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Abstract. We describe algorithms to efficiently compute minimum (s, t)-cuts and global mini-
mum cuts of undirected surface-embedded graphs. Given an edge-weighted undirected graph G with
n vertices embedded on an orientable surface of genus g, our algorithms can solve either problem in
gO(g)n log logn or 2O(g)n logn time, whichever is better. When g is a constant, our gO(g)n log logn
time algorithms match the best running times known for computing minimum cuts in planar graphs.
Our algorithms for minimum cuts rely on reductions to the problem of finding a minimum-weight
subgraph in a given \BbbZ 2-homology class, and we give efficient algorithms for this latter problem as
well. If G is embedded on a surface with genus g and b boundary components, these algorithms run
in (g + b)O(g+b)n log logn and 2O(g+b)n logn time. We also prove that finding a minimum-weight
subgraph homologous to a single input cycle is NP-hard, showing that it is likely impossible to
improve upon the exponential dependencies on g for this latter problem.
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1. Introduction. Planar graphs have been a natural focus of study for algo-
rithms research for decades, both because they accurately model many real-world
networks and because they often admit simpler and/or more efficient algorithms for
many problems than general graphs. Most planar-graph algorithms either apply im-
mediately or have been quickly generalized to larger families of graphs, such as graphs
of higher genus, graphs with forbidden minors, or graphs with small separators. Ex-
amples include minimum spanning trees [94, 104]; single-source and multiple-source
shortest paths [20, 48, 53, 73, 85, 86, 92, 116]; graph and subgraph isomorphism [43,
44, 64, 75, 96]; and approximation algorithms for the traveling salesman problem,
Steiner trees, and other NP-hard problems [10, 12, 13, 17, 37, 44, 62].
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MINIMUM CUTS IN SURFACE GRAPHS 157

The classical minimum cut problem and its dual, the maximum flow problem,
are stark exceptions to this general pattern. Flows and cuts were introduced in the
1950s as tools for studying transportation networks, which are naturally modeled as
planar graphs [68]. Ford and Fulkerson's seminal paper [55] includes an algorithm to
compute maximum flows in planar networks where the source and target lie on the
same face. A long series of results eventually led to planar minimum-cut algorithms
that run in near-linear time, first for undirected graphs [58, 70, 78, 106] and later for
directed graphs [73, 79, 99].

In contrast, prior to our work, almost nothing was known about computing min-
imum cuts in even mild generalizations of planar graphs; in particular, except for the
work reported in this paper, we are unaware of any algorithm to compute minimum
cuts in non-planar graphs that does not require first computing a maximum flow.

This paper describes the first algorithms to compute minimum cuts in surface-
embedded graphs of fixed genus in near-linear time. Specifically, we describe two
algorithms to compute minimum (s, t)-cuts in undirected surface graphs, the first
in gO(g)n log logn time, and the second in 2O(g)n logn time. We also extend our
algorithms to find global minimum cuts in undirected surface graphs in the same
asymptotic time bounds. For all our algorithms, the input consists of an undirected
n-vertex graph, with arbitrary positive real edge weights, embedded on an orientable
surface of genus g. (Some of our results do generalize to non-orientable surfaces; we
will mention these generalizations in context.)

Our algorithms are based on a natural generalization of the duality between cuts
and cycles in planar graphs, first proposed by Whitney [119] and first exploited to
compute minimum cuts in planar graphs by Itai and Shiloach [77]. A set C of the
edges crossing a non-trivial partition (S,T ) of V is an (s, t)-cut if s \in S and t \in T . If
G is embedded on a surface, then the corresponding edges C\ast in the dual graph G\ast 

separate the faces of G\ast into two disconnected subcomplexes, one containing the dual
face s\ast and the other containing the dual face t\ast .

We formalize this characterization in terms of homology , a standard equivalence
relation from algebraic topology; specifically, we use cellular homology with coeffi-
cients in \BbbZ 2. Briefly, two subgraphs of a surface graph are homologous, or in the same
homology class, if and only if their symmetric difference is the boundary of a subset of
faces. In light of this characterization, finding minimum (s, t)-cuts in surface graphs
becomes a special case of finding the minimum-weight subgraph of a surface graph in
a given homology class. Indeed, both of our algorithms for computing minimum (s, t)-
cuts solve this more general problem, which is sometimes called homology localization
[31, 32].

Unlike in planar graphs, where every minimal cut is dual to a simple cycle [119],
the dual of a minimum cut in a surface graph may consist of several disjoint cycles.
More generally, the minimum-weight subgraph in any homology class may be discon-
nected, even when the homology class is specified by a simple cycle; see Figure 2.5.
Dealing with disconnected ``cycles"" is a significant complication in our algorithms.

Before describing our results in further detail, we first review several related
results; technical terms are more precisely defined in section 2.

1.1. Past results.

Minimum cuts in planar graphs. For any two vertices s and t in a graph
G, an (s,t)-cut is a subset of the edges of G that intersects every path from s to
t. A minimum (s, t)-cut is an (s, t)-cut with the smallest number of edges, or with
minimum total weight if the edges of G are weighted.
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158 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

Minimum cuts in planar graphs were already studied by Ford and Fulkerson [55],
who observed that when s and t lie on a common face of a planar graph G, the mini-
mum (s, t)-cut is dual to a shortest path in the dual graph G\ast . It follows immediately
that the minimum (s, t)-cut in such a graph can be computed in O(n logn) time using
Dijkstra's algorithm [77]; Hassin [69] showed that the maximum (s, t)-flow can be
computed in O(n) additional time.

Itai and Shiloach [77] generalized Ford and Fulkerson's observation to arbitrary
planar networks. They showed that the minimum (s, t)-cut in any planar graph G is
dual to the minimum-cost cycle that separates faces s\ast and t\ast in G\ast , and moreover
that this separating cycle intersects any shortest path from a vertex of s\ast to a vertex
of t\ast exactly once. Thus, one can compute the minimum (s, t)-cut by slicing the dual
graph G\ast along a shortest path \pi from s\ast to t\ast ; duplicating every vertex and edge
of \pi ; and then computing, for each vertex u of \pi , the shortest path between the two
copies of u in the resulting planar graph. Applying Dijkstra's shortest-path algorithm
at each vertex of \pi immediately yields a running time of O(n2 logn).

Reif [106] improved the running time of this algorithm to O(n log2 n) using a
divide-and-conquer strategy. Reif's algorithm was extended by Hassin and Johnson
to compute the actual maximum flow in O(n logn) additional time, using a carefully
structured dual shortest-path computation [70]. The running time was improved to
O(n logn) by Frederickson [58], and more recently to O(n log logn) by Italiano et
al. [78] by using a balanced separator decomposition to speed up the shortest-path
computations.

Janiga and Koubek [79] attempted to adapt Reif's O(n log2 n)-time algorithm to
directed planar graphs; however, their algorithm has a subtle error [80], which may
lead to an incorrect result when the minimum (t, s)-cut is smaller than the minimum
(s, t)-cut.

Henzinger et al. [73] generalized Frederickson's technique to obtain an O(n)-time
planar shortest-path algorithm; using this algorithm in place of Dijkstra's algorithm
improves the running times of both Reif's and Janiga and Koubek's algorithms to
O(n logn). The same improvement can also be obtained using more recent multiple-
source shortest-path algorithms by Klein [86]; Cabello, Chambers, and Erickson [20];
and Erickson, Fox, and Lkhamsuren [48].

Minimum (s, t)-cuts in directed planar graphs can also be computed in O(n logn)
time using the planar maximum-flow algorithms of Weihe [118] (after filtering out
useless edges [52]) and Borradaile and Klein [8, 14, 15].

A cut (without specified s and t) is a subset of edges of G that separate G
into two non-empty sets of vertices. A global minimum cut is a cut of minimum
size, or minimum total weight if the edges of G are weighted. Equivalently, a global
minimum cut is an (s, t)-minimum cut of smallest total weight, minimized over all
pairs of vertices s and t. Chalermsook, Fakcharoenphol, and Nanongkai [24] gave
the first algorithm for computing global minimum cuts that relies on planarity; their
algorithm runs in O(n log2 n) time. Their algorithm was improved by \Lacki and
Sankowski [88], who achieved an O(n log logn) running time. Mozes et al. recently
achieved the same O(n log logn) running time for global minimum cuts in directed
planar graphs [100], using techniques reported in a preliminary version of the current
paper [50], specifically, the \BbbZ 2-homology covers described in section 5.

Generalizations of planar graphs. Surprisingly little is known about the com-
plexity of computing maximum flows or minimum cuts in generalizations of planar
graphs. In particular, we know of no previous algorithm to compute minimum cuts
in non-planar graphs that does not first compute a maximum flow.
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MINIMUM CUTS IN SURFACE GRAPHS 159

By combining a technique of Miller and Naor [97] with the planar directed flow
algorithm of Borradaile and Klein [8, 14, 15, 46], one can compute maximum (single-
commodity) flows in a planar graph with k sources and sinks in O(k2n logn) time.
More recently, Borradaile et al. [16] described an algorithm to compute maximum
flows in planar graphs with an arbitrary number of sources and sinks in O(n log3 n)
time. An algorithm of Hochstein and Weihe [74] computes maximum flows in planar
graphs with k additional edges in O(k3n logn) time, using a clever simulation of
Goldberg and Tarjan's push-relabel algorithm [61]. Borradaile et al. [16] extend
Hochstein and Weihe's framework to compute maximum flows in planar graphs with
k apices in O(k3n log3 n) time.

Chambers and Eppstein [26] describe an algorithm to compute maximum flows
in O(n logn) time if the input graph forbids a fixed minor that can be drawn in the
plane with one crossing. Another related result is the algorithm of Hagerup et al. [66]
to compute maximum flows in graphs of constant treewidth in O(n) time.

Imai and Iwano [76] describe a max-flow algorithm that applies to graphs of pos-
itive genus, but not to arbitrary sparse graphs. Their algorithm computes minimum-
cost flows in graphs with small balanced separators, using a combination of nested
dissection [92, 103], interior-point methods [117], and fast matrix multiplication. Their
algorithm can be adapted to compute maximum flows (and therefore minimum cuts)
in any graph of constant genus in time O(n1.595 logC), where C is the sum of integer
edge weights. However, this algorithm is slower than more recent and more general
algorithms [41, 60].

Chambers, Erickson, and Nayyeri [28] describe maximum-flow algorithms that
are tailored specifically for graphs of constant genus. Given a graph embedded
on an orientable surface of genus g, their algorithms compute a maximum flow in
O(g8n log2 n log2C) time where C is the sum of integer edge weights and in gO(g)n3/2

arithmetic operations when edge weights are arbitrary positive real numbers. Their
key insight is that it suffices to optimize the homology class (with coefficients in \BbbR )
of the flow, rather than directly optimizing the flow itself.

Euler's formula implies that a simple n-vertex graph embedded on a surface of
genus O(n) has O(n) edges. The fastest known combinatorial maximum-flow algo-
rithm for sparse graphs, due to Orlin [102], runs in O(n2/ logn) time. The fastest
algorithms known for sparse graphs with small integer capacities, due to Goldberg and
Rao [60] and Lee and Sidford [90], run in time O(n3/2 polylog (n,U)), where U is an
upper bound on the integer edge weights. M \lhook adry [93] describes a faster algorithm for
unit capacity graphs that runs in O(n10/7 polylog n) time when the graph is sparse.

The fastest algorithm known to compute global minimum cuts in arbitrary
weighted undirected graphs is a Monte Carlo randomized algorithm of Karger [81],
which runs in O(m log3 n) time but fails with small probability. A more recent deter-
ministic algorithm of Henzinger, Rao, and Wang [72], based on breakthrough tech-
niques of Kawarabayashi and Thorup [82, 83], computes global minimum cuts in un-
weighted graphs in O(m log2 n log2 logn) time. The fastest deterministic algorithms
known for global minimum cuts in arbitrary weighted graphs run in O(nm+n2 logn)
time for undirected graphs [57, 101, 113] and in O(mn log(n2/m)) time for directed
graphs [67].

For further background on maximum flows, minimum cuts, and related problems,
we refer the reader to monographs by Ahuja, Magnanti, and Orlin [2] and Schrijver
[110].

Optimal homology representatives. Homology is a topological notion of
equivalence with nice algebraic properties. Two subgraphs of a surface graph G
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160 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

are homologous, or in the same homology class, if their difference is the sum of face
boundaries, where summation is defined over some coefficient ring. Our minimum-cut
algorithms all reduce to the problem of finding a subgraph of minimum weight in a
given homology class (over the ring \BbbZ 2). Several authors have considered variants of
this problem, which is often called homology localization.

Most interesting variants of homology localization are NP-hard. Chambers et al.
[25] prove that finding the shortest splitting cycle is NP-hard; a cycle is splitting if it
is non-self-crossing, non-contractible, and null-homologous. A simple modification of
their reduction (from Hamiltonian cycle in planar grid graphs) implies that finding
the shortest simple cycle in a given homology class is NP-hard. Chen and Freedman
[30, 31] proved a similar hardness result for general simplicial complexes; however,
the complexes output by their reduction are never manifolds. Recently, Grochaw
and Tucker-Foltz [63] proved that homology localization in surface graphs, over a
sufficiently large finite coefficient ring, is equivalent to Unique Games; in particular,
there is no PTAS for any finite coefficient ring unless the Unique Games Conjecture
is false.

On the other hand, for homology with real or integer coefficients, homology local-
ization in surface graphs is equivalent (via duality) to a minimum-cost flow problem
and hence can be solved in polynomial time [28, 114]. Chambers, Erickson, and Nayy-
eri [28] describe an algorithm to find optimal circulations in a given homology class
in near-linear time, given a graph with integer coefficients on an orientable surface of
fixed genus. Sullivan [114] and Dey, Hirani, and Krishnamoorthy [38] prove similar
results for higher-dimensional orientable manifolds.

1.2. New results and organization. In section 3, we describe two techniques
to preprocess a graph on a surface with boundary, so that the homology class of any
subgraph can be computed quickly. These are both natural generalizations of known
methods for measuring homology in surfaces without boundary based on tree-cotree
decompositions [25, 45, 51]. In particular, we describe how to construct a system of
arcs---a collection of O(g + b) boundary-to-boundary paths that cut the surface into
a disk---in O((g+b)n) time. This generalization is essential for our algorithms, as our
dual homology characterization of minimum (s, t)-cuts removes the dual faces s\ast and
t\ast , leaving a surface with two boundary components.

Intuitively, the homology class of any cycle is determined by its pattern of cross-
ings with any system of arcs, and the homology class of more complicated subgraphs
can be computed by decomposing them into cycles. However, there are several subtle
issues that must be resolved to formalize and apply this intuition. First, it is unclear
how to modify the topological definition of ``crossing"" as transverse intersection to
apply in our combinatorial setting, because the arcs in a system may share edges
with each other and with the even subgraphs whose homology we want to measure.
Second, even when crossings are well defined, there is more than one way to extract
homology from the crossing pattern.

The first way we resolve these issues is by perturbing the system of arcs within a
small neighborhood of the input graph. Specifically, we replace the vertices and edges
of the input graph with small disks and ribbons and perturb cycles and arcs within the
resulting structure, which we call a ribbon graph [42, 89, 91]. We also perturb any cycle
whose homology we want to measure within the ribbon graph so that it intersects the
perturbed arcs transversely. Finally, the homology of a perturbed cycle is determined
by the sequence of perturbed arcs that it crosses. See sections 2.4 and 3.1.

We then use this formulation in section 4 to develop our first algorithm to compute
minimum-weight subgraphs in a given homology class. Our algorithm first computes a
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MINIMUM CUTS IN SURFACE GRAPHS 161

greedy system of arcs; each arc in this system consists of two shortest paths in the input
graph. Using an exchange argument, we prove that the minimum-weight subgraph
in any homology class crosses each arc in the greedy system at most O(g + b) times.
Our algorithm enumerates all possible sequences of crossings consistent with this
upper bound and finds the shortest subgraph consistent with each crossing sequence
by reducing to a planar minimum-cut problem. The resulting algorithm runs in
(g + b)O(g+b)n log logn time.

The second way we resolve crossing subtleties is to build our system of arcs in the
dual graph G\ast ; cycles in G intersect these dual arcs only transversely. To avoid the
need for perturbing the dual arcs apart, we show that the homology of a cycle in G
is determined by the number of times it crosses each of the dual arcs in the system.
See section 3.3.

We use this dual formulation in our second algorithm to compute minimum-
weight homologous subgraphs in section 5. Our algorithm computes the shortest
cycle in every homology class, by constructing and searching a certain covering space
of the surface that we call the \BbbZ 2-homology cover , using an extension [48] of the
multiple-source shortest-path algorithm of Cabello, Chambers, and Erickson [20]. We
then assemble the minimum-weight even subgraph in any desired homology class from
these \BbbZ 2-minimal cycles using dynamic programming. The resulting algorithm runs
in 2O(g+b)n logn time. Our second algorithm is simpler, and its running time has
better (but still exponential) dependence on the topological parameters g and b, but
at the expense of slightly worse dependence on n.

In section 6, we prove that finding a minimum-weight even subgraph in a given ho-
mology class is NP-hard, which implies that our algorithms' exponential dependence
on g is almost certainly unavoidable. Unlike Chen and Freedman [32], our reduction
is done on a 2-manifold, and unlike Chambers et al. [25], our target subgraph does
not need to be a simple cycle.

Finally, in section 7, we describe our algorithms for computing global mini-
mum cuts. Both algorithms ultimately reduce computing a global minimum cut
to 2O(g) instances of computing minimum (s, t)-cuts; thus, our algorithms have the
same asymptotic running times as the minimum (s, t)-cut algorithms from sections
4 and 5.

We note with some amusement that our algorithms solve a problem with a well-
known polynomial-time solution by reducing it to an exponential number (in g) of
instances of an NP-hard (but fixed-parameter tractable) problem! The authors of this
paper are divided on whether to conjecture that minimum cuts in surface graphs can
be computed in time O(gcn polylog n) for some small constant c, or that the problem
is ``fixed-parameter quadratic"" with respect to genus, just as diameter and radius
are fixed-parameter quadratic with respect to treewidth [1]. Fomin et al. [54] raise
similar questions about the fixed-parameter efficiency of flows and cuts with respect
to treewidth.

2. Notation and terminology. We begin by recalling several useful definitions
related to surface-embedded graphs. For further background, we refer the reader to
Gross and Tucker [65] or Mohar and Thomassen [98] for topological graph theory, and
to Hatcher [71] or Stillwell [112] for surface topology and homology.

2.1. Surfaces and curves. A surface (more formally, a 2-manifold with bound-
ary) is a compact Hausdorff space in which every point has an open neighborhood
homeomorphic to either the plane \BbbR 2 or a closed half-plane \{ (x, y) \in \BbbR 2 | x\geq 0\} . The
points with half-plane neighborhoods make up the boundary of the surface; every
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162 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

component of the boundary is homeomorphic to a circle. A surface is non-orientable
if it contains a subset homeomorphic to the M\"obius band, and orientable otherwise.
In this paper, we consider only compact and connected surfaces.

A path in a surface \Sigma is a continuous function p : [0,1] \rightarrow \Sigma . A loop is a path
whose endpoints p(0) and p(1) coincide; we refer to this common endpoint as the
basepoint of the loop. An arc is a path whose endpoints lie on the boundary of
\Sigma , but that is otherwise disjoint from the boundary of \Sigma . A cycle is a continuous
function \gamma : S1 \rightarrow \Sigma ; the only difference between a cycle and a loop is that a loop has
a distinguished basepoint. We say a loop \ell and a cycle \gamma are equivalent if, for some
real number \delta , we have \ell (t) = \gamma (t + \delta ) for all t\in [0,1]. We collectively refer to paths,
loops, arcs, and cycles as curves. A curve is simple if it is injective, except for the
endpoints of a loop; we usually do not distinguish between simple curves and their
images in \Sigma . A simple curve p is separating if \Sigma \setminus p is disconnected.

The reversal rev(p) of a path p is defined by setting rev(p)(t) = p(1  - t). The
concatenation p \cdot q of two paths p and q with p(1) = q(0) is the path created by
setting (p \cdot q)(t) = p(2t) for all t\leq 1/2 and (p \cdot q)(t) = q(2t - 1) for all t\geq 1/2.

The genus of a surface \Sigma is the maximum number of disjoint simple cycles
in \Sigma whose complement is connected. Up to homeomorphism, there is exactly one
orientable surface with any genus g\geq 0 and any number of boundary cycles b\geq 0, and
exactly one non-orientable surface with any positive genus g > 0 and any number of
boundary cycles b\geq 0. The Euler characteristic \bfitchi of a surface with genus g and b
boundary components is 2 - 2g - b if the surface is orientable, and 2 - g - b otherwise.

2.2. Graph embeddings. An embedding of an undirected graph G = (V,E)
on a surface \Sigma is an injective continuous function from G to \Sigma ; in particular, an
embedding maps vertices of G to distinct points in \Sigma and edges of G to simple,
interior-disjoint paths in \Sigma that intersect vertices only at their endpoints. The faces
of the embedding are maximal connected subsets of \Sigma that are disjoint from the image
of the graph. We may denote an edge uv \in E as f | g if it is incident to faces f and
g. An embedding is cellular if each of its faces is homeomorphic to the plane; in
particular, in any cellular embedding, each component of the boundary of \Sigma must be
covered by a cycle of edges in G.

We also refer to the complex of vertices, edges, and faces induced by a cellular
embedding as a combinatorial surface . Every combinatorial surface with bound-
ary can be obtained from a combinatorial surface without boundary by deleting the
interiors of one or more faces. See Kettner [84] for an overview and comparison of
several standard data structures for combinatorial surfaces.

Euler's formula implies that any cellularly embedded graph with n vertices, m
edges, and f faces lies on a surface with Euler characteristic \bfitchi = \bfitn  - \bfitm + \bfitf , which
implies that m = O(n + g) and f = O(n + g) if the graph is simple. To simplify
our presentation, we implicitly assume throughout the paper that g = O(logn), since
otherwise our minimum-cut algorithms are slower than textbook maximum-flow al-
gorithms. This assumption implies that the overall complexity of an embedding is
O(n).

We redundantly use the term arc to refer to a walk in the graph whose endpoints
are boundary vertices but that is otherwise disjoint from the boundary. Likewise, we
use the term cycle to refer to a closed walk in the graph. Note that arcs and cycles
may traverse the same vertex or edge more than once.

2.3. Duality. Any undirected graph G embedded on a surface \Sigma without bound-
ary has a dual graph G\ast , which has a vertex f\ast for each face f of G, and an edge e\ast 
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f g

u

v

u*

v*

f* g*

Fig. 2.1. Graph duality. One edge uv and its dual (uv)\ast = f\ast g\ast are emphasized.

Fig. 2.2. A cellularly embedded graph G (solid lines) on a pair of pants (the surface of genus 0
with three boundaries), and its dual graph G\ast (dashed lines). Dual boundary vertices are indicated
by squares.

for each edge e in G joining the vertices dual to the faces of G that e separates. The
dual graph G\ast has a natural cellular embedding in \Sigma , whose faces correspond to the
vertices of G. See Figure 2.1.

Any undirected graph G embedded on a surface \Sigma with boundary has a dual
graph G\ast , defined as follows.1 The dual graph G\ast has a vertex f\ast for each face f of G,
including the boundary cycles, and an edge e\ast for each edge e in G (including boundary
edges) joining the vertices dual to the faces that e separates. For each boundary cycle
\delta of G, we refer to the corresponding vertex \delta \ast of G\ast as a dual boundary vertex .
The dual graph G\ast has a natural cellular embedding in the surface \Sigma \bullet obtained from
\Sigma by gluing a disk to each boundary cycle; each face of this embedding corresponds
to a vertex of G. See Figure 2.2. (Duality can be extended to directed graphs [28],
but our results do not require this extension.)

For any subgraph F = (U,D) of G = (V,E), we write \bfitG \setminus \bfitF to denote the edge-
complement (V,E \setminus D). Also, when the graph G is fixed, we abuse notation by writing
F \ast to denote the subgraph of G\ast corresponding to a subgraph F of G; each edge in F \ast 

is the dual of a unique edge in F . In particular, we have the identity (G\setminus F )\ast = G\ast \setminus F \ast .
Further, we may sometimes use D to refer to an edge set or the subgraph F = (V,D),
but it should be clear which we mean from the context.

2.4. Perturbations and crossings. Our algorithms manipulate cycles and arcs
in combinatorial surfaces that can share or repeat graph vertices and edges, but that
can be perturbed on the surface to avoid self-intersections and other degeneracies. To
accommodate these perturbations, we represent our combinatorial surfaces as ribbon

1Our definition differs slightly from the one proposed by Colin de Verdi\`ere and Erickson [35].
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164 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

Fig. 2.3. Left: A cycle and an arc that share an edge in G. Right: A close-up on the ribbon
graph G\square , with a ribbon perturbation of the cycle and the arc that cross inside a vertex region.

graphs [42, 89]. Ribbon graphs are also known as band decompositions [42] and fat
graphs [89], and they are closely related to the graph-encoded map data structure
[91] for representing both orientable and non-orientable combinatorial surfaces. In-
tuitively, ribbon graphs allow us to represent multiple traversals of the same edge as
parallel paths in a narrow ribbon around that edge. Our ribbon-graph representation
is (roughly) equivalent to the cross-metric surface representation used in several other
papers [25, 34, 36]; however, the cross-metric surface representation is somewhat awk-
ward to work with on surfaces with boundary, which is our main setting. We note
that our use of ribbon graphs closely resembles the ``side information"" maintained by
Kutz's algorithm [87, section 4.1], which will be a key ingredient in section 4.

The ribbon graph G\square of an embedded graph G is constructed by expanding each
vertex v of G into a closed disk v\square called a vertex region, and expanding each edge e
of G into a narrow rectangle e\square called an edge ribbon. For any vertex v and edge e,
the intersection v\square \cap e\square is a simple path on the boundary of both regions if v is an
endpoint of e; otherwise, the vertex regions and edge ribbons are pairwise disjoint.
Each face f of the original embedding G (including any faces deleted to create surface
boundaries) contains exactly one component of \Sigma \setminus G\square ; we call this component the
face region f\square . See Figure 2.3.

Any finite collection C of cycles and arcs in a combinatorial surface, each repre-
sented as a walk in the underlying graph G, can be continuously deformed into general
position within the ribbon graph G\square , so that all (self-)intersections are transverse and
occur only within vertex regions. (Formally, this perturbation is a homotopy within
G\square ; see section 2.6 below.) In particular, each deformed curve visits the vertex re-
gions and edge ribbons in G\square in the same order that the original curve visits the
corresponding vertices and edges of G.

The intersection of each perturbed curve with any vertex region v\square consists of
simple boundary-to-boundary paths in v\square . In particular, any arc that ends at vertex
v on a boundary face f is perturbed into an arc in G\square that ends at the boundary
segment v\square \cap f\square . We also require minimal intersection within vertex regions, so any
two boundary-to-boundary paths within the same vertex region intersect at most once.
We refer to any deformation of C that meets these criteria as a ribbon perturbation
of C.

None of the cycles and arcs we consider in this paper contain spurs---subpaths
that traverse an edge followed immediately by its reversal. Thus, the intersection of
the perturbed cycles and arcs and any edge ribbon is a collection of disjoint paths
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MINIMUM CUTS IN SURFACE GRAPHS 165

that traverse the ribbon from one end to the other. Thus, to represent any ribbon
perturbation of C, it suffices to record the following information:

\bullet the alternating sequence of vertices and edges traversed by each cycle in C;
\bullet the starting boundary face, alternating sequence of vertices and edges, and

ending boundary face of each arc in C;
\bullet the ordering of perturbed curve segments traversing each ribbon e\square ; and
\bullet the cyclic order of intersections of the perturbed curves with the boundary

of each vertex region v\square .
An arc or cycle in a combinatorial surface is weakly simple if it can be perturbed

into a simple path or cycle in the ribbon graph; algorithms to detect if a cycle is weakly
simple have been studied extensively of late, both in the plane and on orientable or
non-orientable surfaces [3, 29]. Similarly, an arc or cycle \alpha and another arc or cycle
\beta are non-crossing if they have disjoint perturbations within the ribbon graph;
otherwise, we say that \alpha crosses \beta . More generally, we say that a collection C of
cycles and arcs is non-crossing if there is a single ribbon perturbation of C in which
all perturbed curves are pairwise disjoint.

2.5. Even subgraphs and cycle decompositions. An even subgraph is a
subgraph of G in which every node has even degree, or equivalently, the symmetric
difference of cycles. A cycle decomposition of an even subgraph H is a set of
edge-disjoint, non-crossing, weakly simple cycles whose union is H.

Lemma 2.1. Every even subgraph of an embedded graph has a cycle decomposi-
tion.

Proof. Let H be an even subgraph of G. We can decompose H into cycles by
specifying, at each vertex v, which pairs of incident edges of H are consecutive. Any
pairing that does not create a crossing at v is sufficient. For example, if e1, e2, . . . , e2d
are the edges of H incident to v, indexed in clockwise order around v, we could pair
edges e2i - 1 and e2i for each i.

We emphasize that each cycle in a cycle decomposition may visit vertices multiple
times; indeed, some even subgraphs of G cannot be decomposed into strictly simple
cycles in G.

Slicing a combinatorial surface along a cycle or arc modifies both the surface and
the embedded graph. For any combinatorial surface S = (\Sigma ,G) and any simple cycle
or arc \gamma in G, we define a new combinatorial surface \bfitS \setminus \setminus \bfitgamma by taking the topological
closure of \Sigma \setminus \gamma as the new underlying surface; the new embedded graph contains two
copies of each vertex and edge of \gamma , each bordering a new boundary. We can also slice
along any weakly simple arc or cycle \gamma by considering any simple ribbon perturbation
\~\gamma of \gamma . In particular, \~\gamma partitions the vertex regions and edge ribbons of G\square into the
vertex regions and edge ribbons of the ribbon graph of \bfitS \setminus \setminus \bfitgamma . Our representation of
ribbon perturbations allows us to compute this new ribbon graph in time proportional
to the combinatorial length of \gamma .

We define the projection of a curve in S\setminus \setminus \gamma as the natural mapping of points (or
vertices and edges) to S.

2.6. Homotopy and homology. Two paths p and q in \Sigma are homotopic if one
can be continuously deformed into the other without changing their endpoints. More
formally, a homotopy between p and q is a continuous map h : [0,1] \times [0,1] \rightarrow \Sigma such
that h(0, \cdot ) = p, h(1, \cdot ) = q, h(\cdot ,0) = p(0) = q(0), and h(\cdot ,1) = p(1) = q(1). Homotopy
defines an equivalence relation over the set of paths with any fixed pair of endpoints.
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166 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

Fig. 2.4. Homologous pairs of cycles that are not homotopic. (Lighter portions of the curves
are on the back side of the surface.)

Fig. 2.5. Each cycle is homologous to the union of the other two.

Similarly, two cycles \alpha and \beta in \Sigma are freely homotopic if one can be contin-
uously deformed into the other. More formally, a free homotopy between \alpha and \beta 
is a continuous map h : [0,1] \times S1 \rightarrow \Sigma such that h(0, \cdot ) = \alpha and h(1, \cdot ) = \beta . Free
homotopy defines an equivalence relation over the set of cycles in \Sigma . We omit the
word ``free"" when it is clear from the context.

A cycle is contractible if it is homotopic to a constant map. Given a weight
function on the edges of G, we say a path or cycle is tight if it has minimum total
weight (counting edges with multiplicity) for its homotopy class.

Homology is a coarser equivalence relation than homotopy, with nicer algebraic
properties. Like several earlier papers [30, 31, 39, 40, 47, 56], we will consider only one-
dimensional cellular homology with coefficients in the finite field \BbbZ 2; this restriction
allows us to radically simplify our definitions. Fix a cellular embedding of an undi-
rected graph G on a surface with genus g and b boundaries. A boundary subgraph
is the boundary of the union of a subset of faces of G; for example, on a surface with
no boundary, every separating cycle is a boundary subgraph. Two even subgraphs
are homologous, or in the same homology class, if their symmetric difference is
a boundary subgraph. Boundary subgraphs are also called null-homologous. Any
two homotopic cycles are homologous, but homologous cycles are not necessarily ho-
motopic; see Figure 2.4. Moreover, the homology class of a cycle can contain even
subgraphs that are not cycles; see Figure 2.5. We call an even subgraph \BbbZ 2-minimal
if it is the minimum-weight subgraph in its homology class.

Homology classes define a vector space \BbbZ \beta 
2 , called the first homology group, whose

rank \beta is called the first Betti number . The first Betti number \beta of any surface
is related to its Euler characteristic \chi as follows: \beta = 2  - \chi if the surface has no
boundary, and \beta = 1  - \chi otherwise. Equivalently, we have \beta = 2g for orientable
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MINIMUM CUTS IN SURFACE GRAPHS 167

surfaces without boundary, \beta = 2g+b - 1 for orientable surfaces with boundary, \beta = g
for non-orientable surfaces without boundary, and \beta = g  - b + 1 for non-orientable
surfaces with boundary.

2.7. Duality between cuts and even subgraphs. A crucial component of our
minimum (s, t)-cut algorithms is an equivalence between (s, t)-cuts and even subgraphs
of the dual graph contained in a particular homology class. This equivalence was first
observed in planar graphs by Whitney [119] and was later used to compute minimum
cuts in planar graphs by Itai and Shiloach [77]. We formalize the same equivalence
on surface graphs in the following lemma.

Lemma 2.2. Let G be an edge-weighted graph embedded on a surface \Sigma without
boundary, and let s and t be vertices of G. A subgraph X is an (s, t)-cut in G if
and only if X\ast is an even subgraph of G\ast homologous with the boundary of s\ast in the
surface \Sigma \setminus (s\ast \cup t\ast ). In particular, X is a minimum-weight (s, t)-cut in G if and only
if X\ast is a minimum-weight even subgraph of G\ast homologous with the boundary of s\ast 

in \Sigma \setminus (s\ast \cup t\ast ).

Proof. Let \partial s\ast denote the boundary of s\ast , and let \Sigma \prime denote the surface \Sigma \setminus 
(s\ast \cup t\ast ).

Let X be an arbitrary (s, t)-cut in G. By definition, there is a non-trivial partition
V = S \cup T , such that s \in S and t \in T , where X is the set of edges crossing S and T .
Thus, the dual subgraph X\ast partitions the faces of G\ast into two disjoint (possibly non-
connected) subsets, S\ast and T \ast , respectively containing faces s\ast and t\ast . In particular,
X\ast is the boundary of the union of the faces in S\ast , which implies that X\ast is null-
homologous in \Sigma . The symmetric difference X\ast \oplus \partial s\ast is the boundary of the union of
S\ast \setminus \{ s\ast \} , which is a subset of the faces of \Sigma \prime . Thus, X\ast \oplus \partial s\ast is null-homologous in
\Sigma \prime . We conclude that X\ast and \partial s\ast are homologous in \Sigma \prime .

Conversely, let X\ast be an arbitrary even subgraph of G\ast homologous to \partial s\ast in \Sigma \prime .
The subgraph X\ast \oplus \partial s\ast is null-homologous in \Sigma \prime . This immediately implies that X\ast 

is null-homologous in \Sigma ; moreover, faces s\ast and t\ast are on opposite sides of X\ast . Any
path from s to t in the original graph G must traverse at least one edge of X. We
conclude that X is an (s, t)-cut.

3. Characterizing homology. Throughout the paper, we fix an undirected
graph G = (V,E), a positive weight function w : E \rightarrow \BbbR , and a cellular embedding of
G on a (possibly non-orientable) surface \Sigma of genus g with b boundary cycles. Except
where explicitly indicated otherwise, we assume without loss of generality that b > 0;
otherwise, we can remove an arbitrary face of G from \Sigma without affecting its homology
at all. Let \delta 1, . . . , \delta b denote the boundary cycles of \Sigma , and let \beta denote the first Betti
number of \Sigma . Recall that \beta = 2g+ b - 1 if \Sigma is orientable and \beta = g+ b - 1 otherwise.

In this section, we describe two standard methods for preprocessing a combinato-
rial surface with boundary in O(\beta n) time, so that the \BbbZ 2-homology class of any even
subgraph H can be computed in O(\beta ) time per edge. These are both straightfor-
ward generalizations of standard methods for measuring homology in surfaces without
boundary based on tree-cotree decompositions [25, 45, 51]. Tree-cotree decompo-
sitions were formalized by Eppstein [45] to compute homology generators, although
they were studied earlier by other authors [7, 107, 115]. We give these full details here
for completeness, and because as far as we are aware, no detailed description appears
elsewhere in the literature for the first method. We note that a preliminary version
of the current work [50] was the first detailed description of the second method; see
also Borradaile et al. [9] for an alternative description of the second method.
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168 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

Fig. 3.1. Left: A forest-cotree decomposition of the graph in Figure 2.2; thick doubled lines
indicate edges in L. Right: The resulting system of arcs. Compare with Figure 3.4.

Both of the methods we will describe characterize the homology class of any even
subgraph H using a vector of \beta bits. The vectors are computed using one of two
natural generalizations of tree-cotree decompositions to surfaces with boundary. In
the first method, the vector is based on the crossings between a cycle decomposition
of H and a set of \beta primal arcs. By carefully selecting these arcs, we can bound
the number of times any \BbbZ 2-minimal even subgraph can cross any of these arcs; this
bound is necessary for the algorithm given in section 4. In the second method, the
vector is based on the crossings between H and a set of \beta dual arcs. The second
method is somewhat easier to describe and implement than the first, so we use the
second method in the algorithm given in section 5.

3.1. Forest-cotree decompositions. The first method begins by computing a
set A of \beta arcs, each of which is the concatenation of two shortest paths in G plus
a single edge. Following previous papers [25, 33, 35], we construct a greedy system
of arcs using a variant of Erickson and Whittlesey's algorithm to construct optimal
systems of loops [51]. Our algorithm uses a natural generalization of tree-cotree
decompositions [45] to surfaces with boundary.

A forest-cotree decomposition (see Figure 3.1) of a combinatorial surface S =
(\Sigma ,G) is any partition (\partial G,F,L,C) of the edges of G into four edge-disjoint subgraphs
with the following properties:

\bullet \partial G is the set of all boundary edges of G.
\bullet F is a spanning forest of G, that is, an acyclic subgraph of G that contains

every vertex.
\bullet Each component of F contains a single boundary vertex.
\bullet C\ast is a spanning tree of G\ast \setminus (\partial G)\ast , that is, a subtree of G\ast that contains

every vertex except the dual boundary vertices \delta \ast i .
\bullet Finally, L is the set of leftover edges E \setminus (\partial G\cup F \cup C\ast )

Lemma 3.1. In any forest-cotree decomposition (\partial G,F,L,C) of any combinatorial
surface with boundary and with first Betti number \beta , the set L contains exactly \beta edges.

Proof. Recall that n, m, and f respectively denote the number of vertices, edges,
and faces of G. Let d1, . . . , db be the number of edges on the boundary components. We
immediately have | \partial G| =

\sum 
i di. Because our boundary cycles are disjoint, contracting

each boundary cycle to a single vertex transforms F into a spanning forest of G/\partial G
with b components. It follows that | F | = (n  - 

\sum 
i (di  - 1))  - b. Finally, C\ast is a
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MINIMUM CUTS IN SURFACE GRAPHS 169

spanning tree of the dual graph, so it has f  - 1 edges. As (\partial G,F,L,C) is a partition
of the edges, we have

m = | \partial G| + | F | + | C| + | L| 

=
\sum 
i

di +
\Bigl( 
n - 

\sum 
i

(di  - 1)
\Bigr) 
 - b + f  - 1 + | L| 

= n + f  - 1 + | L| .

We conclude that | L| = m - n - f + 1 = 1  - \chi = \beta .

Fix a forest-cotree decomposition (\partial G,F,L,C), and arbitrarily index L =
\{ e1, e2, . . . , e\beta \} . For each edge ei \in L, the subgraph F \cup \{ ei\} contains a single non-
trivial arc ai, which is either a simple path between distinct boundary cycles or a
non-trivial walk from a boundary cycle back to itself; in the second case, ai may tra-
verse some edges of F twice. We refer to the collection \{ a1, a2, . . . , a\beta \} as a system
of arcs. See Figure 3.1.

Lemma 3.2. The arcs a1, a2, . . . , a\beta are weakly simple and weakly disjoint.

Proof. Each arc ai consists of an edge in L plus two (possibly overlapping) paths
in F . We know the edges from L are disjoint and paths in the forest are simple, so it
suffices to describe a consistent way to perturb forest paths apart. We use an Euler
tour on each component of F to define consistent perturbations, as follows. For each
edge ei in L, we subdivide ei into a path of length 3 and add the first and third
edges on that path to the forest F , yielding a new augmented forest F \prime . Root each
component of F \prime at its (unique) boundary vertex. We then compute an Euler tour for
each component of F \prime , which for each tree in F \prime gives a total ordering of the leaves
based on when they are encountered in the tour. We can then perturb all root-to-leaf
paths in each component of F \prime to become disjoint, where the order of the paths out
of the root is the same as the total ordering of the leaves in the Euler tour. Adding
the middle thirds of the edges from L to these disjoint paths gives us a perturbation
of a1, a2, . . . , a\beta into disjoint simple arcs.

Lemma 3.3. Slicing along the arcs a1, a2, . . . , a\beta transforms \Sigma into a topological
disk.

Proof. Let \{ \~a1, \~a2, . . . , \~a\beta \} be any ribbon perturbation of the arcs a1, a2, . . . , a\beta ,
such that the arcs \~ai are simple and pairwise disjoint. Lemma 3.2 implies that such a
perturbation exists. Slicing along any perturbed arc \~ai increases the Euler character-
istic of the surface by 1. Because the perturbed arcs \~ai are simple and disjoint, slicing
along all \beta perturbed arcs increases the Euler characteristic to 1. If the resulting
sliced surface were disconnected, then the faces of G incident to some edge in L would
lie in different components, but this is impossible, because all faces are connected in
the sliced surface via the cotree C\ast . We conclude that the sliced surface is connected
and has Euler characteristic 1, so it must be a disk.

We can easily construct an arbitrary forest-cotree decomposition, and thus an
arbitrary system of arcs, in O(n) time using whatever-first search, but our algorithms
require a decomposition with a particular forest F and a particular dual spanning
tree C\ast . Let G/\partial G denote the graph obtained from G by contracting the entire
subgraph \partial G---both vertices and edges---to a single vertex x. Using the algorithm
of Henzinger et al. [73] with Aleksandrov and Djidjev's linear-time algorithm for
partitioning embedded graphs [4], we compute the single-source shortest-path tree T
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170 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

in G/\partial G rooted at x in O(n) time.2 Let F be the subgraph of G corresponding to T .
Each component of F is a tree of shortest paths from a boundary vertex to a subset
of the non-boundary vertices of G.

Now for each edge e that is not in the forest F or the boundary subgraph \partial G,
let \ell (e) denote the length of the unique arc in the subgraph F \cup \{ e\} . We can easily
compute \ell (e) for each non-forest edge e in O(n) time. Finally, let C\ast denote the
maximum spanning tree of G\ast \setminus (F \cup \partial G)\ast with respect to the arc lengths \ell (e).

For each edge ei \in L, let \sigma i and \tau i denote the unique directed paths in F from
the boundary of G to the endpoints of ei, and let P := \{ \sigma 1, . . . , \sigma \beta , \tau 1, . . . , \tau \beta \} . By
construction of F , every element of P is a (possibly empty) shortest path. For each
index i, let ai = \sigma i \cdot ei \cdot rev(\tau i). The greedy system of arcs is the set A :=
\{ a1, a2, . . . , a\beta \} .

Exchange arguments by Erickson and Whittlesey [51] and Colin de Verdi\`ere [33]
imply that every arc in the greedy system is tight, and moreover that the greedy
system of arcs has minimum total length among all systems of arcs.3

3.2. Crossing parity vectors. Fix a system of arcs a1, a2, . . . , a\beta . In this sec-
tion we define the crossing parity vector of any even subgraph H, with respect to
the fixed system of arcs, and prove that this vector characterizes the homology class
of H. Intuitively, the crossing parity vector is a vector of \beta bits, whose ith bit is
equal to 1 if and only if H crosses arc ai an odd number of times. However, some
care is required to ensure that this intuitive notion is actually consistent. Rather
than working directly with H, we formally define the crossing parity vector of an ar-
bitrary ribbon perturbation of an arbitrary cycle decomposition of H, and then argue
that the resulting bit vector is the same for any cycle decomposition and any ribbon
perturbation thereof.

First, fix a single cycle \gamma in G and an index i. Let \~\gamma and \~ai be any ribbon
perturbation of the cycle \gamma and the arc ai, as defined in section 2.4. By definition, all
intersections between \~\gamma and \~ai are transverse crossings within vertex regions of the
ribbon graph G\square , and each vertex region v\square contains at most one such crossing. We
define the crossing parity \=xi(\gamma ) to be 1 if \~\gamma intersects ai an odd number of times, and
0 otherwise.

Consider two ribbon perturbations \{ \~\gamma , \~ai\} and \{ \~\gamma \prime , \~a\prime i\} . These two pairs of curves
are homotopic in G\square ; that is, the pair of curves \~\gamma and \~ai can be continuously de-
formed to the pair of curves \~\gamma \prime and \~a\prime i within the ribbon graph. Classical topological
arguments [5, 6, 105] imply that any homotopy between (pairs of) curves can be
decomposed into a finite sequence of elementary homotopy moves, of three different
types, as shown in Figure 3.2. Straightforward case analysis implies that any homo-
topy move preserves the parity of the number of crossings between the two deforming
curves. It follows that the crossing parity \=xi(\gamma ) is independent of the choice of ribbon
perturbation of \gamma and ai.

Now consider an even subgraph H. We define the crossing parity \=xi(H) as the
sum of the crossing parities of the cycles in any cycle decomposition of H. Again,
we claim that this bit is independent of the choice of cycle decomposition. Consider

2This running time requires that g = O(n1 - \varepsilon ) for some constant \varepsilon > 0. But recall that we
are assuming g = o(logn), since otherwise our minimum-cut algorithms are slower than textbook
algorithms for arbitrary graphs.

3Specifically, Colin de Verdi\`ere's argument implies that the greedy system of arcs is a minimum-
length basis in G for the first relative homology group H1(\Sigma , \partial \Sigma ) [33, section 3]. Thus, each arc in
the greedy system is as short as possible in its relative homology class.
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Fig. 3.2. Homotopy moves.

Fig. 3.3. Local view of ribbon perturbations of two cycle decompositions of the same even
subgraph, and their symmetric difference. The doubled lines describe a perturbation of a single
weakly simple arc ai.

two cycle decompositions \gamma 1, . . . , \gamma k and \delta 1, . . . , \delta l of H. Because the cycles in both
decompositions traverse the same subset of edges, there are ribbon perturbations
\{ \~\gamma 1, . . . , \~\gamma k, \~ai\} and \{ \~\delta 1, . . . , \~\delta l, \~ai\} that include identical perturbations \~ai of arc ai
and that have identical intersections with each edge ribbon.

Consider the restriction of these two ribbon perturbations to a single vertex region
v\square , as shown in Figure 3.3. The intersections \~\gamma i \cap v\square are simple, pairwise-disjoint,
boundary-to-boundary paths in v\square . The intersections \~\delta i\cap v\square are also simple, pairwise-
disjoint, boundary-to-boundary paths in v\square . Moreover, these two sets of paths share
identical endpoints. It follows that the symmetric difference (

\bigcup 
i
\~\delta i \oplus 

\bigcup 
i \~\gamma i) \cap v\square is

the union of (not necessarily simple) closed curves in v\square . Any simple closed curve in
v\square intersects any arc \~ai an even number of times. It follows that these two ribbon
perturbations either cross \~ai an even number of times or cross \~ai an odd number of
times. We conclude that \=xi(H) is independent of the cycle decomposition of H.

Finally, the crossing parity vector \=x(H) is defined as the vector (\=x1(H), \=x2(H), . . . ,
\=x\beta (H)).

Lemma 3.4. Two even subgraphs are \BbbZ 2-homologous if and only if their crossing
parity vectors (with respect to the same system of arcs) are equal.

Proof. Any arc crosses any facial cycle an even number of times; thus, the crossing
parity vector of a facial cycle is the zero vector. Every boundary subgraph is the
symmetric difference of facial cycles; thus, the crossing parity vector of any boundary
subgraph is also the zero vector. Every pair of even subgraphs H and H \prime satisfies the
identity \=x(H \oplus H \prime ) = \=x(H) \oplus \=x(H \prime ). In particular, if \=x(H \oplus H \prime ) is the zero vector,
then \=x(H) = \=x(H \prime ). We conclude that if two even subgraphs are homologous, then
their crossing parity vectors are equal.

On the other hand, suppose H is an even subgraph such that \=x(H) = 0. We claim
that there is a subset S of faces whose boundary is H. Let \~H\cup \~A be an arbitrary ribbon
perturbation of (a cycle decomposition of) the even subgraph H and the system of
arcs A. By definition, every arc \~ai \in \~A intersects \~H an even number of times.

The perturbed cycles and arcs \~H\cup \~A partition the underlying surface into several
regions. Lemma 3.3 implies that slicing the surface \Sigma \square along the perturbed arcs \~A
yields a topological disk D = \Sigma \square \setminus \setminus \~A. The perturbed cycles in \~H appear as disjoint
cycles and boundary-to-boundary paths in D; it follows that we can consistently color
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172 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

the regions of D red and blue, so that regions that share a boundary curve in \~H have
opposite colors. Because \~H intersects each arc \~ai an even number of times, every
region that contains part of the boundary of the original surface \Sigma has the same
color, without loss of generality red. It follows that any two regions that share a
boundary curve in \~A have the same color.

Every face region in the ribbon graph \Sigma \square is either entirely red or entirely blue, so
we can pull the coloring back to the faces of \Sigma . In the resulting face coloring, the faces
on either side of each edge in H have opposite colors; the faces on either side of an
edge not in H have the same color; and all faces incident to boundary edges are red.
It follows that H is the boundary of the blue faces and is therefore null-homologous.

The identity \=x(H \oplus H \prime ) = \=x(H) \oplus \=x(H \prime ) now implies that if two even subgraphs
have equal crossing parity vectors, they must be homologous.

Lemma 3.5. We can compute the crossing parity vector of any even subgraph,
with respect to any fixed system of arcs, in O(\beta n) time.

Proof. Let a1, . . . , a\beta be the fixed system of arcs. We can compute a cycle decom-
position \gamma 1, . . . , \gamma r of H in O(1) time per edge, by following the proof of Lemma 2.1.
Finally, we can compute the number of crossings between (any ribbon perturbation
of) any cycle \gamma i and any arc aj in time proportional to the number of edges in \gamma i.

3.3. Homology signatures via tree-coforest decompositions. Our second
method associates a vector of \beta bits with each edge e, called the signature of e; the
homology class of any even subgraph is characterized by the bitwise exclusive-or of
the signatures of its edges.

Again, our construction is based on one of two natural generalizations of tree-
cotree decompositions [45] to surfaces with boundary; the other generalization is used
for computing crossing parity vectors as described above. We define a tree-coforest
decomposition of G to be any partition (T,L,F ) of the edges of G into three edge-
disjoint subgraphs with the following properties:

\bullet T is a spanning tree of G.
\bullet F \ast is a spanning forest of G\ast , that is, an acyclic subgraph that contains every

vertex.
\bullet Each component of F \ast contains a single dual boundary vertex.
\bullet Finally, L is the set of leftover edges E \setminus (T \cup F ).

Lemma 3.6. In any tree-coforest decomposition (T,F,L) of any combinatorial
surface with boundary and with first Betti number \beta , the set L contains exactly \beta 
edges.

Proof. Recall that n, m, and f respectively denote the number of vertices, edges,
and faces of G. We immediately have | T | = n - 1 and | F \ast | = f . Because T , F , and L
partition the edges, we conclude that | L| = m - (n - 1) - f = m - n - f+1 = 1 - \chi = \beta .

Arbitrarily index the edges in L as e1, . . . , e\beta . For each edge ei \in L, adding the
corresponding dual edge e\ast i to the forest F \ast creates a dual arc \alpha i, which is either a
simple path between distinct boundary vertices or a non-trivial loop from a boundary
vertex back to itself; in the second case, \alpha i may traverse some edges of F \ast twice. (The
arguments in Lemmas 3.2 and 3.3 imply that the dual arcs \alpha i are weakly simple and
weakly disjoint; however, our algorithms do not use these properties.) We call the set
\{ \alpha 1, \alpha 2, . . . , \alpha \beta \} a system of dual arcs. See Figure 3.4.

Finally, for each edge e in G, we define its signature [\bfite ] to be the \beta -bit vector
whose ith bit is equal to 1 if and only if e crosses \alpha i (that is, if \alpha i traverses the dual
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MINIMUM CUTS IN SURFACE GRAPHS 173

Fig. 3.4. Left: A tree-coforest decomposition of the graph in Figure 2.2; doubled lines indicate
edges in L. Right: The resulting system of dual arcs. Compare with Figure 3.1.

edge e\ast ) an odd number of times. The signature [H] of an even subgraph H is the
bitwise exclusive-or of the signatures of its edges. Similarly, the signature [\gamma ] of a
cycle \gamma is the bitwise exclusive-or of the signatures of the edges that \gamma traverses an
odd number of times.

Let \bfith \oplus \bfith \prime denote the bitwise exclusive-or of two homology signatures h and h\prime ,
or equivalently, their sum as elements of the homology group (\BbbZ 2)\beta . The identities
[H \oplus H \prime ] = [H] \oplus [H \prime ] and [\gamma \cdot \gamma \prime ] = [\gamma ] \oplus [\gamma \prime ] follow directly from the definitions.

Lemma 3.7. We can preprocess G in O(\beta n) time, so that the signature [\gamma ] of any
cycle can be computed in O(\beta ) time per edge.

Proof. A tree-coforest decomposition can be computed in O(n) time as follows.
First construct a graph G\prime by identifying all the dual boundary vertices in G\ast to
a single vertex. Compute a spanning tree of G\prime by whatever-first search; the edges
of this spanning tree define an appropriate dual spanning forest F \ast . Construct the
subgraph G \setminus F and compute a spanning tree T via whatever-first search. Finally, let
L = G \setminus (T \cup F ). With the decomposition in hand, it is straightforward to compute
each path \alpha i in O(n) time and then compute each edge signature in O(\beta ) time.

For each edge ei \in L, let \gamma i denote the fundamental cycle obtained by adding ei
to T .

Lemma 3.8. The set of cycles \{ \gamma 1, . . . , \gamma \beta \} form a basis of the first homology
group; precisely, these cycles lie in linearly independent homology classes that span
the group.

Proof. Consider any non-empty subset \Gamma = \{ \gamma i1 , . . . , \gamma ik\} of these cycles, and let
\gamma i be an arbitrary member of this subset. Dual arc \alpha i crosses the subset exactly once,
at the dual edge e\ast i . Therefore, even subgraph

\bigoplus 
\gamma \in \Gamma \gamma does not bound the union of

a subset of primal faces/dual vertices.

A proof of our next lemma appears in Borradaile et al. [9, Corollary 3.5]. They
cite an earlier version [50] of the current paper for the lemma statement, so we present
a slightly simplified version of their proof for completeness.

Lemma 3.9. An even subgraph H of G is null-homologous in \Sigma if and only if
[H] = 0.

Proof. Let H be an even subgraph of G. Let \Gamma = \{ \gamma i1 , . . . , \gamma ik\} \subseteq \{ \gamma 1, . . . , \gamma \beta \} 
be such that

\bigoplus 
\gamma \in \Gamma \gamma is homologous to H. Then by definition, H \oplus 

\bigoplus 
\gamma \in \Gamma \gamma is the

boundary of the union of a subset Y of faces of G. The boundary of any face f is
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contractible in \Sigma and therefore has signature 0. It follows immediately that [H] =
[
\bigoplus 

\gamma \in \Gamma \gamma ] \oplus [
\bigoplus 

f\in Y \partial f ] = [
\bigoplus 

\gamma \in \Gamma \gamma ] \oplus 
\bigoplus 

f\in Y [\partial f ] = [
\bigoplus 

\gamma \in \Gamma \gamma ]. The ith bit of [
\bigoplus 

\gamma \in \Gamma \gamma ]
is equal to 1 if and only if \gamma i \in \Gamma , because dual arc \alpha i crosses no other member of
\{ \gamma 1, . . . , \gamma \beta \} . Therefore, [H] = 0 if and only if the homologous even subgraph

\bigoplus 
\gamma \in \Gamma \gamma 

is empty.

The following corollaries are now immediate.

Corollary 3.10. Two even subgraphs H and H \prime of G are \BbbZ 2-homologous in \Sigma 
if and only if [H] = [H \prime ].

Corollary 3.11. Two cycles \gamma and \gamma \prime in G are \BbbZ 2-homologous in \Sigma if and only
if [\gamma ] = [\gamma \prime ].

4. Crossing bounds and triangulations. In this section, we describe an al-
gorithm to compute a minimum-weight even subgraph homologous with any specified
even subgraph H in (g + b)O(g+b)n log logn time, when the input graph is embedded
on an orientable surface. In fact, our algorithm can be modified easily to compute a
minimum-weight representative in every homology class in the same asymptotic run-
ning time; there are exactly 22g+b - 1 such classes; recall that we assume a non-empty
boundary. Lemma 2.2 implies our algorithm can be used to find a minimum (s, t)-cut
in G\ast in the same amount of time.

Our algorithm closely resembles the algorithm of Chambers et al. [25] for com-
puting a shortest splitting cycle; in fact, our algorithm is somewhat simpler. Our
algorithm is based on the key observation (Lemma 4.1) that the shortest even sub-
graph in any homology class crosses any shortest path at most O(g + b) times. The
first stage of our algorithm cuts the underlying combinatorial surface into a topolog-
ical disk by a greedy system of arcs, as described in section 3.1. Next, we enumerate
all possible ways for an even subgraph to intersect each of the greedy arcs at most
O(g + b) times; we quickly discard any crossing pattern that does not correspond to
an even subgraph in the desired homology class. Each crossing pattern is realized by
several (free) homotopy classes of sets of non-crossing cycles; we show how to enumer-
ate these homotopy classes in section 4.2. Then within each homotopy class, we find
a minimum-length set of non-crossing cycles with each crossing pattern, essentially
by reducing to a planar instance of the minimum-cut problem. The union of those
cycles is an even subgraph in the desired homology class; we return the lightest such
subgraph as our output.

4.1. Crossing bound. Our main technical lemma for this section establishes
an upper bound on the number of crossings between members of a greedy system of
arcs and the minimum-weight even subgraph in any homology class. Crossing-number
arguments were first used by Cabello and Mohar [23] to develop the first subquadratic
algorithms for shortest non-contractible and non-separating cycles in undirected sur-
face embedded graphs; their arguments are the foundation of all later improvements
of their algorithm [18, 20, 87]. Our proof is quite similar to the argument of Cham-
bers et al. [25] that some shortest splitting cycle crosses any shortest path O(g + b)
times. However, our new proof is somewhat different because we work explicitly with
ribbon perturbations, and the structure we seek is a true subgraph, which need not
be connected, rather than a single weakly simple closed walk.

As mentioned in section 3.1, we cannot consistently define when a shortest path
crosses a \BbbZ 2-minimal even subgraph. Instead, we upper-bound the smallest possible
number of crossings between an entire arc in the greedy system and a ribbon perturba-
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tion of a cycle decomposition of a \BbbZ 2-minimal even subgraph in each homology class.
We emphasize that different cycle decompositions and different ribbon decompositions
of the same even subgraph can have different numbers of crossings with the same arc.

Lemma 4.1. Let G be an undirected graph with positively weighted edges, embed-
ded on a surface with genus g and b > 0 boundary components. Let A = \{ a1, a2, . . . , a\beta \} 
be a greedy system of arcs. Let H be an even subgraph of G. There is a \BbbZ 2-minimal
even subgraph H \prime homologous to H, a cycle decomposition \{ \gamma 1, . . . , \gamma r\} of H \prime , and a
ribbon perturbation \{ \~a1, . . . , \~a\beta , \~\gamma 1, . . . , \~\gamma r\} , such that for each index i, the total num-
ber of crossings between the perturbed arc \~ai and the perturbed cycles \~\gamma 1, . . . , \~\gamma r is at
most 12g + 4b - 6.

Proof. Fix a \BbbZ 2-minimal even subgraph H \prime homologous to H, a cycle decompo-
sition \gamma 1, \gamma 2, . . . , \gamma r of H \prime , and a ribbon perturbation \{ \~a1, . . . , \~a\beta , \~\gamma 1, . . . , \~\gamma r\} such that
the total number X of intersections between perturbed arcs \~ai and perturbed cycles
\~\gamma j is as small as possible.

Recall from section 3.1 that each arc ai is the concatenation of a shortest path \sigma i

in the forest F , a single leftover edge ei \in L, and the reversal of a shortest path \tau i in
F . Let \~\sigma i and \~\tau i denote the components of \~ai \setminus e\square i containing \sigma i and \tau i, respectively.
Both \~\sigma i and \~\tau i are paths within the ribbon decomposition \Sigma \square with endpoints on
the boundaries of vertex regions. Because perturbed paths intersect only in vertex
regions, every point of intersection between \~\gamma j and \~ai is either a point in \~\gamma j \cap \~\sigma i or a
point in \~\gamma j \cap \~\tau i.

Let \sigma be one of the shortest paths \sigma i or \tau i for some index i, and let \~\sigma be the
corresponding path \~\sigma i or \~\tau i in the ribbon perturbation. For each index j, let xj denote
the number of points in \~\sigma \cap \~\gamma j , and let x = x1+x2+ \cdot \cdot \cdot x\beta . If we contract \~\sigma to a single
point \~v on the boundary of \Sigma \square , each cycle \~\gamma j is contracted to the union of xj simple
loops, which are pairwise disjoint except at their common basepoint \~v. Altogether,
we obtain a set \scrL of x simple interior-disjoint loops in \Sigma \square .

Our key claim is that these x loops lie in distinct non-trivial homotopy classes.
This claim implies that \scrL defines an embedding of a single-vertex graph with x edges
onto the surface \Sigma \square , where every face of the embedding is bounded by at least three
edges. Euler's formula now implies that x\leq 6g + 2b - 3 [25, Lemma 2.1], completing
the proof of the lemma.

We prove our key claim by contradiction, using a pair of exchange arguments.

No contractible loops. For the sake of argument, suppose \scrL contains a contractible
loop. Let \ell be an innermost contractible loop, meaning there are no other contractible
loops in the disk bounded by \ell . This loop is the contraction of some subpath \~\gamma (p, q)
of some cycle \~\gamma in the perturbed cycle decomposition; the endpoints p and q of this
subpath lie on \~\sigma . Let u and v be the vertices of G such that p \in u\square and q \in v\square . Fix
points p\flat \in u\square \cap \~\gamma and q\sharp \in v\square \cap \~\gamma such that the subpath \~\pi = \~\gamma (p\flat , q\sharp ) strictly contains
\~\gamma (p, q) but has no more intersections with any perturbed arc \~ai or perturbed cycle \~\gamma j .
Let \pi be the path from u to v in G determined by the sequence of vertex regions and
edge ribbons traversed by \~\pi .

Now let \~\rho be a path from q\sharp to p\flat that closely parallels \~\sigma (q, p); specifically, \~\rho 
traverses the same sequence of vertex regions and edge ribbons as \~\sigma (q, p), without
crossing any perturbed arc \~ai or perturbed cycle \~\gamma j . See Figure 4.1. Let \rho be the
path from v to u obtained by pulling \~\rho back to G. Because \rho is a subpath of the
shortest path \sigma , it is actually a shortest path from v to u.

Because \ell is contractible, the cycle \~\delta = \~\pi \cdot \~\rho is also contractible. Thus, the
corresponding closed walk \delta = \pi \cdot \rho in G is contractible and therefore null-homologous.
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σ̃
p q

π̃

ρ̃p♭ q♯

Fig. 4.1. Exchange argument to remove a contractible loop.

It follows that the subgraph H - = H \prime \oplus \delta is homologous with H \prime and thus with H.
Because \rho is a shortest path, the weight of H - cannot be larger than the weight of
H \prime , and because H \prime is \BbbZ 2-minimal, the weight of H - cannot be smaller than the
weight of H \prime . We conclude that the subgraphs H - and H \prime have equal weight; both
are \BbbZ 2-minimal.4

The cycle \~\gamma \prime = \~\gamma \oplus \~\delta intersects \sigma strictly fewer times than \~\gamma , and does not cross any
arc \~ai more times than \~\gamma . Because \ell is an innermost contractible loop in \scrL , the cycle
\~\gamma \prime is simple and disjoint from all other cycles \~\gamma j in the perturbed cycle decomposition.
Thus, replacing \~\gamma with \~\gamma \prime gives us a perturbed cycle decomposition of H - with fewer
than X crossings. But this contradicts our definition of X. We conclude that no loop
in \scrL is contractible.

No homotopic loops. Now suppose for the sake of argument that \scrL contains ho-
motopic pairs of loops. Let \ell and \ell \prime be homotopic loops in \scrL with no other homotopic
loops between them. These two loops are contractions of subpaths \~\gamma (p, q) and \~\gamma \prime (r, s)
of (not necessarily distinct) cycles \~\gamma and \~\gamma \prime in the perturbed cycle decomposition,
with all endpoints p, q, r, s on the path \~\sigma . As in the previous argument, we extend
these subpaths within the vertex regions containing their endpoints to obtain paths
\~\pi = \~\gamma (p\flat , q\sharp ) and \~\gamma \prime (r\flat , s\sharp ). Let \pi and \pi \prime be the paths obtained by pulling \~\pi and \~\pi \prime 

back to G.
Let \~\rho be a path from r\sharp to r\flat that closely follows \~\sigma , and similarly let \~\rho \prime be a path

from q\flat to s\sharp that closely follows \~\sigma . Let \rho and \rho \prime be the paths obtained by pulling \~\rho 
and \~\rho \prime back to G. Because \rho and \rho \prime are subpaths of \sigma , they are shortest paths in G.

Because \ell and \ell \prime are homotopic, the cycle \~\delta = \~\pi \cdot \~\rho \cdot rev(\~\pi \prime )\cdot \~\rho \prime is contractible, which
implies that the corresponding closed walk \delta = \pi \cdot \rho \cdot rev(\pi \prime ) \cdot \rho \prime in G is contractible and
therefore null-homologous. It follows that the subgraph H - = H \prime \oplus \delta is homologous
to H \prime and therefore to H. Moreover, H - must be \BbbZ 2-minimal, because \rho and \rho \prime are
shortest paths. Finally, exchanging \~\pi and \~\pi \prime with \~\rho and \~\rho \prime transforms our perturbed
cycle decomposition of H \prime into a perturbed cycle decomposition of H - with fewer
than X crossings, violating our definition of X. We conclude that no two loops in \scrL 
are homotopic.

4.2. Triangulations and crossing sequences. Our algorithm for computing
minimum-weight even subgraphs in a given homology class follows a strategy first
used by Kutz to compute shortest non-contractible cycles [87]; in fact our algorithm
uses Kutz's algorithm as a subroutine.

Our algorithm begins by constructing a greedy system of arcs a1, . . . , a\beta for the
input combinatorial surface \Sigma ; we also compute a ribbon perturbation \{ \~a1, . . . , \~a\beta \} of
this greedy system into pairwise-disjoint arcs, as described in Lemma 3.2. Lemma 3.3
implies that slicing the combinatorial surface \Sigma \square along these perturbed arcs yields a

4If shortest paths in G are unique, we can actually conclude at this point that H - =H\prime .
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Fig. 4.2. A system of arcs on a surface with genus 2 and one boundary cycle, and the polygonal
schema obtained by slicing along the arcs.
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Fig. 4.3. Two disjoint simple cycles on a surface of genus 2 with one boundary, and the
corresponding weighted triangulation.

disk D\square , which we call a polygonal schema. The boundary of D\square alternates between
perturbed arcs \~ai and boundary paths of \Sigma \square ; each perturbed arc appears twice on
the boundary of D\square . Replacing each copy of each perturbed arc on the boundary of
D\square with a single edge, and contracting each boundary path of \Sigma \square to a single point,
yields a 2\beta -gon that we call the abstract polygonal schema. See Figure 4.2 for an
illustrative example.

We next dualize the abstract polygonal schema, replacing each boundary edge
with a vertex, and connecting vertices which correspond to adjacent edges in the
primal schema. Thus, the dual polygonal schema is a 2\beta -gon with two vertices corre-
sponding to each perturbed greedy arc \~ai. Any collection of disjoint simple cycles in
\Sigma \square corresponds to a weighted triangulation [25] of this dual polygonal schema, which
includes an edge between two vertices of the dual abstract polygonal schema if and
only if some cycle consecutively crosses the corresponding pair of perturbed greedy
arcs. Each triangulation edge is weighted by the number of times such a crossing
occurs in our collection. See Figure 4.3 for an illustration of this correspondence. We
note that the crossing parity vector of the collection of cycles can then be computed
directly from this weighted triangulation.

Conversely, we call a weighted triangulation valid if corresponding vertices are
incident to edges of equal total weight, and the weight of each edge is between 0 and
12g+4b - 6. Altogether, there are (g+b)O(g+b) different valid weighted triangulations.
Each valid weighted triangulation corresponds to a collection of simple disjoint cycles
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178 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

in \Sigma \square , which is unique up to homotopy. Lemma 4.1 implies that every homology
class contains a \BbbZ 2-minimal even subgraph H \prime , such that some ribbon perturbation
of some cycle decomposition of H \prime is consistent with a valid weighted triangulation.

For each valid weighted triangulation, we can compute a corresponding collection
of abstract cycles in O((g + b)2) time by brute force. In the same time, we can also
compute the sequence of crossings of each abstract cycle with our perturbed greedy
arcs. An algorithm of Kutz [87] computes the shortest cycle in G with a given crossing
sequence of length x in O(xn logn) time, by gluing together x copies of the polygonal
schema D\square into an annulus and computing the shortest generating cycle of that
annulus via Frederickson's planar minimum-cut algorithm [58]. Italiano et al. [78]
point out that their recent O(n log logn)-time improvement in computing minimum
(s, t)-cuts in planar graphs can be used instead of Frederickson's algorithm. Thus,
for each weighted triangulation, we can compute the shortest corresponding set of
cycles in \Sigma \square , and therefore the minimum-weight corresponding even subgraph of G,
in O((g + b)2n log logn) time.

Now suppose we are given an even subgraph H. In O(gn) time, we can compute
the crossing parity vector \=x(H) by decomposing H into cycles, perturbing the cycles
within the ribbon graph \Sigma \square , and counting crossings with the perturbed greedy arcs \~ai
(modulo 2). To compute the minimum-weight even subgraph \BbbZ 2-homologous with H,
we enumerate all valid weighted triangulations with the correct crossing parity vector,
compute a minimum-weight even subgraph corresponding to each triangulation, and
return the smallest even subgraph found.

Theorem 4.2. Let G be an undirected graph with positively weighted edges, em-
bedded on an orientable surface with genus g and b boundary components, and let
H be an even subgraph of G. We can compute the minimum-weight even subgraph
homologous with H in (g + b)O(g+b)n log logn time.

Corollary 4.3. Let G be an undirected graph with positively weighted edges,
embedded on an orientable surface with genus g (possibly with boundary), and let
s and t be vertices of G. We can compute the minimum-weight (s, t)-cut in G in
gO(g)n log logn time.

4.3. Non-orientable surfaces. Kutz's reduction to the planar minimum-cut
problem is the only component of our homology localization algorithm that requires
the underlying surface to be orientable. If the underlying surface is not orientable,
then gluing a cycle of copies of the polygonal schema D\square according to a valid crossing
sequence could produce a M\"obius band instead of an annulus. The fastest algorithm
known for computing a shortest generating cycle in a combinatorial M\"obius band runs
in O(n logn) time, using Klein's multiple-source shortest path algorithm [86]; no im-
provement similar to the O(n log logn)-time algorithm of Italiano et al. [78] is known.
The resulting algorithm for computing minimum-weight homologous subgraphs runs
in (g+ b)O(g+b)n log logn time; because this is subsumed by our later results, we omit
further details.

Nevertheless, we can extend Corollary 4.3 to non-orientable surface graphs with
no penalty in the running time. A simple cycle \gamma on a surface is one-sided if some
neighborhood of \gamma is a M\"obius band, and two-sided otherwise.

Lemma 4.4. Let G be an undirected graph with positively weighted edges, embed-
ded on a non-orientable surface \Sigma with two boundary cycles s\ast and t\ast , and let H be
the even subgraph of G dual to a minimum (s, t)-cut in G\ast . In any ribbon perturbation
of any cycle decomposition of H, every cycle is two-sided.
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MINIMUM CUTS IN SURFACE GRAPHS 179

Proof. Consider any ribbon perturbation \{ \~\gamma 1, . . . , \~\gamma r\} of any cycle decomposition
of H. Slicing the underlying surface along the perturbed cycles \~\gamma i separates it into
two components, one containing the boundary cycle s\ast , and the other containing the
boundary cycle t\ast . Color the first component red and the second blue. If any cycle \~\gamma i
has the same color on both sides, we can safely delete it from the cycle decomposition;
the smaller set of cycles still separates the red and blue components, which implies
that the subgraph H \setminus \gamma i is the dual of an (s, t)-cut, contradicting our assumption that
H is the dual of the minimum (s, t)-cut. We conclude that every cycle \~\gamma i is two-sided;
specifically, it has red points on one side and blue points on the other.

The previous lemma implies that our minimum-cut algorithm can ignore weighted
subgraphs that induce one-sided cycles. Specifically, whenever the algorithm glues
copies of D\square according to some crossing sequence, if the resulting surface is a M\"obius
band, we ignore the weighted triangulation that produced it. All other aspects of the
algorithm are unchanged.

Corollary 4.5. Let G be an undirected graph with positively weighted edges,
embedded on a possibly non-orientable surface with genus g (possibly with boundary),
and let s and t be vertices of G. We can compute the minimum-weight (s, t)-cut in G
in gO(g)n log logn time.

5. The \BbbZ 2-homology cover. At a very high level, our algorithm in section
4 finds minimum-weight homologous subgraphs by enumerating possible homotopy
classes of the cycles in a cycle decomposition and then finding the shortest cycle in
each possible homotopy class by searching a finite portion of the universal cover of
the surface \Sigma . In this section, we describe a more direct algorithm, which finds the
shortest cycle in each homology class by constructing and searching a space which
we call the \BbbZ 2-homology cover . Specifically, given a homology signature h \in (\BbbZ 2)\beta ,
our algorithm computes the shortest cycle with signature h in 2O(\beta )n logn time using
a generalization of Klein's multiple-source shortest path algorithm [86] for planar
graphs to higher-genus embedded graphs [20, 48]. In fact, because there are only 2\beta 

homology classes, we can compute the shortest cycle in every homology class in the
same running time. We then assemble the minimum-weight even subgraph in any
given homology class from these \BbbZ 2-minimal cycles using dynamic programming.

In the preliminary version of this section [50], we described an algorithm to
compute shortest non-separating cycles in a directed surface graph in gO(g)n logn
time, improving (for fixed g) an earlier algorithm of Cabello et al. [21] that runs
in O(g1/2n3/2 logn) time. Using similar techniques but with different covering spa-
ces, Erickson [47] and Fox [56] described even faster algorithms that find shortest
non-separating cycles in O(g2n logn) time and shortest non-contractible cycles in
O(g3n logn) time. In light of these improvements, we omit discussion of our non-
separating cycle algorithm from this paper.

We emphasize that all results in this section apply to both orientable and non-
orientable surfaces.

5.1. Definition and construction. We begin by computing homology signa-
tures for the edges of G in O(\beta n) time, as described in section 3.3. After computing
homology signatures for each edge, the \BbbZ 2-homology cover of a combinatorial surface
can be defined using a standard voltage construction [65, Chapter 4], as follows.

We first define the covering graph G. For simplicity, we regard every edge uv of
G as a pair of oppositely oriented darts u\rightarrow v and v \rightarrow u. The vertices of G are all
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180 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

Fig. 5.1. Constructing the \BbbZ 2-homology cover of a pair of pants (a genus zero surface with
three boundaries).

ordered pairs (v,h) where v is a vertex of G and h is an element of (\BbbZ 2)\beta . The darts
of G are the ordered pairs (u\rightarrow v,h) := (u,h) \rightarrow (v,h\oplus [uv]) for all edges u\rightarrow v of G
and all homology classes h\in (\BbbZ 2)\beta , and the reversal of any dart (u\rightarrow v,h) is the dart
(v\rightarrow u,h\oplus [uv]).

Now let \pi : G \rightarrow G denote the covering map \pi (v,h) = v; this map projects any
cycle in G to a cycle in G. To define a cellular embedding of G, we declare a cycle in
G to be a face if and only if its projection is a face of G. The combinatorial surface
defined by this embedding is the \BbbZ 2-homology cover \Sigma .

Our construction can be interpreted more topologically as follows. Let \alpha 1, . . . , \alpha \beta 

denote the system of dual arcs used to define the homology signatures [e]. The surface
D := \Sigma \setminus (\alpha 1 \cup \cdot \cdot \cdot \cup \alpha \beta ) is a topological disk. Each arc \alpha i appears on the boundary
of D as two segments \alpha +

i and \alpha  - 
i . For each signature h \in (\BbbZ 2)\beta , we create a disjoint

copy (D,h) of D; for each index i, let (\alpha +
i , h) and (\alpha  - 

i , h) denote the copies of \alpha +
i

and \alpha  - 
i in the disk (D,h). For each index i, let bi denote the \beta -bit vector whose ith

bit is equal to 1 and whose other \beta  - 1 bits are all equal to 0. The \BbbZ 2-homology cover
\Sigma is constructed by gluing the 2\beta copies of D together by identifying boundary paths
(\alpha +

i , h) and (\alpha  - 
i , h\oplus bi), for every index i and homology class h. See Figure 5.1 for

an example.

Lemma 5.1. The combinatorial surface \Sigma has n = 2\beta n vertices, genus g =
O(2\beta \beta ), and b = O(2\beta b) boundaries, and it can be constructed in O(2\beta n) time.

Proof. Let m and f denote the number of edges and faces of \Sigma , respectively.
Recall that the Euler characteristic of \Sigma is \chi = n - m + f = 2  - 2g  - b = 1  - \beta . The
combinatorial surface \Sigma has exactly n = 2\beta n vertices, 2\beta m edges, and 2\beta f faces, so
its Euler characteristic is \chi = 2\beta (1  - \beta ).

If b > 1, then each boundary cycle \delta i has a non-zero homology signature; at least
one arc \alpha j has exactly one endpoint on \delta i. Thus, \Sigma has exactly b = 2\beta  - 1b boundary
cycles, each of which is a double-cover (in fact, the \BbbZ 2-homology cover) of some
boundary cycle \delta i. It follows that \Sigma has genus g = 1 - (\chi +b)/2 = 2\beta  - 2(4g + b - 4) + 1.
(Somewhat surprisingly, \Sigma may have positive genus even when \Sigma does not!) On the
other hand, when b = 1, the boundary cycle \delta 1 is null-homologous, so \Sigma has b = 2\beta b
boundary cycles, and thus \Sigma has genus g = 1  - (\chi + b)/2 = 2\beta (g - 1) + 1.

After computing the homology signatures for \Sigma in O(\beta n) time, following Lemma
3.7, it is straightforward to construct \Sigma in O(n) = O(2\beta n) time.

Each edge in G inherits the weight of its projection in G. Now consider an
arbitrary path p in G, with (possibly equal) endpoints u and v. A straightforward
induction argument implies that for any homology class h \in (\BbbZ 2)\beta , the path p is
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MINIMUM CUTS IN SURFACE GRAPHS 181

the projection of a unique path from (u,h) to (v,h \oplus [p]), which we denote (\bfitp ,\bfith ).
Moreover, this lifted path has the same length as its projection. The following lemmas
are now immediate.

Lemma 5.2. Every lift of a shortest path in G is a shortest path in G.

Lemma 5.3. A loop \ell in G with basepoint v is \BbbZ 2-minimal if and only if, for
every homology class h \in (\BbbZ 2)\beta , the lifted path (\ell , h) is a shortest path in G from
(v,h) to (v,h\oplus [\ell ]).

5.2. Computing \BbbZ 2-minimal cycles. The results in the previous section im-
mediately suggest an algorithm to compute the shortest cycle in a given \BbbZ 2-homology
class h in time 2O(\beta )n2: construct the \BbbZ 2-homology cover, and then compute the
shortest path from (v,0) to (v,h) for every vertex v in the original graph. In this
section, we describe a more complex algorithm that runs in time 2O(\beta )n logn. Recall
that any path \sigma from u to v in G is the projection of a unique path (\sigma ,0) from (u,0)
to (v, [\sigma ]) in G.

Lemma 5.4. Let \gamma be a \BbbZ 2-minimal cycle in G in homology class h, and let \sigma be
any shortest path in G that intersects \gamma . There is a \BbbZ 2-minimal cycle \gamma \prime in homology
class h, which is the projection of a shortest path (\gamma \prime , h) in G that starts with a subpath
of (\sigma ,0) but does not otherwise intersect (\sigma ,0).

Proof. Let v be the vertex of \sigma \cap \gamma closest to the starting vertex of \sigma , and let
(v,h) be the corresponding vertex of the lifted path (\sigma ,0). Think of \gamma as a loop based
at v. Lemma 5.3 implies that the lifted path (\gamma ,h) is a shortest path from (v,h) to
(v,h\oplus [\gamma ]).

Now let (w,h\prime ) be the last vertex along (\gamma ,h) that is also a vertex of (\sigma ,0). Let
(\gamma \prime , h) be the path obtained from (\gamma ,h) by replacing the subpath from from (v,h) to
(w,h\prime ) with the corresponding subpath of (\sigma ,0). By construction, (\gamma \prime , h) starts with a
subpath of (\sigma ,0) but does not otherwise intersect (\sigma ,0). Because both (\gamma ,h) and (\sigma ,0)
are shortest paths in \Sigma , the new path (\gamma \prime , h) has the same length as (\gamma ,h). Thus, the
projected cycle \gamma \prime has the same length and homology class as \gamma , which implies that
\gamma \prime is \BbbZ 2-minimal.

We emphasize that the modified cycle \gamma \prime may intersect \sigma arbitrarily many times;
however, all such intersections lift to intersections between (\gamma \prime , h) and lifts of \sigma other
than (\sigma ,0).

Our algorithm uses a generalization of Klein's multiple-source shortest-path algo-
rithm [86] to higher-genus embedded graphs, first developed by Cabello, Chambers,
and Erickson [20] and later slightly improved by Erickson, Fox, and Lkhamsuren [48].

Lemma 5.5 ([20, 48]). Let G be a graph with non-negatively weighted edges,
cellularly embedded on a surface of genus g (possibly non-orientable and possibly with
boundary), and let f be an arbitrary face of G. We can preprocess G in O(g2n logn)
time and O(gn logn) space so that the shortest-path distance from any vertex incident
to f to any other vertex can be retrieved in O(logn) time.

Theorem 5.6. Let G be an undirected graph with positively weighted edges, cel-
lularly embedded on a (possibly non-orientable) surface \Sigma with first Betti number \beta ,
and let \gamma be a cycle in G with k edges. A shortest cycle in \Sigma that is \BbbZ 2-homologous
with \gamma can be computed in O(\beta k + 8\beta \beta 3 n logn) time.
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Proof. We begin by computing homology signatures for the edges of G in O(\beta n)
time, using a dual system of arcs, as described in section 3.3. In O(\beta k) time, we
then compute the homology signature [\gamma ]. If [\gamma ] = 0, we can immediately return the
empty walk, so assume otherwise. We then construct the \BbbZ 2-homology cover G in
O(2\beta n logn) time, using the same system of dual arcs, as described in section 5.1.

To exploit Lemma 5.4, we need a set S of shortest paths in G that are guar-
anteed to intersect every cycle with non-trivial homology. Somewhat counterintu-
itively, we construct S essentially by building the greedy primal system of arcs, as
described in section 3.1. Specifically, we build the greedy forest-cotree decomposition
(\partial G,F,C\ast ,L) and let S be the set of paths in the forest F from the boundary of \Sigma 
to the endpoints of edges in L. Lemma 3.1 immediately implies that S contains 2\beta 
shortest paths. Lemma 3.3 implies that every cycle with non-trivial homology---in
fact, every non-contractible cycle---shares at least one vertex with at least one path
in S. We emphasize that our algorithm in this section does not need ribbon perturba-
tions; in particular, every path in S is simple, and our algorithm considers each path
in S in isolation.

Then for each each shortest path \sigma \in S, we look for a \BbbZ 2-minimal cycle homologous
to \gamma that intersects \sigma and has the structure described in Lemma 5.4. Lemma 5.2
implies that \sigma is the projection of a shortest path (\sigma ,0) in G; let us write (\sigma ,0) =
(v0,0) \rightarrow (v1, h1) \rightarrow \cdot \cdot \cdot \rightarrow (vt, ht). We construct the combinatorial surface \Sigma \setminus \setminus (\sigma ,0)
by splitting the path (\sigma ,0) into two parallel paths from (v0,0) to (vt, ht), which we
denote (\sigma ,0)+ and (\sigma ,0) - . For each index 1 \leq i \leq t  - 1, let (vi, hi)

+ and (vi, hi)
 - 

denote the copies of vertex (vi, hi) on the paths (\sigma ,0)+ and (\sigma ,0) - , respectively. The
paths (\sigma ,0)+ and (\sigma ,0) - bound a new common face f(\sigma ,0) in \Sigma \setminus \setminus (\sigma ,0).

Lemma 5.4 implies that if any \BbbZ 2-minimal cycle homologous to \gamma intersects \sigma ,
then some \BbbZ 2-minimal cycle homologous to \gamma is the projection of a shortest path
in \Sigma \setminus \setminus (\sigma ,0) from some vertex (vi, hi)

\pm to the corresponding vertex (vi, hi \oplus [\gamma ]). To
compute these shortest paths, we implicitly compute the shortest path in \Sigma \setminus \setminus (\sigma ,0)
from every vertex on the boundary of f(\sigma ,0) to every vertex of \Sigma \setminus \setminus (\sigma ,0), using
Lemma 5.5. The resulting algorithm runs in O(g2 n logn) = O(8\beta \beta 3 n logn) time,
by Lemma 5.1.

By running this algorithm 2\beta times, we can compute the shortest cycle in \Sigma in
every \BbbZ 2-homology class, in O(16\beta \beta 3 n logn) time.

5.3. Minimum cuts from the homology cover. We now apply our algo-
rithm for computing \BbbZ 2-minimal cycles to the problem of computing \BbbZ 2-minimal
even subgraphs in undirected surface embedded graphs. Theorem 5.6 immediately
implies that we can compute a minimum-weight cycle in every \BbbZ 2-homology class
in O(16\beta \beta 3 n logn) time. However, the minimum weight even subgraph in a given
homology class may not be (the carrier of) a \BbbZ 2-minimal cycle. In particular, if all
edge weights are strictly positive, and some \BbbZ 2-minimal cycle \gamma traverses any edge
more than once, then every minimum-weight even subgraph homologous to \gamma must
be disconnected. However, any connected \BbbZ 2-minimal even subgraph is the carrier
of a \BbbZ 2-minimal cycle, and the components of any \BbbZ 2-minimal even subgraph are
themselves \BbbZ 2-minimal even subgraphs. Thus, we can assemble a \BbbZ 2-minimal even
subgraph in any homology class from a subset of the \BbbZ 2-minimal cycles we have
already computed. The following lemma puts an upper bound on the number of
cycles we need.
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MINIMUM CUTS IN SURFACE GRAPHS 183

Lemma 5.7. Every \BbbZ 2-minimal even subgraph of G has at most g + b  - 1
components.

Proof. Let H be an even subgraph of G with more than g + b - 1 components.
Each component has a cycle decomposition, so H must have a cycle decomposition
\gamma 1, . . . , \gamma r consisting of r > g + b - 1 elements. Let \Sigma \bullet be the surface obtained from
\Sigma by gluing a disk to each boundary component; \Sigma \bullet is a surface of genus g with no
boundary but with b designated faces.

Now consider the surface \Sigma \prime = \Sigma \bullet \setminus (\gamma 1 \cup \cdot \cdot \cdot \cup \gamma r). The definition of genus implies
that \Sigma \prime cannot be connected; indeed, \Sigma \prime must have at least b + 1 components. So by
the pigeonhole principle, some component \Sigma \prime \prime of \Sigma \prime contains none of the b designated
faces. Thus, the boundary of \Sigma \prime \prime is null-homologous in \Sigma \bullet , and therefore in \Sigma .

We conclude that some subgraph H \prime of H is null-homologous. Because all edges
in H \prime have positive weight, we conclude that H is not \BbbZ 2-minimal.

Theorem 5.8. Let G be an undirected graph with positively weighted edges,
embedded on a (possibly non-orientable) surface with first Betti number \beta . A
minimum-weight even subgraph of G in each \BbbZ 2-homology class can be computed in
O(16\beta \beta 3 n logn) time.

Proof. Our algorithm computes a minimum-weight cycle \gamma h in every \BbbZ 2-homology
class h in O(16\beta \beta 3 n logn) time, via Theorem 5.6, and then assembles these \BbbZ 2-
minimal cycles into \BbbZ 2-minimal even subgraphs using dynamic programming.

For each homology class h\in (\BbbZ 2)\beta and each integer 1 \leq k\leq g + b - 1, let \bfitC (\bfith ,\bfitk )
denote the minimum total weight of any set of at most k cycles in G whose homology
classes sum to h. Lemma 5.7 implies that the minimum weight of any even subgraph
in homology class h is exactly C(h, g + b  - 1). This function obeys the following
straightforward recurrence:

C(h,k) = min
\bigl\{ 
C(h1, k - 1) + C(h2,1) | h1 \oplus h2 = h

\bigr\} 
.

This recurrence has two base cases: C(0, k) = 0 for any integer k, and for any homology
class h, the value C(h,1) is just the length of \gamma h. A standard dynamic programming
algorithm computes C(h, g + b - 1) for all 2\beta homology classes h in O(4\beta \beta ) time. We
can then assemble the actual minimum-weight even subgraphs in each homology class
in O(\beta n) time. The total time for this phase of the algorithm is O(4\beta \beta +2\beta \beta n), which
is dominated by the time to compute all the \BbbZ 2-minimal cycles.

Corollary 5.9. Let G be an undirected graph with positively weighted edges,
embedded on a surface with genus g (possibly non-orientable and possibly with bound-
ary), and let s and t be vertices of G. We can compute the minimum-weight (s, t)-cut
in G in O(256gg3n logn) time.

6. NP-hardness. In this section, we show that finding the minimum-cost even
subgraph in a given homology class is NP-hard, even when the underlying surface has
no boundary. Our proof closely follows a reduction of McCormick, Rao, and Rinaldi
[95] from Min2Sat to a special case of MaxCut.

Theorem 6.1. Computing the minimum-weight even subgraph in a given homol-
ogy class on a surface without boundary is equivalent to computing a minimum-weight
cut in an embedded edge-weighted graph G, where negative-weight edges of G are dual
to an even subgraph in G\ast .

Proof. Fix a graph G embedded on a surface \Sigma without boundary, together with
a positive weight function c : E \rightarrow \BbbR +. For any even subgraph H of G, let c(H) =
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e\in H c(e), and let MinHom(H,c) denote the even subgraph of minimum weight in

the homology class of H with respect to weight function c.
Consider the residual weight function cH : E \rightarrow \BbbR defined by setting cH(e) = c(e)

for each edge e \not \in H, and cH(e) =  - c(e) for each edge e\in H. For any subgraph H \prime of G,
we have c(H \prime ) = cH(H\oplus H \prime )+c(H), which immediately implies that MinHom(H,c) =
H\oplus MinHom(\varnothing , cH).

Every boundary subgraph of G is dual to a cut in the dual graph G\ast . Thus, we
have reduced our problem to computing the minimum cut in G\ast with respect to the
weight function cH , which is NP-hard as stated in Lemma 6.2. Since the empty set is
a valid cut with zero cost, the cost of the minimum cut is never positive. In particular,
H is the minimum-cost even subgraph in its homology class if and only if the cut in
G\ast with minimum residual cost has zero cost.

In fact, our reduction is reversible. Suppose we want to find the minimum cut
in an embedded graph G = (V,E) with respect to the cost function c : E \rightarrow \BbbR , where
every face of G is incident to an even number of edges with negative cost. Let
H = \{ e\in E | c(e) < 0\} be the subgraph of negative-cost edges, and let X denote the
(possibly empty) set of edges in the minimum cut of G. Consider the absolute cost
function | c| : E\ast \rightarrow \BbbR defined as | c| (e\ast ) = | c(e)| . Then (H \oplus X)\ast is the even subgraph
of G\ast of minimum absolute cost that is homologous to H\ast .

We now prove that this special case of the minimum-cut problem is NP-hard,
by reduction from MinCut in graphs with negative edges. This problem includes
Maxcut as a special case (when every edge has negative cost), but many other
special cases are also NP-hard [95].

Lemma 6.2 (McCormick, Rao, and RInaldi [95]). Maxcut is strongly NP-hard.

The output of our reduction is a simple triangulation; the reduction can be sim-
plified if graphs with loops and parallel edges are allowed.

Lemma 6.3. Computing a minimum-weight cut in an embedded edge-weighted
graph G whose negative-weight edges are dual to an even subgraph in G\ast is strongly
NP-hard.

Proof. Let n be the number of vertices of G and c : E \rightarrow \BbbR be the edge weight
function. We begin by computing a cellular embedding of G on some orientable
surface, by imposing an arbitrary cyclic order on the edges incident to each vertex.
(We can compute the maximum-genus orientable cellular embedding in polynomial
time [59].) Alternatively, we can add zero-length edges to make the graph complete
and then use classical results of Ringel, Youngs, and others [108, 109] to compute a
minimum-genus orientable embedding of Kn in polynomial time. Once we have an
embedding, we add vertices and zero-cost edges to obtain a triangulation.

Let C be the sum of the absolute values of the edge costs: C :=
\sum 

e | c(e)| . A
cocycle of embedded graph G is a subset of edges forming a cycle in the dual G\ast . We
locally modify both the surface and the embedding to transform each negative-weight
edge into a cocycle, as follows. Therefore, in the end, the set of negative-weight edges
is dual to an even subgraph.

We transform the edges one at a time; after each iteration, the embedding is
a simple triangulation. (Our reduction can be simplified if a simple graph is not
required.) For each edge uv with c(uv) < 0, remove uv to create a quadrilateral face.
Triangulate this face as shown in Figure 6.1; we call the new faces uu1u2 and vv1v2
endpoint triangles. Assign cost C to the edges of the endpoint triangles and cost zero
to the other new edges. Glue a new handle to the endpoint triangles, and triangulate
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MINIMUM CUTS IN SURFACE GRAPHS 185

Fig. 6.1. Adding a handle to transform a negative edge into a negative cocycle. Thick (blue)
edges have cost C; dashed edges have cost zero; and red edges have cost c(uv)/6.

the handle with a cycle of six edges, each with cost c(uv)/6. These six edges form
a cocycle of cost c(uv), which we call an edge cocycle, in the new embedding. Each
iteration adds 5 vertices and 21 edges to the graph and increases the genus of the
underlying surface by 1.

Let G\prime denote the transformed graph and c\prime : E(G\prime ) \rightarrow \BbbR its associated cost func-
tion. The minimum cut in G\prime cannot contain any edge of an endpoint triangle. Thus,
for each edge cocycle, either all six edges cross the cut, or none of them cross the cut.
It follows that the minimum cut in G\prime corresponds to a cut with equal cost in the
original graph G. Conversely, any cut in G can be transformed into a cut in G\prime of
equal cost. Thus, computing the minimum cut in G\prime is equivalent to computing the
minimum cut in G, which is NP-hard by Lemma 6.2.

Theorem 6.4. Given an even subgraph H of an edge-weighted graph G embed-
ded on a surface without boundary, computing the minimum-weight even subgraph
homologous to H is strongly NP-hard.

Our reduction can be modified further to impose other desirable properties on the
output instances, for example, that the graph is unweighted, every vertex has degree
3, or the input subgraph H is a simple cycle.

Finally, we emphasize that the NP-hardness of this problem relies crucially on the
fact that we are using homology with coefficients taken from the finite field \BbbZ 2. The
corresponding problem for homology with real or integer coefficients is a minimum-cost
circulation problem and thus can be solved in polynomial time. Chambers, Erickson,
and Nayyeri [28] show that this circulation problem can be solved in near-linear time
for graphs of constant genus and polynomially bounded integer edge capacities using
very different techniques.

7. Global minimum cut. Finally, we describe our algorithm to compute global
minimum cuts in surface-embedded graphs, where no source or target vertices are
specified in advance. Unlike previous sections, we begin our exposition assuming that
the underlying surface of the input graph does not have boundary, because filling in
any boundaries with disks does not change the minimum cut. We also assume without
loss of generality that no edge of the input graph has the same face on both sides; we
can enforce this assumption if necessary by adding infinitesimal-weight edges.

As in previous sections, it is convenient to work in the dual graph. We cannot
apply Lemma 2.2 directly, but the following lemma similarly characterizes global
minimum cuts in surface graphs in terms of homology in the dual graph. Suppose we
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s* s*

Fig. 7.1. Two types of minimum-weight separating subgraphs: A simple contractible cycle and
otherwise.

have a graph embedded in a surface with a single boundary component. A separating
subgraph is any non-empty boundary subgraph, or equivalently, the boundary of the
union of a non-empty set of faces.

Lemma 7.1. Let G be an undirected edge-weighted graph embedded on a surface
\Sigma without boundary, and let s be an arbitrary vertex of G. A subgraph X is a global
minimum cut in G if and only if X\ast is a minimum-weight separating subgraph of G\ast 

in \Sigma \setminus s\ast .
Proof. Let X be an arbitrary cut in G. The cut partitions the vertices of G into

two disjoint subsets S and T with s\in S. Therefore, the dual subgraph X\ast partitions
the faces of G\ast into two disjoint subsets S\ast and T \ast with s\ast \in S\ast . Further, X\ast is the
boundary of the union of faces in T \ast , implying that X\ast is a boundary subgraph of \Sigma 
and therefore separating.

Conversely, let X\ast be any separating subgraph of G\ast . Subgraph X\ast is the bound-
ary of a nonempty subset of the faces T \ast of G\ast . Let t\ast be a face in T \ast . Any path
from s to t in the primal graph G must traverse at least one edge of X. We conclude
that X is a cut (in particular, an (s, t)-cut).

In light of this lemma, the remainder of this section describes an algorithm to find
a minimum-weight separating subgraph in a given surface-embedded graph G with
positive edge weights. Graph G is embedded in a surface \Sigma with exactly one boundary
component s\ast .

Let X be a minimum-weight separating subgraph. Surface \Sigma \setminus X has exactly one
component not incident to s\ast ; otherwise, the boundary of any one of these components
is a smaller separating subgraph. Abusing terminology slightly, call the separating
subgraph X contractible if this component of \Sigma \setminus X is a disk and non-contractible
otherwise. If X is contractible, then X is actually a shortest (weakly) simple con-
tractible cycle of G in the surface \Sigma ; otherwise, X can be decomposed into one or
more simple cycles, each of which is non-contractible. See Figure 7.1.

Thus, in principle, we can find a minimum-weight separating subgraph by first
computing a shortest contractible cycle, then computing a minimum-weight separating
collection of non-contractible cycles, and finally returning the lighter of these two
subgraphs. Unfortunately, we do not know how to solve either of these subproblems
in our stated time bounds, so our algorithm takes a more subtle approach.

In section 7.1, we describe an algorithm that computes a minimum-weight separat-
ing subgraph if any minimum-weight separating subgraph is contractible. Similarly,
in section 7.2, we describe an algorithm that computes a minimum-weight separating
subgraph if any minimum-weight separating subgraph is non-contractible. In both
cases, if no minimum-weight separating subgraph satisfies the corresponding condi-
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MINIMUM CUTS IN SURFACE GRAPHS 187

tion, the algorithm still returns a boundary subgraph, but this subgraph could be
empty or have large weight. By running both subroutines and returning the best
result, we are guaranteed to find a minimum-weight separating subgraph in G, no
matter which category it falls into.

For ease of exposition, we explicitly consider only the case where the underlying
surface is orientable; we briefly discuss the non-orientable setting at the end of this
section.

7.1. Contractible. First we consider the case where some minimum-weight
separating subgraph X is contractible. This case is nearly handled using a
result of Cabello et al. [22, Theorem 5.4] wherein they describe an algorithm
for finding a shortest contractible cycle enclosing a non-empty set of faces in
O(Tmin - cut(n) + n logn) time, where Tmin - cut(n) is the time needed to find a
minimum cut in a planar graph of size n. Using the minimum cut algorithm of
\Lacki and Sankowski [88], we may assume Tmin - cut(n) = O(n log logn). However, we
still need to open the black box to reduce the n logn term in the running time. In
the interest of completeness and to avoid having to repeatedly reprove lemmas and
theorems from Cabello et al. [22], we describe how to handle the contractible case
directly using tools developed earlier in the current paper.

We begin by borrowing a result of Cabello [19, Lemma 4.1]. Recall that an arc or
cycle is tight if it has minimum weight among all arcs or cycles in its homotopy class.

Lemma 7.2 (Cabello [19]). Let \alpha be a tight arc or tight cycle on G. There exists
a shortest simple contractible cycle that does not cross \alpha .

Cabello [19] uses this observation to compute a shortest simple contractible cycle
in a surface-embedded graph; unfortunately, his algorithm runs in O(n2 logn) time.

We use the slicing operation (\setminus \setminus ) along tight cycles and arcs in G. The follow-
ing lemma implies it is safe for our algorithm to find minimum-weight separating
subgraphs in sliced copies of \Sigma .

Lemma 7.3. Let \alpha be an arbitrary simple cycle or arc in G. Let \Sigma \prime = \Sigma \setminus \setminus \alpha and
let G\prime = G\setminus \setminus \alpha . Finally, let H \prime denote a boundary subgraph in G\prime and let H denote the
set of edges that appear an odd number of times in the projection of H \prime . Subgraph H
bounds the natural projection to G of the faces bound by H \prime in G\prime .

Proof. Let F \prime be the subset of faces bound by H \prime in G\prime . Let F be natural mapping
of F \prime into G. We will argue that H is the boundary of F , proving the lemma.

Consider any edge e of G. Suppose e is not in \alpha . In this case, G\prime contains one
copy e\prime of e, and e\prime \in H \prime if and only if e \in H. Edge e\prime being incident to exactly one
face of F \prime is therefore equivalent to e being incident to exactly one face of F .

Now suppose e is in \alpha . Graph G\prime contains two copies of e denoted e1 and e2, each
incident to one face denoted f1 and f2, respectively. If neither or both of f1 and f2
are in F \prime , then H \prime includes neither or both of e1 and e2. Therefore, H \prime contains the
two copies of e an even number of times total, implying e /\in H. If one, but not both,
of f1 and f2 is in F \prime , then H \prime includes exactly one of e1 or e2. In turn, H \prime contains
the two copies of e an odd number of times total, meaning e\in H.

In all cases, an edge e is in H if and only if exactly one incident face to e is in F .

We now present our algorithm for finding a minimum-weight separating subgraph
if that subgraph happens to be a contractible cycle.

Lemma 7.4. There exists an O(gn log logn)-time algorithm that computes a
minimum-weight separating subgraph if any such subgraph is a simple contractible
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188 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

cycle. If not, the algorithm either returns some separating subgraph (that may not be
minimum-weight) or nothing.

Proof. The algorithm computes a greedy system of arcs A in O(n) time as de-
scribed in section 3.1. Observe that both endpoints of each arc lie on s\ast . Let G\prime 

denote the planar graph G\setminus \setminus A; this graph has O(gn) vertices.
We now run the algorithm of \Lacki and Sankowski [88] to compute the shortest

simple cycle \gamma \prime of G\prime in O(gn log logn) time. Let H \prime be the subgraph of G\prime containing
the edges of \gamma \prime . Subgraph H \prime separates a non-empty subset of faces F \prime from the
boundary of G\prime . By multiple instantiations of Lemma 7.3, subgraph H \prime projects to a
boundary subgraph H. Because s\ast is a boundary component, we see that H separates
the natural projection of F \prime from s\ast .

Now, suppose some minimum-weight separating subgraph of G is a simple con-
tractible cycle. Lemma 7.2 implies that for any arc \alpha \in A, there exists a shortest
simple contractible cycle \sigma that does not cross \alpha . The cycle \sigma appears as a sim-
ple contractible cycle in G\setminus \setminus \alpha . Any contractible cycle in G\setminus \setminus \alpha is contractible in G,
so \sigma is a shortest contractible cycle in G\setminus \setminus \alpha as well. Therefore, by repeated ap-
plications of Lemma 7.2, we may assume \sigma does not cross any arc of A, and it
appears as a simple cycle in G\prime that separates at least one face of G\prime from the bound-
ary. We emphasize that our algorithm does not necessarily compute \sigma . However, \sigma 
cannot be shorter than H, and our algorithm returns a minimum-weight separating
subgraph.

7.2. Non-contractible. Now suppose some minimum-weight separating sub-
graph X is non-contractible. At a high level, our algorithm for this case computes a
set F of faces, such that some minimum-weight separating subgraph of G separates
s\ast from at least one face in F . (Equivalently, F \ast is a set of vertices of G\ast , such that
the global minimum cut in G\ast is an (s, t)-cut for some t\in F \ast .) Then for each face in
F , we compute a minimum-weight subgraph separating s\ast from that face using one
of our earlier algorithms.

Throughout this section, we assume without loss of generality that every edge of
G lies on the boundary of two distinct faces of G. We can enforce this assumption if
necessary by adding O(n) infinite-weight edges to G.

The following lemma can be seen as the main technical take-away from this sec-
tion. After its appearance in a preliminary version of our work [49], it was generalized
by Borradaile et al. [11] for their construction of a minimum (s, t)-cut oracle for
surface embedded graphs.

Lemma 7.5. Let X be a minimum-weight separating subgraph. Let \gamma be a closed
walk in G that lies in the closure of the component of \Sigma \setminus X not incident to s\ast , and let
H be a shortest even subgraph homologous to \gamma . There is a minimum weight separating
subgraph X \prime (possibly X) such that H lies in the closure of the component of \Sigma \setminus X \prime 

not incident to s\ast .

Proof. If \gamma is null-homologous, then H is empty and the lemma is trivial, so
assume otherwise. If H lies in the closure of the component of \Sigma \setminus X not incident to
s\ast , then we are done, so assume otherwise. See Figure 7.2.

Recall that X bounds the union of one non-empty component of faces not incident
to s\ast . Call the faces in this component far and the rest near . Similarly, the even sub-
graph H\oplus \gamma is null-homologous and therefore bounds a subset of faces of G. Call the
faces in this subset white and the rest black . (If H = \gamma , then every face of G is black.)
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s*
γ

X

H

H’
X’

Fig. 7.2. The setting of Lemma 7.5. A \BbbZ 2-minimal even subgraph H is separated from face f
by a minimum weight separating subgraph X\prime .

Let X \prime be the boundary of the union of the far faces and white faces in G. There
is at least one far face, so subgraph X \prime is separating. For each edge e of H, either e
is incident to a white face or it is also an edge of \gamma . Either way, e lies in the closure
of the component of \Sigma \setminus X \prime not incident to s\ast .

It remains to argue that X \prime is a minimum-weight separating subgraph of G.
For any subgraph A of G, let w(A) denote the sum of the weights of the edges of

A. Because both X \prime and X are null-homologous, the even subgraph H \prime = H\oplus X \prime \oplus X
is homologous to H, and therefore to \gamma . We immediately have w(H \prime ) \geq w(H), because
H is \BbbZ 2-minimal.

We now prove that w(X \prime ) +w(H \prime ) \leq w(H) +w(X) by bounding the contribution
of each edge e\in E(G) to both sides of the inequality. Both X \prime and H \prime are subgraphs
of X \cup H; moreover, X \prime \oplus H \prime = X \oplus H. There are three cases to consider.

\bullet If e \not \in X \cup H, then e contributes 0 to both sides of the inequality.
\bullet If e\in X \oplus H, then e\in X \prime \oplus H \prime . In this case, e contributes w(e) to both sides

of the inequality.
\bullet If e\in X\cap H, then e contributes exactly 2w(e) to the right side of the inequal-

ity. Trivially, e contributes at most 2w(e) to the left side.
We conclude that X \prime is also a minimum-weight separating subgraph.

Lemma 7.6. There is a gO(g)n log logn-time algorithm that computes a minimum-
weight separating subgraph of G if any minimum-weight separating subgraph of G is
non-contractible. If every minimum-weight separating subgraph of G is contractible,
the algorithm returns a separating subgraph that may not have minimum weight.

Proof. In a preprocessing phase, we construct a homology basis from a tree-
coforest decomposition in O(gn) time; see Lemma 3.8. Then we enumerate all 22g - 1
non-trivial homology classes by considering subsets of cycles in this homology basis.
For each non-trivial homology class h, we perform the following steps:

\bullet Compute a minimum-weight subgraph Hh in homology class h, in
gO(g)n log logn time, as described by Theorem 4.2.

\bullet Fix an arbitrary edge e of Hh. By assumption, e lies on the boundary of two
distinct faces fL and fR. In particular, at least one of these faces is not s\ast .

\bullet If fL \not = s\ast , compute a minimum-weight subgraph Xh of G that separates s\ast 

and fL, in gO(g)n log logn time, using the minimum (s, t)-cut algorithm of
section 4. Otherwise, Xh is undefined.

\bullet If fR \not = s\ast , compute a minimum-weight subgraph X \prime 
h of G that separates s\ast 

and fR, in gO(g)n log logn time, again using the minimum (s, t)-cut algorithm
of section 4. Otherwise, X \prime 

h is undefined.
Altogether we compute between 22g - 1 and 22g+1 - 2 separating subgraphs of G (some
of which may coincide); the output of our algorithm is the smallest of these separating
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190 ERIN W. CHAMBERS, JEFF ERICKSON, KYLE FOX, AND AMIR NAYYERI

subgraphs. The overall running time of our algorithm is 2O(g) \cdot gO(g)n log logn =
gO(g)n log logn.

It remains to prove that our algorithm is correct. Let X be any minimum-weight
separating subgraph of G such that the component of \Sigma \setminus X not incident to s\ast is not
a disk. Let \Sigma \prime be the closure of the component of \Sigma \setminus X that does not contain s\ast . If
\Sigma \prime has genus, then it contains a cycle \gamma that is not separating in \Sigma \prime or \Sigma . Otherwise,
\Sigma \prime not being a disk implies it has multiple boundary components. We may assume
that each of these boundary components is non-separating in \Sigma . Otherwise, we could
remove exactly one non-separating component to find a separating subgraph that
weighs no more than X. Let \gamma be any one of these boundary components. In both
cases, \gamma lies in \Sigma \prime and is non-separating in \Sigma . Let h be the homology class of \gamma in \Sigma ,
and let Hh be any minimum-weight even subgraph of G that is homologous with \gamma in
\Sigma . By Lemma 7.5, there exists a minimum-weight separating subgraph X \prime such that
Hh lies in the closure of the component of \Sigma \setminus X \prime not incident to s\ast . Every edge of Hh

is on the boundary of at least one face f \prime in the closure of the component of \Sigma \setminus X \prime 

containing Hh. Further, X \prime must be a minimum-weight even subgraph separating s\ast 

and f \prime . We conclude that when our algorithm considers homology class h, either Xh

or X \prime 
h is a minimum-weight separating subgraph of G.

Modifying the previous algorithm to use results of section 5, instead of the corre-
sponding results in section 4, immediately gives us the following.

Lemma 7.7. There is a 2O(g)n logn-time algorithm that computes a minimum-
weight separating subgraph of G if any minimum-weight separating subgraph of G is
non-contractible. If every minimum-weight separating subgraph of G is contractible,
the algorithm returns a separating subgraph that may not have minimum weight.

7.3. Summing up. Finally, to compute the minimum-weight separating sub-
graph in G, we run both algorithms described in Lemmas 7.4 and 7.6. If either
algorithm returns nothing, the other algorithm returns a minimum-weight separating
subgraph of G. Otherwise, both algorithms return non-empty separating subgraphs of
G, and the smaller of those two subgraphs is a minimum-weight separating subgraph
of G. We conclude the following.

Corollary 7.8. Let G be an undirected graph with positively weighted edges,
embedded on an orientable surface with genus g (possibly with boundary). We can
compute a global minimum cut in G in either gO(g)n log logn time or 2O(g)n logn
time.

Most of the results in this section extend directly to non-orientable surfaces.
The only exception is our algorithm for the non-contractible case (Lemma 7.6), which
computes a minimum-weight subgraph in every homology class. When the underlying
surface is non-orientable, we cannot use our crossing-sequence algorithm in section 4
to solve this subproblem, for the reasons spelled out in section 4.3. However, we can
still use our homology-cover algorithm from section 5.

Theorem 7.9. Let G be an undirected graph with positively weighted edges, em-
bedded on a non-orientable surface with genus g and exactly one boundary component.
We can compute a minimum-weight separating subgraph in G in 2O(g)n logn time.

Corollary 7.10. Let G be an undirected graph with positively weighted edges,
embedded on a non-orientable surface with genus g (possibly with boundary). We can
compute a global minimum cut in G in 2O(g)n logn time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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