p

H
‖ ‖p

H
− p

Z
‖

‖p− p
F
‖

≥ −
‖p− p

H
‖ ‖p

H
− p

F
‖

‖p− p
F
‖

.

The last inequality follows from the fact that p
H

and F lie on opposite sides of Z, because t(p
H
) < 0.

It now immediately follows that t(p) > 0. �

As in the two-dimensional case, in order to guarantee that the algorithm does not converge
prematurely, we must strengthen this constraint. There are many effective ways to do this; the
following lemma describes one such method.

Lemma 5. For any 0 < ε ≤ 1, if ‖∇
H

t‖ ≤ (1 − ε)σ
F
, then we can lift p̂ at least ε‖p − p

H
‖ above q̂

without violating the cone constraint ‖∇t‖ ≤ 1.

Proof: We modify the previous proof as follows. We show that setting

∂t

∂n̄
= ε + (1− ε)

‖p
H
− p

F
‖

‖p − p
F
‖

gives us a new time function satisfying the conditions of the lemma. First we verify that the cone
constraint is satisfied.

‖∇t‖2 ≤

(

(1− ε)
‖p − p

H
‖

‖p − p
F
‖

)

2

+

(

ε + (1− ε)
‖p

H
− p

F
‖

‖p − p
F
‖

)

2

= 1 + 2ε(1 − ε)

(

‖p
H
− p

F
‖

‖p− p
F
‖
− 1

)

≤ 1

(In fact, if p
H
6= p

F
, then ‖∇t‖ < 1, which means we could lift p̂ even more.)

Building Spacetime Meshes over Arbitrary Spatial Domains 13

Next we verify that t(p) ≥ ε‖p − p
H
‖.

t(p) = t(p
H
) + ‖p− p

H
‖

∂t

∂n̄

= t(p
H
) + ε‖p − p

H
‖+ (1− ε)

‖p − p
H
‖ ‖p

H
− p

F
‖

‖p− p
F
‖

≥ t(p
H
) + ε‖p − p

H
‖.

If t(p
H
) ≥ 0, we are done. Otherwise, as in the previous lemma, we have

t(p
H
) ≥ −‖∇

H
t‖ ‖p

H
− p

F
‖

≥ −(1− ε)
‖p − p

H
‖ ‖p

H
− p

F
‖

‖p − p
F
‖

,

which immediately implies that t(p) ≥ ε‖p − p
H
‖, as claimed. �

An important insight is that we can view the simplex△ simultaneously as a single d-dimensional
simplex and as (d− 1)-dimensional boundary mesh. Lemma 5 prescribes a tighter cone constraint
for every element in this boundary mesh.

Our algorithm proceeds as follows. At each step, we lift the lowest vertex of △ by recursively
applying the (d − 1)-dimensional algorithm; then, if necessary, we lower the newly-lifted vertex to
satisfy the global cone constraint ‖∇t‖ ≤ 1. The base case of the dimensional recursion is the
two-dimensional algorithm in the previous section.

This recursion imposes an upper bound on the length of the time gradient within every face
of △ of dimension at least 1. In fact, a näıve recursive implementation would calculate (d − k)!
different constraints for each k-dimensional face. A more careful implementation would determine
the strictest constraint for each face in an initialization phase, so that each step of the algorithm
only needs to consider each face incident to the lifted vertex once.

For a d-dimensional ground mesh with more than one simplex, we apply precisely the same
strategy as in the two-dimensional case. At each step of the algorithm, we choose an arbitrary
local minimum vertex p̂, and lift it to the highest time point p̂′ allowed by all the simplices (of
all dimensions) containing p̂. By our earlier arguments, p̂′ is not a local minimum of the modified
front, which implies that our algorithm terminates only when all the vertices reach the target time
value.

7 Output Examples

We have implemented our planar space-time meshing algorithm and tested it on several different
ground meshes. Our implementation consists of approximately 5000 lines of C++ code, about 800
of which represent the actual space-time meshing algorithm; the remaining code is a pre-existing
library for manipulating and visualizing triangular and tetrahedral meshes.

Figures 1 and 6–8 show space-time meshes computed by our implementation. In each case, we
stopped advancing each vertex of the front after it passed a target time value. In every example,
the input triangle mesh contains at least one (sometimes extremely) obtuse triangle, which caused
Üngör and Sheffer’s original Tent Pitcher algorithm to fail [20].

Our program produces several thousand elements per second, running on a 1.7 GHz Pentium IV
with 1 gigabyte of memory. For example, the mesh in Figure 1, which contains 114,515 tetrahedral
elements, was built from a ground mesh of 2,356 triangles in about 14 seconds. Figure 6 shows

14 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

(a) (b)

Figure 6. (a) A typical planar mesh of 1044 triangles. (b) The resulting space-time mesh of 55,020 tetrahedra, computed
by our implementation in about 4 seconds.

an input mesh with 1,044 triangles and the resulting 55,020-element space-time mesh, which was
computed in about 4 seconds. (These running times include reading and parsing the input mesh
file and writing the output mesh to disk.)

Figure 7 illustrates effect of grading in the input mesh on the size on space-time elements. The
largest and smallest elements in the ground mesh differ in size by a factor of 128; the resulting
space-time elements differ in duration by a factor of 450. (The difference between these two factors
might be explained by the obtuse triangles near the smallest element of the ground mesh.) Less
severe grading due to varying ground element size can also be seen in Figure 6.

Figure 8 shows the output of our algorithm when the input mesh is pathological. The input
meshes are the Delaunay triangulation and a greedy sweep-line triangulation of the same point set.
As expected, variations in quality in the ground mesh also leads to temporal grading in our output
meshes. For example, the bottom right vertex of the space mesh in Figure 8(b) advances much
more quickly than the top right vertex, because it is significantly further from the lines through
any of its neighboring edges.

We tried several different values of the parameter ε in the progress constraint (4). All of the
example output meshes were computed using the value ε ≈ 0.1. Somewhat to our surprise, the
number of elements in the output mesh varied by only a few percent as we varied ε from 1/100
to 1/3, and smaller values of ε usually resulted in meshes with slightly fewer elements, since the
modified progress constraint is less severe. Also, for high-quality ground meshes, where most of the
triangles are acute, the progress constraint affected only a few isolated portions of the space-time
mesh. On the other hand, smaller values of ε generally led to wider variability in the duration of
neighboring tetrahedra. As ε increases, the progress guaranteed by Lemma 1 more closely matches
the maximum progress allowed by the progress constraint; this tends to distribute the progress of
each triangle more evenly among its vertices.

8 Further Research

We have presented the first algorithm to generate graded space-time meshes for arbitrary spatial
domains, suitable for efficient use by space-time discontinuous Galerkin methods. This is only the
first step toward building a general space-time DG meshing library.

Building Spacetime Meshes over Arbitrary Spatial Domains 15

(a)

(b)

(c)

Figure 7. (a) A severely graded planar mesh. (b) The resulting space-time mesh. (c) A close-up of the resulting grading.

16 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

(a) (b)

(c) (d)

Figure 8. (a) A Delaunay triangulation with a few bad triangles. (b) A sweep-line triangulation (of the same point set)
with many horrible triangles. (c,d) The resulting space-time meshes, showing the resulting temporal grading.

As we mentioned in Section 5, our algorithm currently requires the wave speed at any point in
space to remain constant or monotonically decrease over time. In the short term, we plan to adapt
our algorithm to handle wave speeds that increase over time. It should be noted that for many
problems, the wave speed is not known in advance but must be computed on the fly as part of the
numerical solution.

DG methods do not require conforming meshes, where any pair of adjacent elements meet in a
common face. As a result, fixed time-step methods allow the space mesh to be refined or coarsened
in response to error estimates, simply by remeshing at any time slice. Can our advancing front
method be modified to allow for refinement, coarsening, or other local remeshing operations (like
Delaunay flips)? These operations might be useful not only to avoid numerical error, but also to
make the meshing process itself more efficient.

For many problems, even the boundary of the domain changes over time according to the
underlying system of PDEs. Can our method be adapted to handle moving boundaries? Intuitively,
we would like a mesh that conforms to the boundary as it moves. This would require us to move
the nodes of the ground mesh continuously over time; remeshing operations would be required to
guarantee that the meshing algorithm does not get stuck. Similar issues arise in tracking shocks,
which are surfaces in space-time where the solution changes discontinuously.

Our method currently assumes that all the characteristic cone have vertical (or at least parallel)

Building Spacetime Meshes over Arbitrary Spatial Domains 17

axes. For problems involving fluid flow, the direction of the cone axis (i.e., the velocity of the
material) varies over space-time as part of the solution. We could adapt our method to this setting
by overestimating the true tilted influence cones by larger parallel cones, but intuitively it seems
more efficient to move nodes on the front. As in the case of moving boundaries, this would require
remeshing the front. In fact, the front would no longer necessarily be a monotone polyhedral
surface; extra work may be required to ensure that the resulting mesh is acyclic.

Finally, to minimize numerical error it is important to generate space-time meshes of high
quality. Although there are several possible measures for the quality of a space-time element,
further mathematical analysis of space-time DG methods is required to determine the most useful
quality measures. This is in stark contrast to the traditional setting, where appropriate measures
of quality and algorithms to compute high-quality meshes are well known [1, 2, 4, 14, 16].

Acknowledgments

The authors thank David Bunde, Michael Garland, Shripad Thite, and especially Bob Haber for
several helpful comments and discussions. We also thank Shripad Thite for correcting a bug in our
proof of Lemma 1.

References

[1] M. Bern, L. P. Chew, D. Eppstein, and J. Ruppert. Dihedral bounds for mesh generation in
high dimensions. Proc. 6th Annu. ACM-SIAM Sympos. Discrete Algorithms, 89–196, 1995.

[2] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. J. Comput. System

Sci. 48:384–409, 1994.

[3] C. Cassidy and G. Lord. A square acutely triangulated. J. Rec. Math. 13(4):263–268, 1980.

[4] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng. Sliver exudation.
Proc. 15th Annu. ACM Sympos. Comput. Geom., 1–13. 1999.

[5] B. Cockburn, G. Karniadakis, and C. Shu. The development of discontinuous Galerkin meth-
ods. Discontinuous Galerkin Methods: Theory, Computation and Applications, pp. 1–14. Lec-
ture Notes Comput. Sci. Engin. 11, Springer, 2000.

[6] B. Cockburn, G. Karniadakis, and C. Shu. Discontinuous Galerkin Methods: Theory, Com-

putation and Applications. Lecture Notes Comput. Sci. Engin. 11, Springer, 2000.

[7] D. Eppstein. Acute square triangulation. The Geometry Junkyard, July 1997. 〈http://www.
ics.uci.edu/∼eppstein/junkyard/acute-square/〉.

[8] J. Erickson, D. Gouy, J. Sullivan, and A. Üngör. Building space-time meshes over arbitrary
spatial domains. Proc. 11th Ann. Int. Meshing Roundtable, 391–403, 2002. 〈http://www.
andrew.cmu.edu/user/sowen/abstracts/Er876.html〉

[9] T. Hangan, J. Itoh, and T. Zamfirescu. Acute triangulations. Bulletin Math. de la Soc. des

Sci. Math. de Roumanie 43:279–286, 2000.

[10] R. B. Lowrie, P. L. Roe, and B. van Leer. Space-time methods for hyperbolic conservation
laws. Barriers and Challenges in Computational Fluid Dynamics, pp. 79–98. ICASE/LaRC
Interdisciplinary Series in Science and Engineering 6, Kluwer, 1998.

18 Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör

[11] H. Maehara. On acute triangulations of quadrilaterals. Proc. Japan Conf. Discrete Comput.

Geom., pp. 237–243. Lecture Notes Comput. Sci. 2098, Springer-Verlag, 2000. 〈http://link.
springer.de/link/service/series/0558/bibs/2098/20980237.htm〉.

[12] W. Manheimer. Solution to problem E1406: Dissecting an obtuse triangle into acute triangles.
Amer. Math. Monthly 67, 1960.

[13] G. R. Richter. An explicit finite element method for the wave equation. Applied Numer. Math.

16:65–80, 1994.

[14] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J.

Algorithms 18(3); 548–585, 1995.

[15] A. Sheffer, A. Üngör, S.-H. Teng, and R. B. Haber. Generation of 2D space-time meshes
obeying the cone constraint. Advances in Computational Engineering & Sciences, pp. 1360–
1365. Tech Science Press, 2000.

[16] J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. Proc. 14th Annu. ACM

Sympos. Comput. Geom., 86–95, 1998.

[17] L. L. Thompson. Design and Analysis of Space-Time and Galerkin Least-Squares Finite El-

ement Methods for Fluid-Structure Interaction in Exterior Domains. Ph.D. thesis, Stanford
University, 1994.

[18] A. Üngör. Tiling 3D Euclidean space with acute tetrahedra. Proc. 13th Canadian Conf.

Comput. Geom., 169–172, 2001. 〈http://compgeo.math.uwaterloo.ca/∼cccg01/proceedings/〉

[19] A. Üngör, C. Heeren, X. Li, A. Sheffer, R. B. Haber, and S.-H. Teng. Constrained 2D space-
time meshing with all tetrahedra. Proc. 16th IMACS World Congress, 2000.

[20] A. Üngör and A. Sheffer. Pitching tents in space-time: Mesh generation for discontinuous
Galerkin method. Proc. 9th Int. Meshing Roundtable, 111–122, 2000. 〈http://www.andrew.
cmu.edu/user/sowen/abstracts/Un738.html〉.

[21] A. Üngör, A. Sheffer, and R. B. Haber. Space-time meshes for nonlinear hyperbolic problems
satisfying a nonuniform angle constraint. Proc. 7th Int. Conf. Numerical Grid Generation in

Computational Field Simulations, 2000.

[22] A. Üngör, A. Sheffer, R. B. Haber, and S.-H. Teng. Layer based solutions for constrained
space-time meshing. To appear in Applied Numer. Math., 2002. 〈http://www.cse.uiuc.edu/
∼ungor/abstracts/layerAPNUM.html〉.

[23] L. Yin, A. Acharya, N. Sobh, R. Haber, and D. A. Tortorelli. A space-time discontinuous
Galerkin method for elastodynamic analysis. Discontinuous Galerkin Methods: Theory, Com-

putation and Applications, pp. 459–464. Lecture Notes Comput. Sci. Engin. 11, Springer,
2000.

