
Geometric Range Searching and Its Relatives�

Pankaj K. Agarwal Je� Erickson

Center for Geometric Computing
Department of Computer Science

Duke University, Box 90129

Durham, NC 27708-0129
fpankaj, je�eg@cs.duke.edu

http://www.cs.duke.edu/�fpankaj, je�eg

September 2, 1997

1 Introduction

About ten years ago, the �eld of range searching, especially simplex range searching, was

wide open. At that time, neither e�cient algorithms nor nontrivial lower bounds were known

for most range-searching problems. A series of papers by Haussler and Welzl [161], Clarkson

[88, 89], and Clarkson and Shor [92] not only marked the beginning of a new chapter in

geometric searching, but also revitalized computational geometry as a whole. Led by these

and a number of subsequent papers, tremendous progress has been made in geometric range

searching, both in terms of developing e�cient data structures and proving nontrivial lower

bounds. From a theoretical point of view, range searching is now almost completely solved.

The impact of general techniques developed for geometric range searching | "-nets, 1=r-

cuttings, partition trees, multi-level data structures, to name a few | is evident throughout

computational geometry. This volume provides an excellent opportunity to recapitulate the

current status of geometric range searching and to summarize the recent progress in this

area.

Range searching arises in a wide range of applications, including geographic information

systems, computer graphics, spatial databases, and time-series databases. Furthermore, a

variety of geometric problems can be formulated as a range-searching problem. A typical

range-searching problem has the following form. Let S be a set of n points in Rd , and let

�Pankaj Agarwal's work on this paper was supported by National Science Foundation Grant CCR-

93-01259, by Army Research O�ce MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI

award and matching funds from Xerox Corporation, and by a grant from the U.S.-Israeli Binational Science

Foundation. Je� Erickson's work was supported by National Science Foundation grant DMS-9627683 and

by Army Research O�ce MURI grant DAAH04-96-1-0013.

2 Pankaj K. Agarwal and Je� Erickson

R be a family of subsets of Rd ; elements of R are called ranges. We wish to preprocess S

into a data structure so that for a query range 2 R, the points in S \ can be reported

or counted e�ciently. Typical examples of ranges include rectangles, halfspaces, simplices,

and balls. If we are only interested in answering a single query, it can be done in linear

time, using linear space, by simply checking for each point p 2 S whether p lies in the query

range. Most applications, however, call for querying the same point set S several times

(and sometimes we also insert or delete a point periodically), in which case we would like

to answer a query faster by preprocessing S into a data structure.

Range counting and range reporting are just two instances of range-searching queries.

Other examples include emptiness queries, where one wants to determine whether S\ = ;,
and optimization queries, where one wants to choose a point with certain property (e.g.,

a point in with the largest x1-coordinate). In order to encompass all di�erent types of

range-searching queries, a general range-searching problem can be de�ned as follows.

Let (S;+) be a commutative semigroup1. For each point p 2 S, we assign a weight

w(p) 2 S. For any subset S0 � S, let w(S0) =
P

p2S0 w(S), where addition is taken over the

semigroup.2 For a query range 2 R, we wish to compute w(S\). For example, counting
queries can be answered by choosing the semigroup to be (Z;+), where + denotes standard

integer addition, and setting w(p) = 1 for every p 2 S; emptiness queries by choosing

the semigroup to be (f0; 1g;_) and setting w(p) = 1; reporting queries by choosing the

semigroup to be (2S ;[) and setting w(p) = fpg; and optimization queries by choosing the

semigroup to be (R;max) and choosing w(p) to be, for example, the x1-coordinate of p.

We can, in fact, de�ne a more general (decomposable) geometric searching problem.

Let S be a set of objects in R
d (e.g., points, hyperplanes, balls, or simplices), (S;+) a

commutative semigroup, w : S ! S a weight function, R a set of ranges, and � � S �R
a \spatial" relation between objects and ranges. Then for a range 2 R, we want to

compute
P

p� w(p). Range searching is a special case of this general searching problem,

in which S is a set of points in Rd and �=2. Another widely studied searching problem is

intersection searching, where p � if p intersects . As we will see below, range-searching

data structures are useful for many other geometric searching problems.

The performance of a data structure is measured by the time spent in answering a query,

called the query time, by the size of the data structure, and by the time constructed in the

data structure, called the preprocessing time. Since the data structure is constructed only

once, its query time and size are generally more important than its preprocessing time. If a

data structure supports insertion and deletion operations, its update time is also relevant.

We should remark that the query time of a range-reporting query on any reasonable machine

depends on the output size, so the query time for a range-reporting query consists of two

parts | search time, which depends only on n and d, and reporting time, which depends on

n, d, and the output size. Throughout this survey paper we will use k to denote the output

size.

1A semigroup (S;+) is a set S equipped with an associative addition operator + : S� S! S. A semi-

group is commutative if x+ y = y + x for all x; y 2 S.
2Since S need not have an additive identity, we may need to assign a special value nil to the empty sum.

Geometric Range Searching and Its Relatives 3

We assume that d is a small �xed constant, and that big-Oh and big-Omega notation

hides constants depending on d. The dependence on d of the performance of almost all the

data structures mentioned in this survey is exponential, which makes them unsuitable in

practice for large values of d.

The size of any range-searching data structure is at least linear, since it has to store

each point (or its weight) at least once, and the query time in any reasonable model of

computation such as pointer machines, RAMs, or algebraic decision trees is
(logn) even

when d = 1. Therefore, we would like to develop a linear-size data structure with log-

arithmic query time. Although near-linear-size data structures are known for orthogonal

range searching in any �xed dimension that can answer a query in polylogarithmic time, no

similar bounds are known for range searching with more complex ranges such as simplices

or disks. In such cases, we seek a tradeo� between the query time and the size of the data

structure | How fast can a query be answered using O(npolylogn) space, how much space

is required to answer a query in O(polylogn) time, and what kind of tradeo� between the

size and the query time can be achieved?

In this paper we survey the known techniques and data structures for range-searching

problems and describe their applications to other related searching problems. As mentioned

in the beginning, the quest for e�cient range-searching data structure has led to many

general, powerful techniques that have had a signi�cant impact on several other geometric

problems. The emphasis of this survey is on describing known results and general techniques

developed for range searching, rather than on open problems. The paper is organized as

follows. We describe, in Section 2, di�erent models of computation that have been used to

prove upper and lower bounds on the performance of data structures. Next, in Section 3,

we review data structures for orthogonal range searching and its variants. Section 4 surveys

known techniques and data structures for simplex range searching, and Section 5 discusses

some variants and extensions of simplex range searching. Finally, we review data structures

for intersection searching and optimization queries in Sections 6 and 7, respectively.

2 Models of Computation

Most algorithms and data structures in computational geometry are implicitly described in

the familiar random access machine (RAM) model, described in [17], or the real RAM model

described by Preparata and Shamos [242]. In the traditional RAM model, memory cells can

contain arbitrary (log n)-bit integers, which can be added, multiplied, subtracted, divided

(computing bx=yc), compared, and used as pointers to other memory cells in constant time.
A few algorithms rely on a variant of the RAM model, proposed by Fredman and Willard

[129], that allows memory cells to contain w-bit integers, for some parameter w � log n, and

permits both arithmetic and bitwise logical operations in constant time. In a real RAM, we

also allow memory cells to store arbitrary real numbers (such as coordinates of points). We

allow constant-time arithmetic on and comparisons between real numbers, but we do not

allow conversion between integers and reals. In the case of range searching over a semigroup

other than the integers, we also allow memory cells to contain arbitrary values from the

4 Pankaj K. Agarwal and Je� Erickson

semigroup, but these values can only be added (using the semigroup's addition operator, of

course).

Almost all known range-searching data structures can be described in the more restric-

tive pointer machine model, originally developed by Tarjan [271].3 The main di�erence

between the two models is that on a pointer machine, a memory cell can be accessed only

through a series of pointers, while in the RAM model, any memory cell can be accessed in

constant time. Tarjan's basic pointer machine model is most suitable for studying range-

reporting problems. In this model, a data structure is a directed graph with outdegree 2.

To each node v in this graph, we associate a label `(v), which is an integer between 0 and n.

Nonzero labels are indices of the points in S. The query algorithm, given a range , begins

at a special starting node and performs a sequence of the following operations: (1) visit a

new node by traversing an edge from a previously visited node, (2) create a new node v

with `(v) = 0, whose outgoing edges point to previously visited nodes, and (3) redirect an

edge leaving a previously visited node, so that it points to another previously visited node.

When the query algorithm terminates, the set of visited nodes W (), called the working

set, is required to contain the indices of all points in the query range; that is, if pi 2 , then
there must be a node v 2 W () such that `(v) = i. The working set W () may contain

labels of points that are not in the query range. The size of the data structure is the number

of nodes in the graph, and the query time for a range is the size of the smallest possible

working setW (). The query time ignores the cost of other operations, including the cost of

deciding which edges to traverse. There is no notion of preprocessing or update time in this

model. Note that the model accommodates both static and self-adjusting data structures.

Chazelle [58] de�nes several generalizations of the pointer-machine model that are

more appropriate for answering counting and semigroup queries. In Chazelle's general-

ized pointer-machine models, nodes are labeled with arbitrary O(log n)-bit integers. In

addition to traversing edges in the graph, the query algorithm is also allowed to perform

various arithmetic operations on these integers. An elementary pointer machine can add

and compare integers; in an arithmetic pointer machine, subtraction, multiplication, inte-

ger division, and shifting (x 7! 2x) are also allowed. When the query algorithm terminates

in these models, some node in the working set is required to contain the answer. If the

points have weights from an additive semigroup other than the integers, nodes in the data

structure can also be labeled with semigroup values, but these values can only be added.

Most lower bounds, and a few upper bounds, are described in the so-called semigroup

arithmetic model, which was originally introduced by Fredman [133] and re�ned by Yao

[292]. In the semigroup arithmetic model, a data structure can be informally regarded

as a set of precomputed partial sums in the underlying semigroup. The size of the data

structure is the number of sums stored, and the query time is the minimum number of

semigroup operations required (on the precomputed sums) to compute the answer to a

query. The query time ignores the cost of various auxiliary operations, including the cost

3Several very di�erent models of computation with the name \pointer machine" have been proposed;

these are surveyed by Ben-Amram [39], who suggests the less ambiguous term pointer algorithm for the

model we describe.

Geometric Range Searching and Its Relatives 5

of determining which of the precomputed sums should be added to answer a query. Unlike

the pointer-machine model, the semigroup model allows immediate access, at no cost, to

any precomputed sum.

The informal model we have just described is much too powerful. For example, in

this informal model, the optimal data structure for counting queries consists of the n + 1

integers 0; 1; : : : ; n. To answer a counting query, we simply return the correct answer; since

no additions are required, we can answer queries in zero \time", using a \data structure"

of only linear size!

Here is a more formal de�nition that avoids this problem. Let (S;+) be a commutative

semigroup. A linear form is a sum of variables over the semigroup, where each variable

can occur multiple times, or equivalently, a homogeneous linear polynomial with positive

integer coe�cients. The semigroup is faithful if any two identically equal linear forms have

the same set of variables, although not necessarily with the same set of coe�cients.4 For

example, the semigroups (Z;+), (R;min), (N; gcd), and (f0; 1g;_) are faithful, but the

semigroup (f0; 1g;+ mod 2) is not faithful.

Let S = fp1; p2; : : : ; png be a set of objects, S a faithful semigroup, R a set of ranges,

and � a relation between objects and ranges. (Recall that in the standard range-searching

problem, the objects in S are points, and � is containment.) Let x1; x2; : : : ; xn be a set

of n variables over S, each corresponding to a point in S. A generator g(x1; : : : ; xn) is a

linear form
Pn

i=1 �ixi, where the �i's are non-negative integers, not all zero. (In practice,

the coe�cients �i are either 0 or 1.) A storage scheme for (S;S;R;�) is a collection of

generators fg1; g2; : : : ; gsg with the following property: For any query range 2 R, there
is an set of indices I � f1; 2; : : : ; sg and a set of labeled nonnegative integers f�i j i 2 Ig
such that the linear forms X

pi�

xi and
X
i2I

�igi

are identically equal. In other words, the equation

X
pi�

w(pi) =
X
i2I

�igi(w(p1); w(p2); : : : ; w(pn))

holds for any weight function w : S ! S. (Again, in practice, �i = 1 for all i 2 I .) The

size of the smallest such set I is the query time for ; the time to actually choose the

indices I is ignored. The space used by the storage scheme is measured by the number of

generators. There is no notion of preprocessing time in this model.

4More formally, (S;+) is faithful if for each n > 0, for any sets of indices I; J � f1; : : : ; ng so that I 6= J ,

and for every sequence of positive integers �i; �j (i 2 I; j 2 J), there are semigroup values s1; s2; : : : ; sn 2 S

such that

X
i2I

�isi 6=
X
j2J

�jsj :

6 Pankaj K. Agarwal and Je� Erickson

We emphasize that although a storage scheme can take advantage of special properties

of the set S or the semigroup S, it must work for any assignment of weights to S. In

particular, this implies that lower bounds in the semigroup model do not apply to the

problem of counting the number of points in the query range, even though (N;+) is a

faithful semigroup, since a storage scheme for the counting problem only needs to work for

the particular weight function w(p) = 1 for all p 2 S. Similar arguments apply to emptiness,
reporting, and optimization queries, even though the semigroups (f0; 1g;_), (2S ;[), and
(R;min) are all faithful.

The requirement that the storage scheme must work for any weight assignment even

allows us to model problems where the weights depend on the query. For example, suppose

for some set S of objects with real weights, we have a storage scheme that lets us quickly

determine the minimum weight of any object hit by a query ray. In other words, we have

a storage scheme for S under the semigroup (R;min) that supports intersection searching,

where the query ranges are rays. We can use such a storage scheme to answer ray-shooting

queries, by letting the weight of each object be its distance along the query ray from the

basepoint. If we want the �rst object hit by the query ray instead of just its distance, we

can use the faithful semigroup (S � R; �), where

(p1; �1) � (p2; �2) =
(
(p1; �1) if �1 � �2,

(p2; �2) otherwise,

and letting the weight of an object p 2 S be (p; �), where � is the distance along the query

ray between the basepoint and p. We reiterate, however, that lower bounds in the semigroup

model do not imply lower bounds on the complexity of ray shooting.

Although in principle, storage schemes can exploit of special properties of the semigroup

S, in practice, they never do. All known upper and lower bounds in the semigroup arithmetic

model hold for all faithful semigroups. In other models of computation where semigroup

values can be manipulated, such as RAMs and elementary pointer machines, slightly better

upper bounds are known for some problems when the semigroup is (N;+).

The semigroup model is formulated slightly di�erently for o�ine range-searching prob-

lems. Here we are given a set of weighted points S and a �nite set of query ranges R, and
we want to compute the total weight of the points in each query range. This is equivalent

to computing the product Aw, where A is the incidence matrix of the points and ranges,

and w is the vector of weights. In the o�ine semigroup model, introduced by Chazelle [65],

an algorithm can be described as a circuit (or straight-line program) with one input for

every point and one output for every query range, where every gate (respectively, state-

ment) performs a binary semigroup addition. The running time of the algorithm is the

total number of gates (respectively, statements). For any weight function w : S ! S, the

output associated with a query range is w(S \). Just as in the online case, the circuit

is required to work for any assignment of weights to the points; in e�ect, the outputs of the

circuit are the linear forms
P

pi2
xi. See Figure 1 for an example.

A serious weakness of the semigroup model is that it does not allow subtractions even

if the weights of points belong to a group. Therefore, we will also consider the group model,

Geometric Range Searching and Its Relatives 7

1

p2 p3 p4 p5

432

p8p7p1 p6

1

3

4

2

p3

p8

p7

p6
p5

p4

p1

p2

Figure 1. A set of eight points and four disks, and an o�ine semigroup arithmetic algorithm to compute

the total weight of the points in each disk.

in which both additions and subtractions are allowed [287, 64, 65]. Chazelle [65] considers

an extension of the o�ine group model in which circuits are allowed a limited number of

help gates, which can compute arbitrary binary functions.

Of course it is natural to consider arithmetic circuits which also allow multiplication

(\the ring model"), division (\the �eld model"), or even more general functions such as

square roots or exponentiation. There is a substantial body of literature on the complexity

of various types of arithmetic circuits [278, 269, 53], but almost nothing is known about the

complexity of geometric range searching in these models. Perhaps the only relevant result

is that any circuit with operations +;�;�;�;p requires
(log n) time to answer any

reasonable range query, or
(n logn) time to solve any reasonable o�ine range searching

problem, since such a circuit can be modeled as an algebraic computation tree with no

branches [40] or as a straight-line program on a real RAM [38]. (Computation trees with

more general functions are considered in [147].)

Almost all geometric range-searching data structures are constructed by subdividing

space into several regions with nice properties and recursively constructing a data struc-

ture for each region. Range queries are answered with such a data structure by performing

a depth-�rst search through the resulting recursive space partition. The partition graph

model, recently introduced by Erickson [117, 118, 119], formalizes this divide-and-conquer

approach, at least for hyperplane and halfspace range searching data structures. The par-

tition graph model can be used to study the complexity of emptiness queries, unlike the

semigroup arithmetic and pointer machine models, in which such queries are trivial.

Formally, a partition graph is a directed acyclic graph with constant outdegree, with a

single source, called the root, and several sinks, called leaves. Associated with each internal

node is a cover of Rd by a constant number of connected subsets called query regions, each

associated with an outgoing edge. Each internal node is also labeled either primal or dual,

indicating whether the query regions should be considered a decomposition of \primal" or

\dual" space. (Point-hyperplane duality is discussed in Section 4.2.) Any partition graph

de�nes a natural search structure, which is used both to preprocess a set of points and

to perform a query for a hyperplane or halfspace. The points are preprocessed one at a

time. To preprocess a single point, we perform a depth-�rst search of the graph starting

8 Pankaj K. Agarwal and Je� Erickson

at the root. At each primal node, we traverse the outgoing edges corresponding to the

query regions that contain the point; at each dual node, we traverse the edges whose query

regions intersect the point's dual hyperplane. For each leaf ` of the partition graph, we

maintain a set P` containing the points that reach ` during the preprocessing phase. The

query algorithm for hyperplanes is an exactly symmetric depth-�rst search | at primal

nodes, we look for query regions that intersect the hyperplane, and at dual nodes, we look

for query regions that contain its dual point. The answer to a query is determined by the

sets P` associated with the leaves ` of the partition graph that the query algorithm reaches.

For example, the output of an emptiness query is \yes" (i.e., the query hyperplane contains

none of the points) if and only if P` = ; for every leaf ` reached by the query algorithm.

The size of the partition graph is the number of edges in the graph; the complexity of the

query regions and the sizes of the sets P` are not considered. The preprocessing time for a

single point and the query time for a hyperplane are given by the number of edges traversed

during the search; the time required to actually construct the partition graph and to test

the query regions is ignored.

We conclude this section by noting that most of the range-searching data structures

discussed in this paper (halfspace range-reporting data structures being a notable exception)

are based on the following general scheme. Given a point set S, they precompute a family

F = F(S) of canonical subsets of S and store the weight w(C) =
P

p2C w(p) of each

canonical subset C 2 F . For a query range , they determine a partition C = C(S;) � F
of S\ and add the weights of the subsets in C to compute w(S\). Borrowing terminology
from [203], we will refer to such a data structure as a decomposition scheme.

There is a close connection between decomposition schemes and storage schemes in the

semigroup arithmetic model described earlier. Each canonical subset C = fpi j i 2 Ig 2 F ,
where I � f1; 2; : : : ; ng, corresponds to the generator

P
i2I xi. In fact, because the points

in any query range are always computed as the disjoint union of canonical subsets, any

decomposition scheme corresponds to a storage scheme that is valid for any semigroup.

Conversely, lower bounds in the semigroup model imply lower bounds on the complexity of

any decomposition scheme.

How exactly the weights of canonical subsets are stored and how C is computed depends
on the model of computation and on the speci�c range-searching problem. In the semigroup

(or group) arithmetic model, the query time depends only on the number of canonical

subsets in C , regardless of how they are computed, so the weights of canonical subsets can

be stored in an arbitrary manner. In more realistic models of computation, however, some

additional structure must be imposed on the decomposition scheme in order to e�ciently

compute C . In a hierarchical decomposition scheme, the weights are stored in a tree T .

Each node v of T is associated with a canonical subset Cv 2 F , and the children of v are

associated with subsets of Cv. Besides the weight of Cv, some auxiliary information is also

stored at v, which is used to determine whether Cv 2 C for a query range . Typically,

this auxiliary information consists of some geometric object, which plays the same role as

a query region in the partition graph model.

If the weight of each canonical subset can be stored in O(1) memory cells, then the

Geometric Range Searching and Its Relatives 9

total size of the data structure is just O(jFj). If the underlying searching problem is a

range-reporting problem, however, then the \weight" of a canonical subset is the set itself,

and thus it is not realistic to assume that each \weight" requires only constant space. In

this case, the size of the data structure is O(
P

C2F jCj) if each subset is stored explicitly

at each node of the tree. As we will see below, the size can be reduced to O(jFj) by storing
the subsets implicitly (e.g., storing points only at leaves).

To determine the points in a query range , a query procedure performs a depth-�rst

search of the tree T , starting from the root. At each node v, using the auxiliary information

stored at v, the procedure determines whether the query range contains Cv, intersects

Cv, or is disjoint from Cv. If contains Cv, then Cv is added to C (rather, the weight

of Cv is added to a running counter). Otherwise, if intersects Cv, the query procedure

identi�es a subset of children of v, say fw1; : : : ; wag, so that the canonical subsets Cwi
\ ,

for 1 � i � a, form a partition of Cv \ . Then the procedure searches each wi recursively.

The total query time is O(log n+ jC j), provided constant time is spent at each node visited.

3 Orthogonal Range Searching

In d-dimensional orthogonal range searching, the ranges are d-rectangles, each of the formQd
i=1[ai; bi], where ai; bi 2 R. This is an abstraction of multi-key searching [43, 289], which

is a central problem in statistical and commercial databases. For example, the points of S

may correspond to employees of a company, each coordinate corresponding to a key such

as age, salary, or experience. Queries such as \Report all employees between the ages of

30 and 40 who earn more than $30; 000 and who have worked for more than 5 years" can

be formulated as orthogonal range-reporting queries. Because of its numerous applications,

orthogonal range searching has been studied extensively for the last 25 years. A survey

of earlier results can be found in the books by Mehlhorn [211] and Preparata and Shamos

[242]. In this section we review more recent data structures and lower bounds.

3.1 Upper bounds

Most of the recent orthogonal range-searching data structures are based on range trees,

introduced by Bentley [42]. For d = 1, the range tree of S is either a minimum-height

binary search tree on S or an array storing S in sorted order. For d > 1, the range tree of S

is a minimum-height binary tree T with n leaves, whose ith leftmost leaf stores the point of

S with the ith smallest x1-coordinate. To each interior node v of T , we associate a canonical

subset Cv � S containing the points stored at leaves in the subtree rooted at v. For each

v, let av (resp. bv) be the smallest (resp. largest) x1-coordinate of any point in Cv, and let

C�

v denote the projection of Cv onto the hyperplane x1 = 0. The interior node v stores av,

bv, and a (d � 1)-dimensional range tree constructed on C�

v . For any �xed dimension d,

the size of the overall data structure is O(n logd�1 n), and it can be constructed in time

O(n logd�1 n). The range-reporting query for a rectangle =
Qd

i=1[ai; bi] can be answered

as follows. If d = 1, the query can be answered by a binary search. For d > 1, we traverse

10 Pankaj K. Agarwal and Je� Erickson

the range tree as follows. Suppose we are at a node v. If v is a leaf, then we report its

corresponding point if it lies inside . If v is an interior node and the interval [av; bv] does

not intersect [a1; b1], there is nothing to do. If [av; bv] � [a1; b1], we recursively search in the

(d � 1)-dimensional range tree stored at v, with the rectangle
Qd

i=2[ai; bi]. Otherwise, we

recursively visit both children of v. The query time of this procedure is O(logd n+k), which

can be improved to O(logd�1 n + k) using the fractional-cascading technique [76, 196]. A

range tree can also answer a range-counting query in time O(logd�1 n). Range trees are an

example of a multi-level data structure, which we will discuss in more detail in Section 5.1.

The best-known data structures for orthogonal range searching are by Chazelle [55, 58],

who used compressed range trees and other techniques to improve the storage and query

time. His results in the plane, under various models of computation, are summarized in

Table 1; the preprocessing time of each data structure is O(n log n). If the query rectangles

are \three-sided rectangles" of the form [a1; b1]� [a2;1], then one can use a priority search

tree of size O(n) to answer a planar range-reporting query in time O(log n+ k) [208].

Problem Model Size Query time

RAM n log n

Counting APM n log n

EPM n log2 n

n log n+ k log"(2n=k)

RAM n log log n log n+ k log log(4n=k)

n log" n log n+ k

Reporting APM n k log(2n=k)

EPM n k log2(2n=k)
n log n

log log n
log n+ k

Semigroup m

log n

log(2m=n)
n log2+"

n

Semigroup RAM n log log n log2 n log log n

n log" n log2 n

APM n log3 n

EPM n log4 n

Table 1. Asymptotic upper bounds for planar orthogonal range searching, due to Chazelle [55, 58], in the

random access machine (RAM), arithmetic pointer machine (APM), elementary pointer machine (EPM),

and semigroup arithmetic models.

Each of the two-dimensional results in Table 1 can be extended to queries in Rd at a

cost of an additional logd�2 n factor in the preprocessing time, storage, and query-search

time. For d � 3, Subramanian and Ramaswamy [270] have proposed a data structure

that can answer a range-reporting query in time O(logd�2 n log� n+ k) using O(n logd�1 n)

space, and Bozanis et al. [51] have proposed an a data structure with O(n logd n) size and

O(logd�2 n+k) query time. The query time (or the query-search time in the range-reporting

case) can be reduced to O((log n= log log n)d�1) in the RAM model by increasing the space

to O(n logd�1+" n). In the semigroup arithmetic model, a query can be answered in time

O((log n= log(m=n))d�1) using a data structure of size m, for any m =
(n logd�1+" n) [61].

Geometric Range Searching and Its Relatives 11

Willard [288] proposed a data structure of size O(n logd�1 n= log logn), based on fusion trees,

that can answer an orthogonal range-reporting query in time O(logd�1 n= log log n + k).

Fusion trees were introduced by Fredman and Willard [129] for an O(n
p
logn) sorting

algorithm in a RAM model that allows bitwise logical operations.

Overmars [231] showed that if S is a subset of a u�u grid U in the plane and the vertices

of query rectangles are also a subset of U , then a range-reporting query can be answered in

time O(
p
log u+ k), using O(n log n) storage and preprocessing, or in O(log log u+ k) time,

using O(n logn) storage and O(u3 log u) preprocessing. See [183] for some other results on

range-searching for points on integer grids.

Orthogonal range-searching data structures based on range tress can be extended to

handle c-oriented ranges in a straightforward manner. The performance of such a data

structure is the same as that of a c-dimensional orthogonal range-searching structure. If

the ranges are homothets of a given triangle, or translates of a convex polygon with constant

number of edges, a two-dimensional range-reporting query can be answered in O(logn+ k)

time using linear space [67, 68]. If the ranges are octants in R
3 , a range-reporting query

can be answered in either O((k + 1) log n) or O(log2 n+ k) time using linear space [68].

3.2 Lower bounds

Fredman [131, 132, 133, 135] was the �rst to prove nontrivial lower bounds on orthogonal

range searching, in a version of semigroup arithmetic model in which the points can be in-

serted and deleted dynamically. He showed that a mixed sequence of n insertions, deletions,

and queries requires
(n logd n) time. These bounds were extended by Willard [287] to the

group model, under some fairly restrictive assumptions.

Yao [292] proved a lower bound for two-dimensional static data structures in the semi-

group arithmetic model. He showed that if only m units of storage is available, a query

takes
(logn= log((m=n) log n)) in the worst case. Vaidya [272] proved lower bounds for or-

thogonal range searching in higher dimensions, which were later improved by Chazelle [61].

In particular, Chazelle proved the following strong result about the average-case complexity

of orthogonal range searching:

Theorem 1 (Chazelle [61]). Let d; n;m be positive integers with m � n. If only m units

of storage are available, then the expected query time for a random orthogonal range query

in a random set of n points in the unit hypercube [0; 1]d is
((log n= log(2m=n))d�1) in the

semigroup arithmetic model.

A rather surprising result of Chazelle [60] shows that any data structure on a basic

pointer machine that answers a d-dimensional range-reporting query in O(polylogn + k)

time must have size
(n(logn= log logn)d�1); see also [18]. Notice that this lower bound is

greater than the O(n logd�2+" n) upper bound in the RAM model (see Table 1).

These lower bounds do not hold for o�ine orthogonal range searching, where given a

set of n weighted points in Rd and a set of n rectangles, one wants to compute the weight

of the points in each rectangle. Recently, Chazelle [65] proved that the o�ine version takes

12 Pankaj K. Agarwal and Je� Erickson

(n(log n= log log n)d�1) time in the semigroup model, and
(n log logn) time in the group

model. An
(n logn) lower bound also holds in the algebraic decision tree and algebraic

computation tree models [267, 40].

3.3 Secondary memory structures

If the input point set is rather large and does not �t into main memory, then the data

structure must be stored in secondary memory | on disk, for example | and portions

of it must moved into main memory when needed to answer a query. In this case the

bottleneck is the time spent in transferring data between main and secondary memory.

We assume that data is stored in secondary memory in blocks of size B, where B is a

parameter. Each access to the secondary memory transfers one block (i.e., B words), and

we count this as one input/output (I/O) operation. The size of a data structure is the

number of blocks required to store it, and the query (resp. preprocessing) time is de�ned as

the number of I/O operations required to answer a query (resp. to construct the structure).

To simplify our notation, let N = n=B, the number of blocks required to hold the input,

and let Log n = logB n. Under this model, the size of any data structure is at least N , and

the query time is at least Log n. I/O-e�cient orthogonal range-searching structures have

received much attention recently, but most of the results are known only for the planar

case. The main idea underlying these structures is to construct high-degree trees instead

of binary trees. For example, variants of B-trees are used to answer 1-dimensional range-

searching queries [35, 96]. A number of additional tricks are developed to optimize the size

and the query time. See [20, 21, 232] for I/O e�cient data structures that have been used

for answering range searching and related queries.

Table 2 summarizes the known results on secondary-memory structures for orthogo-

nal range searching. The data structure by Subramanian and Ramaswamy [270] for 3-

sided queries supports insertion/deletion of a point in time O(Log n+ (Log2 n)=B). Using

the argument by Chazelle [60], they proved that any secondary-memory data structure

that answers a range-reporting query using O(polyLogn + k=B) I/O operations requires

(N logN= log Log n) storage. Hellerstein et al. [162] have shown that if a data structure

for two-dimensional range query uses at most O(N) disk blocks for a constant r � 1, then

a query requires at least
((k=B)
p
logB= log logB) disk accesses; this extends an earlier

lower bound by Kanellakis et al. [180].

3.4 Practical data structures

None of the data structures described in Section 3.1 are used in practice, even in two

dimensions, because of the polylogarithmic overhead in the size and the query time. In

many real applications, the input is too large to be stored in the main memory, so the

number of disk accesses is a major concern. On the other hand, the range-searching data

structures described in Section 3.3 are not simple enough to be of practical use for d � 2.

For a data structure to be used in real applications, its size should be at most cn, where c

is a very small constant, the time to answer a typical query should be small | the lower

Geometric Range Searching and Its Relatives 13

d Range Size Query Time Source

d = 1 Interval N Log n+ k=B [35, 96]

Quadrant N log logB Log n+ k=B [244]

3-sided rectangle N Log n + k=B + log�B [270]

d = 2 3-sided rectangle N logB log logB Log n+ k=B [244]

Rectangle N logN= log Log n Log n + k=B + log�B [270]

Rectangle cN k=B
1�1=2c [270]

d = 3 Octant N logN �(n) Log n+ k=B [277]

Rectangle N log4N �(n) Log n+ k=B [277]

Table 2. Asymptotic upper bounds for secondary memory structures; here N = n=B, Log n = logB n, and

�(n) = log log Log n.

bounds proved in Section 3.2 imply that we cannot hope for small worst-case bounds | and

it should support insertions and deletions of points. Keeping these goals in mind, a plethora

of data structures have been proposed. We will sketch the general ideas and mention some

of the data structures in a little detail. For the sake of simplicity, we will present most of

the data structures in two dimensions. The book by Samet [251] is an excellent survey of

data structures developed in 1970's and 80's; more recent results are described in the survey

papers [145, 156, 169, 226, 227].

The most widely used data structures for answering 1-dimensional range queries are

B-trees and their variants [35, 96]. Since a B-tree requires a linear order on the input

elements, one needs to de�ne such an ordering on points in higher dimensions in order

to store them into a B-tree. An obvious choice is lexicographical ordering, also known

as the bit concatenation method, but this ordering performs rather poorly for higher di-

mensional range searching because a separate disk access may be required to report each

point. A better scheme for ordering the points is the bit-interleaving method, proposed

by Morton [217]. A point p = (x; y), where the binary representations of x and y are

x = xm�1xm�2 : : : x0 and y = ym�1ym�2 : : : y0, is regarded as the integer whose binary rep-

resentation is xm�1ym�1xm�2 : : : y0. A B-tree storing points based on the bit-interleaving

ordering is referred to as an N-tree [285] or a zkd-tree [228] in the literature. See [251] for

a more detailed discussion on the applications of bit interleaving in spatial data structures.

Faloutsos [121] suggested using Gray codes to de�ne a linear order on points. In general,

space-�lling curves5 can be used to de�ne a linear ordering on input points; Hilbert and

Morton curves, shown in Figure 2, are the some of the space-�lling curves commonly used

for this purpose. See [1, 30, 126, 175] for a comparison of the performance of various space-

�lling curves in the context of range searching. Since B-trees require extra space to store

pointers, several hashing schemes, including linear hashing [189], dynamic z-hashing [171]

and spiral hashing schemes [219] are proposed to minimize the size of the data structure.

The performance of any method that maps higher-dimensional points to a set of points in

5Formally speaking, a curve R ! [0; 1]d is called a space-�lling curve if it visits each point of the unit

hypercube exactly once. However, the same term often refers to approximations of space-�lling curves that

visit every point in a cubical lattice, such as the curves drawn in Figure 2. See the book by Sagan [248] for

a detailed discussion on space-�lling curves and [48] for some other applications of these curves.

14 Pankaj K. Agarwal and Je� Erickson

one dimension deteriorates rapidly with the dimension because such a mapping does not

preserve neighborhoods, though there has been some recent work on locality preserving

hashing schemes [174].

(i) (ii)

Figure 2. Examples of space-�lling curves used for range searching. (i) Hilbert curve. (ii) Morton curve.

A more e�cient approach to answer range queries is to construct a recursive partition

of space, typically into rectangles, and to construct a tree induced by this partition. The

simplest example of this type of data structure is the quad tree in the plane. A quad tree

is a 4-way tree, each of whose nodes is associated with a square Bv. Bv is partitioned

into four equal-size squares, each of which is associated with one of the children of v. The

squares are partitioned until one at most point is left inside a square. Quad trees can be

extended to higher dimensions in an obvious way (they are called oct-trees in 3-space). In

d-dimensions, a node has 2d children. A range-search query can be answered by traversing

the quad tree in a top-down fashion. Because of their simplicity, quad trees are one of the

most widely used data structures for a variety of problems. For example, they were used as

early as in 1920's, by Weyl [282] for computing the complex roots of a univariate polynomial

approximately; Greengard used them for the so-called n-body problem [146]. See the book

by Samet [250, 251] for a detailed discussion on quad trees and their applications.

Figure 3. A quad tree

One disadvantage to quad trees is that arbitrarily many levels of partitioning may be

required to separate tightly clustered points. Finkel and Bentley [127] described a variant of

the quad tree for range searching, called a point quad-tree, in which each node is associated

Geometric Range Searching and Its Relatives 15

with a rectangle and the rectangle is partitioned into four rectangles by choosing a point

in the interior and drawing horizontal and vertical lines through that point. Typically the

point is chosen so that the height of the tree is O(log n). A recent paper by Faloutsos and

Gaede [122] analyzes the performance of quad trees using Hausdor� fractal dimension. See

also [138, 170] for other data structures based on quad trees.

In order to minimize the number of disk accesses, one can partition the square into many

squares (instead of four) by a drawing either a uniform or a nonuniform grid. The grid �le,

introduced by Nievergelt et al. [224] is based on this idea. Since grid �les are used frequently

in geographic information systems, we describe them briey. A grid �le partitions the plane

into a nonuniform grid by drawing horizontal and vertical lines. The grid lines are chosen

so that the points in each cell can be stored in a single block of the disk. The grid is then

partitioned into rectangles, each rectangle being the union of a subset of grid cells, so that

the points in each rectangle can still be stored in a single block of the disk. The data

within each block can be organized in an arbitrary way. The grid �le maintains two pieces

of information: a grid directory, which stores the index of the block that stores the points

lying in each grid cell, and two arrays, called linear scales, which store the x-coordinates

(resp. y-coordinates) of the vertical (resp. horizontal) lines. It is assumed that the linear

scales are small enough to be stored in main memory. A point can be accessed by two

disk accesses as follows. By searching with the x- and y-coordinates of the points in the

linear scales, we determine the grid cell that contains the point. We then access that cell

of the grid directory (using one disk access) to determine the index of the block that stores

p, and �nally we access that block and retrieve the point p (second disk access). A range

query is answered by locating the cells that contain the corners of the query rectangle and

thus determining all the grid cells that intersect the query rectangle. We then access each

of these cells to report all the points lying in the query rectangle. Several heuristics are

used to minimize the number of disk accesses required to answer a query and to update the

structures as points are inserted or deleted. Note that a range query reduces to another

range query on the grid directory, so one can store the grid directory itself as a grid �le. This

notion of a hierarchical grid �le was proposed by Hinrichs [165] and Krishnamurthy and

Wang [190]. A related data structure, known as the BANG �le, was proposed by Freestone

[136]; other variants of grid �les are proposed in [165, 172, 229].

Quad trees, grid �les, and their variants construct a grid on a rectangle containing all

the input points. One can instead partition the enclosing rectangle into two rectangles by

drawing a horizontal or a vertical line and partitioning each of the two rectangles indepen-

dently. This is the idea behind the so called kd-tree due to Bentley [41]. In particular, a

kd-tree is a binary tree, each of whose nodes v is associated with a rectangle Bv. If Bv does

not contain any point in its interior, v is a leaf. Otherwise, Bv is partitioned into two

rectangles by drawing a horizontal or vertical line so that each rectangle contains at most

half of the points; splitting lines are alternately horizontal and vertical. A kd-tree can be

extended to higher dimensions in an obvious manner.

In order to minimize the number of disk accesses, Robinson [245] suggested the following

generalization of a kd-tree, which is known as a kd-B-tree. One can construct a B-tree

16 Pankaj K. Agarwal and Je� Erickson

instead of a binary tree on the recursive partition of the enclosing rectangle, so all leaves

of the tree are at the same level and each node has between B=2 and B children. The

rectangles associated with the children are obtained by splitting Bv recursively, as in a kd-

tree approach; see Figure 4(i). Let w1; : : : ws be the children of v. Then Bw1
; : : : ; Bws can be

stored implicitly at v by storing them as a kd-tree, or the coordinates of their corners can be

stored explicitly. If points are dynamically inserted into a kd-B-tree, then some of the nodes

may have to be split, which is an expensive operation, because splitting a node may require

reconstructing the entire subtree rooted at that node. Several variants of kd-B-trees have

been proposed to minimize the number of splits, to optimize the space, and to improve the

query time [195, 137, 120, 36, 257, 163, 258, 255, 260]. We mention only two of the variants

here: Buddy trees [257] and hB-trees [195, 120]. A buddy tree is a combination of a quad

tree and kd-B-tree in the sense that rectangles are split into sub-rectangles only at some

speci�c locations, which simpli�es the split procedure; see [257] for details. If points are in

degenerate position, then it may not be possible to split them into two halves by a line.

Lomen and Salzberg [195] circumvent this problem by introducing a new data structure,

called hB-tree, in which the region associated with a node is allowed to be R1 nR2 where R1

and R2 are rectangles. A more re�ned version of this data structure, known as hB�-tree, is

presented in [120].

A

B C

D

F

A

B

D1

E1

D2

E2

C

F

V W Z

(ii)(i)

B C FD E A BA

V W

E

E1D1

`

C F

Z

D2 E2

Figure 4. Splitting a node V of a kd-B-tree by a line `. (i) V before the split. (ii) V is split into two nodes

W and Z; the subtrees rooted at D and E are split recursively.

In a kd-tree, a rectangle is partitioned into two rectangles by drawing a horizontal or

vertical line. One can instead associate a convex polygon Bv with each node v of the

tree, use an arbitrary line to partition Bv into two convex polygons, and associate the two

polygons with the children of v. This idea is the same as in binary space partition trees

[139, 237]. Again, one can construct a B-tree on this recursive partitioning scheme to reduce

the number of disk accesses. The resulting structure called cell trees is studied in [150, 151].

Geometric Range Searching and Its Relatives 17

All the data structures described in this section construct a recursive partition of the

space. There are other data structures (of which the R-tree is perhaps the most famous

example) that construct a hierarchical cover of the space. We will discuss some of these

data structures in the next subsection.

3.5 The Partial Sum Problem

Preprocess a d-dimensional array A with n entries, in an additive semigroup, into a data

structure, so that for a d-dimensional rectangle = [a1; b1]� � � � � [ad; bd], the sum

�(A;) =
X

(k1;k2;:::;kd)2

A[k1; k2; : : : ; kd]

can be computed e�ciently. In the o�ine version, given A and m rectangles 1; 2; : : : ; m,

we wish to compute �(A; i) for each i. Note that this is just a special case of orthogonal

range searching, where the points lie on a regular d-dimensional lattice.

Partial-sum queries are widely used for on-line analytical processing (OLAP) of com-

mercial databases. OLAP allows companies to analyze aggregate databases built from

their data warehouses. A popular data model for OLAP applications is the multidimen-

sional database, known as data cube [144], which represents the data as d-dimensional

array. Thus, an aggregate query can be formulated as a partial-sum query. Driven by this

application, several heuristics have been proposed to answer partial-sum queries on data

cubes [152, 159, 168, 262, 167, 247].

Yao [291] showed that, for d = 1, a partial-sum query can be answered in O(�(n))

time using O(n) space.6 If the additive operator is max or min, then a partial-sum query

can be answered in O(1) time under the RAM model using a Cartesian tree, developed by

Vuillemin [279], and the nearest-common-ancestor algorithm of Harel and Tarjan [158].

For d > 1, Chazelle and Rosenberg [80] gave a data structure of size O(n logd�1 n) that

can answer a partial-sum query in time O(�(n) logd�2 n). They also showed that the o�ine

version takes
(n+m�(m;n)) time for any �xed d � 1. If points are allowed to insert into

S, the query time is
(log n= log log n) [130, 292] for the one-dimensional case; the bounds

were extended by Chazelle [61] to
((log n= log logn)d), for any �xed dimension d. Chazelle

[56] extended the data structure by Yao to the following variant of the partial-sum problem:

Let T be a rooted tree with n nodes, each of whose node is associated with an element of a

commutative semigroup. Preprocess T so that for a query node v, the sum of the weights

in the subtree rooted at v can be computed e�ciently. Chazelle showed that such a query

can be answered in O(�(n)) time, using O(n) space.

6Here, �(n) and �(m;n) denote functional inverses of Ackermann's function. These functions go ex-

tremely slowly; for example, �(n) � 4 for all n � 2 " (2 " (2 " 2)) = 2 " 216, where for any positive integer

k, 2 " k = 22"(k�1) denotes an exponential tower of k twos. For formal de�nitions, see [259].

18 Pankaj K. Agarwal and Je� Erickson

3.6 Rectangle-Rectangle Searching

Preprocess a set S of n rectangles in Rd so that for a query rectangle q, the rectangles of

S that intersect q can be reported (or counted) e�ciently. Rectangle-rectangle searching is

central to many applications because, in practice, polygonal objects are approximated by

rectangles. Chazelle [58] has shown that the bounds mentioned in Table 1 also hold for this

problem.

In practice, two general approaches are used to answer a query. A rectangle
Qd

i=1[ai; bi]

in R
d can be mapped to the point (a1; a2; : : : ; ad; b1; b2; : : : ; bd) in R

2d , and a rectangle-

intersection query can be reduced to orthogonal range searching. Many heuristic data

structures based on this scheme have been proposed; see [125, 235, 257] for a sample of such

results. The second approach is to construct a data structure on S directly in R
d . The

most popular data structure based on this approach is the R-tree, originally introduced by

Guttman [157].

R1

R2

R3

R4

R5

A

B

C

D

E

F
G

H

I

R1 R2

R3 R4 R5 R6

A B C D E F G H I

Figure 5. An R-tree.

An R-tree is a multiway tree (like a B-tree), each of whose nodes stores a set of rectangles.

Each leaf stores a subset of input rectangles, and each input rectangle is stored at exactly

one leaf. For each node v, let Rv be the smallest rectangle containing all the rectangles

stored at v; Rv is stored at the parent of v (along with the pointer to v). Rv induces

the subspace corresponding to the subtree rooted at v, in the sense that for any query

rectangle intersecting Rv, the subtree rooted at v is searched. Rectangles stored at a node

are allowed to overlap. Therefore, unlike all the data structures discussed in Section 3.4, a

R-tree forms a recursive cover of the data space, instead of a recursive partition. Although

allowing rectangles to overlap helps reduce the size of the data structure, answering a query

becomes more expensive. Guttman suggests some heuristics to construct a R-tree so that

the overlap is minimized. Better heuristics for minimizing the overlap were developed by

Beckmann et al. [37], Green [145], and Kamal and Faloutsos [177, 178, 179]. There are many

variants of R-tree, depending on the application: an R�-tree [37] uses more sophisticated

techniques to minimize the overlap; a Hilbert-R-tree [179] de�nes a linear ordering on the

rectangles, by sorting their centers along the Hilbert space-�lling curve, and constructs a B-

Geometric Range Searching and Its Relatives 19

tree based on this ordering of rectangles; and an R+-tree avoids overlapping directory cells

by clipping rectangles [257]. Additional variants are suggested to avoid overlap in higher

dimensions. Berchtold et al. [47] de�ne the X-tree, in which the interior nodes are allowed

to be arbitrarily large; Lin et al. [194] project rectangles onto a lower dimensional space and

construct an R-tree (or some variant thereof) on these projections. Leutenegger et al. [193]

compare di�erent variants of R-trees and discuss advantages of di�erent heuristics used to

minimize the overlap of rectangles.

We discuss some more general rectangle-intersection searching problems in Section 6.3.

4 Simplex Range Searching

As mentioned in the introduction, simplex range searching has received considerable atten-

tion during the last few years. Besides its direct applications, simplex range-searching data

structures have provided fast algorithms for numerous other geometric problems. See the

survey paper by Matou�sek [204] for an excellent review of techniques developed for simplex

range searching.

Unlike orthogonal range searching, no simplex range-searching data structure is known

that can answer a query in polylogarithmic time using near-linear storage. In fact, the

lower bounds stated below indicate that there is very little hope of obtaining such a data

structure, since the query time of a linear-size data structure, under the semigroup model,

is roughly at least n1�1=d (thus saving only a factor of n1=d over the na��ve approach). Since

the size and query time of any data structure have to be at least linear and logarithmic,

respectively, we consider these two ends of the spectrum: (i) How fast can a simplex range

query be answered using a linear-size data structure, and (ii) how large should the size of a

data structure be in order to answer a query in logarithmic time. By combining these two

extreme cases, as we describe below, we obtain a tradeo� between space and query time.

Unless stated otherwise, each of the data structures we describe in this section can be

constructed in time that is only a polylogarithmic or n" factor larger than its size.

4.1 Linear-size data structures

Most of the linear-size data structures for simplex range searching are based on so-called

partition trees, originally introduced by Willard [286]. Roughly speaking, partition trees

are based on the following idea: Given a set S of points in Rd , partition the space into a

few, say, a constant number of, regions, each containing roughly equal number of points,

so that for any hyperplane h, the number of points lying in the regions that intersect h is

much less than the total number of points. Then recursively construct a similar partition

for the subset of points lying in each region.

Willard's original partition tree for a set S of n points in the plane is a 4-way tree,

constructed as follows. Let us assume that n is of the form 4k for some integer k, and

that the points of S are in general position. If k = 0, the tree consists of a single node

that stores the coordinates of the only point in S. Otherwise, using the ham-sandwich

20 Pankaj K. Agarwal and Je� Erickson

theorem [108], �nd two lines `1; `2 so that each quadrant Qi, for 1 � i � 4, induced by

`1; `2 contains exactly n=4 points. The root stores the equations of `1; `2 and the value

of n. For each quadrant, recursively construct a partition tree for S \ Qi and attach it

as the ith subtree of the root. The total size of the data structure is linear, and it can

be constructed in O(n log n) time. A halfplane range-counting query can be answered as

follows. Let h be a query halfplane. Traverse the tree, starting from the root, and maintain

a global count. At each node v storing nv nodes in its subtree, perform the following step:

If the line @h intersects the quadrant Qv associated with v, recursively visit the children

of v. If Qv \ h = ;, do nothing. Otherwise, since Qv � h, add nv to the global count.

The quadrants associated with the four children of any interior node are induced by two

lines, so @h intersects at most three of them, which implies that the query procedure does

not explore the subtree of one of the children. Hence, the query time of this procedure

is O(n�), where � = log3 4 � 0:7925. A similar procedure can answer a simplex range-

counting query within the same time bound, and a simplex range-reporting query in time

O(n� + k). Edelsbrunner and Welzl [114] described a simple variant of Willard's partition

tree that improves the exponent in the query-search time to log2(1 +
p
5)� 1 � 0:695.

A partition tree for points in R3 was �rst proposed by Yao [294], which can answer a

query in time O(n0:98). This bound was improved slightly in subsequent papers [101, 110,

295]. Using the Borsuk-Ulam theorem, Yao et al. [295] showed that, given a set S of n

points in R3 , one can �nd three planes so that each of the eight (open) octants determined

by them contains at most bn=8c points of S. Avis [31] proved that such a partition of Rd by

d hyperplanes is not always possible for d � 5; the problem is still open for d = 4. Weaker

partitioning schemes were proposed in [94, 293].

After the initial improvements and extensions on Willard's partition tree, a major break-

through was made by Haussler and Welzl [161]. They formulated range searching in an

abstract setting and, using elegant probabilistic methods, gave a randomized algorithm to

construct a linear-size partition tree with O(n�) query time, where � = 1� 1
d(d�1)+1

+ " for

any " > 0. The major contribution of their paper is the abstract framework and the notion

of "-nets. A somewhat di�erent abstract framework for randomized algorithms was pro-

posed by Clarkson [88, 92] around the same time; see also [220]. These abstract frameworks

and the general results attained under these frameworks popularized randomized algorithms

in computational geometry [223]. We briey describe the framework and the main result

by Haussler and Welzl because they are most pertinent to range searching.

A range space is a set system � = (X;R) where X is a set of objects and R is a family

of subsets of X. The elements of R are called the ranges of �. � is called a �nite range

space if the ground set X is �nite. Here are a few examples of geometric range spaces:

(i) �1 = (Rd ; fh j h is a halfspace in Rdg),
(ii) �2 = (Rd ; fB j B is a ball in Rdg),
(iii) Let H be the set of all hyperplanes in R

d . For a segment s, let Hs � H be

the set of all hyperplanes intersecting s. De�ne the range space �3 = (H; fHs j
s is a segment in Rdg).

Geometric Range Searching and Its Relatives 21

For a �nite range space � = (X;R), a subset N � X is called an "-net if N \ 6= ; for

every range 2 R with jj � "jXj. That is, N intersects every \large" range of �. (The

notion of "-nets can be extended to in�nite range spaces as well.) A subset A � X can be

shattered if every subset of A has the form A\ for some 2 R. The Vapnik-Chervonenkis
dimension, or VC-dimension, of a range space � is the size of the largest subset A that

can be shattered. For example, the VC-dimensions of �1;�2, and �3 are d+ 1, d+ 2, and

2d, respectively. The main result of Haussler and Welzl is that, given a �nite range space

� = (X;R) and parameters 0 < "; � � 1, if we choose a random subset N � X of size

max

�
8d

"
log

8d

"
;
4

"
log

2

�

�
;

then N is an "-net of � with probability at least 1� �. The bound on the size of "-nets was

improved by Blumer et al. [49] and Koml�os et al. [187].

Theorem 2 (Koml�os et al. [187]). For any �nite range space (X;R) of VC-dimension d

and for any 0 < " < 1, if N is a subset of X obtained by

d

"

�
log

1

"
+ 2 log log

1

"
+ 3

�

random independent draws, then N is an "-net of (X;R) with probability at least 1� e�d.

Theorem 2 and some other similar results [88, 92] have been used extensively in com-

putational geometry and learning theory; see the books by Motwani and Raghavan [218],

Mulmuley [223], and Anthony and Biggs [19] and the survey papers [90, 200, 256].

The �rst linear-size data structure with near-optimal query time for simplex range

queries in the plane was developed by Welzl [280]. His algorithm is based on the following

idea. A spanning path of a set S of points is a polygonal chain whose vertices are the points

of S. The crossing number of a polygonal path is the maximum number of its edges that can

be crossed by a hyperplane. Using Theorem 2, Welzl constructs a spanning path � = �(S)

of any set S of n points in Rd whose crossing number is O(n1�1=d log n). The bound on the

crossing number was improved by Chazelle and Welzl [83] to O(n1�1=d), which is tight in

the worst case. Let p1; p2; : : : ; pn be the vertices of �. If we know the edges of � that cross

h, then the weight of points lying in one of the halfspaces bounded by h can be computed by

answering O(n1�1=d) partial-sum queries on the sequence W = hw(p1); : : : ; w(pn)i. Hence,
by processing W for partial-sum queries, we obtain a linear-size data structure for sim-

plex range searching, with O(n1�1=d�(n)) query time, in the semigroup arithmetic model.

(Recall that the time spent in �nding the edges of � crossed by h is not counted in the semi-

group model.) In any realistic model of computation such as pointer machines or RAMs,

however, we also need an e�cient linear-size data structure for computing the edges of

� crossed by a hyperplane. Chazelle and Welzl [83] produced such a data structure for

d � 3, but no such structure is known for higher dimensions. Although spanning paths

were originally introduced for simplex range searching, they have been successfully applied

22 Pankaj K. Agarwal and Je� Erickson

to solve a number of other algorithmic as well as combinatorial problems; see, for example,

[3, 85, 109, 207, 234, 281].

Matou�sek and Welzl [206] gave an entirely di�erent algorithm for the halfspace range-

counting problem in the plane, using a combinatorial result of Erd}os and Szekeres [116].

The query time of their data structure is O(
p
n logn), and it uses O(n) space and O(n3=2)

preprocessing time. If subtractions are allowed, their algorithm can be extended to the tri-

angle range-counting problem. An interesting open question is whether the preprocessing

time can be improved to near linear. In order to make this improvement, we need a near-

linear time algorithm for the following problem, which is interesting its own right: Given

a sequence X of n integers, partition X into O(
p
n) subsequences, each of which is either

monotonically increasing or decreasing. The existence of such a partition of X follows from

the result by Erd}os and Szekeres, but the best known algorithm for computing such a par-

tition runs in time O(n3=2) [33]. However, a longest monotonically increasing subsequence

of X can be computed in O(n log n) time. The technique by Matou�sek and Welzl has also

been applied to solve some other geometric-searching problems, including ray shooting and

intersection searching [34].

The �rst data structure with roughly n1�1=d query time and near-linear space, for d > 3,

was obtained by Chazelle et al. [82]. Given a set S of n points in Rd , they construct a family

F = f�1; : : : ;�kg of triangulations of Rd , each of size O(rd). For any hyperplane h, there

is at least one �i so that only O(n=r) points lie in the simplices of �i that intersect h.

Applying this construction recursively, they obtain a tree structure of size O(n1+") that can

answer a halfspace range-counting query in time O(n1�1=d). The extra n" factor in the space

is due to the fact that they maintain a family of partitions instead of a single partition.

Another consequence of maintaining a family of partitions is that, unlike partition trees,

this data structure cannot be used directly to answering simplex range queries. Instead,

Chazelle et al. [82] construct a multi-level data structure (which we describe in Section 5.1)

to answer simplex range queries.

Matou�sek [203] developed a simpler, slightly faster data structure for simplex range

queries, by returning to the theme of constructing a single partition, as in the earlier

partition-tree papers. His algorithm is based on the following partition theorem, which

can be regarded as an extension of the result by Chazelle and Welzl.

Theorem 3 (Matou�sek [198]). Let S be a set of n points in Rd , and let 1 < r � n=2 be

a given parameter. Then there exists a family of pairs

� = f(S1;�1); : : : ; (Sm;�m)g

such that each Si � S lies inside the simplex �i, n=r � jSij � 2n=r, Si \ Sj = ; for all

i 6= j, and every hyperplane crosses at most cr1�1=d simplices of �; here c is a constant. If

r � n� for some suitable constant 0 < � < 1, then � can be constructed in O(n log r) time.

Note that although S is being partitioned into a family of subsets, unlike the earlier

results on partition trees, it does not partition Rd because �i's may intersect. In fact, it

Geometric Range Searching and Its Relatives 23

is an open problem whether Rd can be partitioned into O(r) disjoint simplices that satisfy

the above theorem.

Using Theorem 3, a partition tree T can be constructed as follows. Each interior node

v of T is associated with a canonical subset Cv � S and a simplex �v containing Cv; if v

is the root of T , then Cv = S and �v = R
d . Choose r to be a su�ciently large constant. If

jSj � 4r, T consists of a single node, and it stores all points of S. Otherwise, we construct

a family of pairs � = f(S1;�1); : : : ; (Sm;�m)g using Theorem 3. The root u stores the

value of n. We recursively construct a partition tree Ti for each Si and attach Ti as the ith

subtree of u. The root of Ti also stores �i. The total size of the data structure is linear, and

it can be constructed in time O(n log n). A simplex range-counting query can be answered

in the same way as with Willard's partition tree. Since any hyperplane intersects at most

cr1�1=d simplices of �, the query time is O(n1�1=d+logr c); the logr c term in the exponent

can be reduced to any arbitrarily small positive constant " by choosing r su�ciently large.

The query time can be improved to O(n1�1=d polylogn) by choosing r = n".

In a subsequent paper Matou�sek [203] proved a stronger version of Theorem 3, using

some additional sophisticated techniques (including Theorem 5 described below), that gives

a linear-size partition tree with O(n1�1=d) query time.

If the points in S lie on a k-dimensional algebraic surface of constant degree, the crossing

number in Theorem 3 can be improved to O(r1�1=), where = 1=b(d + k)=2c [8], which
implies that in this case a simplex range query can be answered in time O(n1�1=+") using

linear space.

Finally, we note that better bounds can be obtained for the halfspace range-reporting

problem, using the so-called �ltering search technique introduced by Chazelle [55]. All

the data structured mentioned above answer a range-reporting query in two stages. The

�rst stage \identi�es" the k points of a query output, in time f(n) that is independent of

the output size, and the second stage explicitly reports these points in O(k) time. Chazelle

observes that since
(k) time will be spent in reporting k points, the �rst stage can compute

in f(n) time a superset of the query output of size O(k), and the second stage can \�lter"

the actual k points that lie in the query range. This observation not only simpli�es the data

structure but also gives better bounds in many cases, including halfspace range reporting.

See [15, 55, 66, 79] for some applications of �ltering search.

An optimal halfspace reporting data structure in the plane was proposed by Chazelle

et al. [78]. They compute convex layers L1; : : : ; Lm of S, where Li is the set of points lying

on the boundary of the convex hull of S n Sj<iLj , and store them in a linear-size data

structure, so that a query can be answered in O(log n+ k) time. Their technique does not

extend to three dimensions. After a few initial attempts [79, 16], Matou�sek developed a data

structure that answers a halfspace reporting query in Rd in time O(n1�1=bd=2c polylogn+k).

His structure is based on the following two observations. A hyperplane is called �-shallow

if one of the halfspaces bounded by h contains at most � points of S. If the hyperplane

bounding a query halfspace is not �-shallow, for some � =
(n), then a simplex range-

reporting data structure can be used to answer a query in time O(n1�1=d+" + k) = O(k).

For shallow hyperplanes, Matou�sek proves the following theorem, which is an analog of

24 Pankaj K. Agarwal and Je� Erickson

Theorem 3.

Theorem 4 (Matou�sek [199]). Let S be a set of n points in Rd (d � 4) and let 1 � r < n

be a given parameter. Then there exists a family of pairs

� = f(S1;�1); : : : ; (Sm;�m)g
such that each Si � S lies inside the simplex �i, n=r � jSij � 2n=r, Si \ Sj = ; for all

i 6= j, and every (n=r)-shallow hyperplane crosses O(r1�1=bd=2c) simplices of �. If r � n�

for some suitable constant 0 < � < 1, then � can be constructed in O(n log r) time.

Using this theorem, a partition tree for S can be constructed in the same way as for

simplex range searching, except that at each node v of the tree, we also preprocess the

corresponding canonical subset Cv for simplex range searching and store the resulting data

structure as a secondary data structure of v. While answering a query for a halfspace h+,

if h+ crosses more than O(r1�1=bd=2c) simplices of the partition �v associated with a node

v, then it reports all points of h+ \ Cv using the simplex range-reporting data structure

stored at v. Otherwise, for each pair (Si;�i) 2 �v, if �i � h+, it reports all points Si, and

if �i is crossed by h, it recursively visits the corresponding child of v.

If we are interested only in determining whether h+ \ S = ;, we do not have to store

simplex range-searching structure at each node of the tree. Consequently, the query time

and the size of the data structure can be improved slightly; see Table 3 for a summary of

results.

Problem d Size Query Time Source

Reporting d = 2 n log n+ k [78]

Emptiness n log n [242]

Reporting d = 3 n log n log n+ k [16]

Emptiness n log n [103]

Reporting d > 3 n log log n n
1�1=bd=2c polylog n+ k [199]

Emptiness n n
1�1=bd=2c2O(log� n) [199]

Table 3. Asymptotic upper bounds for halfspace range searching in near-linear space.

Since the query time of a linear-size simplex range-searching data structure is only a n1=d

factor better than the na��ve method, researchers have developed practical data structures

that work well most of the time. For example, Arya and Mount [27] have developed a

linear-size data structure for answering approximate range-counting queries, in the sense

that the points lying within distance � � diam(�) distance of the boundary of the query

simplex � may or may not be counted. Its query time is O(log n+1=�d�1). Overmars and

van der Stappen [233] developed fast data structures for the special case in which the ranges

are \fat" and have bounded size. In practice, the data structures described in Section 3.4

are used even for simplex range searching. Recently, Goldstein et al. [141] presented an

algorithm for simplex range searching using R-trees. Although these data structures do not

work well in the worst case, they perform reasonably well in practice, for example, when

the points are close to uniformly distributed. It is an open question whether simple data

structures can be developed for simplex range searching that work well on typical data sets.

Geometric Range Searching and Its Relatives 25

4.2 Data structures with logarithmic query time

For the sake of simplicity, we �rst consider the halfspace range-counting problem. We need

a few de�nitions and concepts before we describe the data structures.

The dual of a point (a1; : : : ; ad) 2 Rd is the hyperplane xd = �a1x1�� � ��ad�1xd�1+ad,
and the dual of a hyperplane xd = b1x1 + � � � bd�1xd�1 � bd is the point (�b1; : : : ;�bd). A
nice property of duality is that it preserves the above-below relationship: a point p is above

a hyperplane h if and only if the dual hyperplane p� is above the dual point h�; see Figure 6.

p�1

p�3

p�4

p�5
p�6

`�

p1

p2

p3
p4

p5

p6

`

p�2

Figure 6. A set of points and the arrangement of their dual lines.

The arrangement of a set H of hyperplanes in R
d is the subdivision of Rd into cells

of dimensions k, for 0 � k � d, each cell being a maximal connected set contained in the

intersection of a �xed subset of H and not intersecting any other hyperplane of H. The

level of a point in A(H) is the number of hyperplanes lying strictly below the point. Let

A�k(H) denote the (closure of the) set of points with level at most k. A (1=r)-cutting of H

is a set � of (relatively open) disjoint simplices covering Rd so that each simplex intersects

at most n=r hyperplanes of H. Clarkson [88] and Haussler and Welzl [161] were the �rst

to show the existence of a (1=r)-cutting of H of size O(rd logd r). Chazelle and Friedman

[74] improved the size bound to O(rd), which is optimal in the worst case. Several e�cient

algorithms are developed for computing a (1=r)-cutting. The best algorithm known for

computing a (1=r)-cutting was discovered by Chazelle [62]; his result is summarized in the

following theorem.

Theorem 5 (Chazelle [62]). Let H be a set of n hyperplanes and r � n a parameter.

Set k = dlog2 re. There exist k cuttings �1; : : : ;�k so that �i is a (1=2i)-cutting of size

O(2id), each simplex of �i is contained in a simplex of �i�1, and each simplex of �i�1

contains a constant number of simplices of �i. Moreover, �1; : : : ;�k can be computed in

time O(nrd�1).

This theorem has been successfully applied to many geometric divide-and-conquer al-

gorithms; see [2, 62, 99, 239] for a few such instances.

Returning to halfspace range searching, suppose that the query halfspace always lies

below its bounding hyperplane. Then the halfspace range-counting problem reduces via

duality to the following problem: Given a set H of n hyperplanes in R
d , determine the

number of hyperplanes of H that lie above a query point. Since the same subset of hyper-

planes lies above all points in a single cell of A(H), the arrangement of H, we can answer a

26 Pankaj K. Agarwal and Je� Erickson

halfspace range-counting query by locating the cell of A(H) that contains the point dual to

the hyperplane bounding the query halfspace. Theorem 5 can be used in a straightforward

manner to obtain a data structure of size O((n= log n)d) with O(log n) query time.

The above approach for halfspace range counting can be extended to the simplex range-

counting problem as well. That is, store the solution of every combinatorially distinct

simplex (two simplices are combinatorially distinct if they do not contain the same subset

of S). Since there are �(nd(d+1)) combinatorially distinct simplices, such an approach will

require
(nd(d+1)) storage; see [95, 111].

Cole and Yap [95] were the �rst to present a near-quadratic size data structure that

could answer a triangle range-counting query in the plane in O(log n) time. They present

two data structures: the �rst one answers a query in time O(log n) using O(n2+") space,

and the other in time O(logn log logn) using O(n2= log n) space. For d = 3, their approach

gives a data structure of size O(n7+") that can answer a tetrahedron range-counting query

in time O(log n). Chazelle et al. [82] describe a multi-level data structure (see Section 5.1)

of size O(nd+") that can answer a simplex range-counting query in time O(log n). The space

bound can be reduced to O(nd) by increasing the query time to O(logd+1 n) [203]. Both

data structures can answer simplex range-reporting queries by spending an additional O(k)

time.

The size of a data structure can be signi�cantly improved if we want to answer halfspace

range-reporting queries. Using random sampling, Clarkson [88] showed that a halfspace-

emptiness query can be answered in O(log n) time using O(nbd=2c+") space. In order to

extend his algorithm to halfspace range-reporting queries, we need the following additional

idea. Let H be a set of hyperplanes in Rd . For a parameter 1 � r < n, we de�ne a (1=r)-

cutting for A�l(H) to be a collection � of (relatively open) disjoint simplices that cover

A�l(H) and each simplex intersects at most n=r hyperplanes of H. The following theorem

by Matou�sek [199] leads to a better data structure for answering halfspace range-reporting

queries.

Theorem 6 (Matou�sek [199]). Let H be a collection of n hyperplanes in R
d , let 1 �

l; r < n be parameters, and let q = lr=n+1. Then there exists a (1=r)-cutting for A�l(H),

consisting of O(rbd=2cqdd=2e) simplices. If r � n� for some suitable constant 0 < � < 1, then

� can be computed in O(n log r) time.

Using Theorem 6, a halfspace range-reporting data structure T can be constructed as

follows. Each interior node v of T is associated with a canonical subset Cv � H and a

simplex �v; the root of T is associated with H and Rd . Choose r to be a su�ciently large

constant. If jCvj � 4r, then v is a leaf. Otherwise, set l = jCvj=r, compute a (1=r)-cutting

�v of size O(rbd=2c) for A�l(Cv), and create a child wi for each �i 2 �v. Set Cwi
to be

the set of hyperplanes that either intersect or lie below �i. We also store Cv at v. The

size of the data structure is O(nbd=2c+"). Let be a query point. The goal is to report

all points lying above . Follow a path of T as follows. Suppose the query procedure is

visiting a node v of T . If v is a leaf or does not lie in any simplex of �v (i.e., the level

of is at least jCv j=r), then report all hyperplanes of Cv lying above , by checking each

Geometric Range Searching and Its Relatives 27

hyperplane explicitly; this step takes O(jCvj) = O(kr) = O(k) time. Otherwise, recursively

visit the node wi if �i contains . The query time is obviously O(logn + k). The size of

the data structure can be improved to O(nbd=2c polylogn) without a�ecting the asymptotic

query time.

4.3 Trading space for query time

In the previous two subsections we surveyed data structures for simplex range searching

that either use near-linear space or answer a query in polylogarithmic time. By combining

these two types of data structures, a tradeo� between the size and the query time can be

obtained [10, 82, 203]. Actually, the approach described in these papers is very general and

works for any geometric-searching data structure that can be viewed as a decomposition

scheme (described in Section 2), provided it satis�es certain assumptions. We state the

general result here, though one can obtain a slightly better bounds (by a polylogarithmic

factor) by exploiting special properties of the data structures.

It will be convenient to regard range-searching data structures in the following abstract

form, previously described at the end of Section 2. Let P be a d-dimensional range-searching

problem and D a decomposition scheme for P. That is, for a given set S of n points in Rd ,

D constructs a family (multiset) F = F(S) of canonical subsets. For a query range , the

query procedure implicitly computes a sub-family C = C(; S) � F that partitions \ S
into canonical subsets, and returns

P
C2C

w(C).

As we mentioned in Section 2, in order to compute C e�ciently, D must be stored in a

hierarchical data structure. We call a decomposition scheme hierarchical if F is stored in

a tree T . Each node v of T is associated with a canonical subset Cv 2 F and each interior

node v satis�es the following property.

(P1) For any query range , there exists a subset Q(v;) = fz1; : : : ; zag of children of v so

that \Cz1 ; : : : ; \ Cza partition \ Cv.

For example, the linear-size partition trees described in Section 4.1 store a simplex �v at

each node v. In these partition trees, a child z of a node v is in Q(v;), for any query

halfspace , if �z intersects the halfspace .

Property (P1) ensures that, for a node v, w(Cv) can be computed by searching only

in the subtree rooted at v. The query procedure performs a depth-�rst search on T to

compute C . Let C = C(; S) denote the canonical subsets in F associated with nodes

visited by the query procedure; clearly, C � C .
Let r � 2 be a parameter and let D be a hierarchical decomposition scheme. For any

0 � i � dlogr ne, let Fi = fC 2 F j ri � jCj < ri+1g. We say that D is r-convergent if there

exist constants � � 1 and 0 � � < 1 so that the following three conditions hold for all i.

(C1) The degree of each node in T is O(r�).

(C2) jFij = O
�
(n=ri)�

�
.

(C3) For any query range , jC \ Fij = O
�
(n=ri)�

�
.

28 Pankaj K. Agarwal and Je� Erickson

The second and third conditions imply that the number of canonical subsets in D and the

the number of subsets in C , for any query range , decrease exponentially with size.

The size of D is O(n�), provided the weight of each canonical subset can be stored in

O(1) space, and the query time of D, under the semigroup model, is O(n�) if � > 0 and

O(log n) if � = 0. D is called e�cient if for any query range , each C\Fi can be computed

in time O
�
(n=ri)�

�
.

Theorem 7. Let S be a set of n points in Rd , and let r be a su�ciently large constant. Let

P be a range-searching problem. Let D1 be a decomposition scheme for P of size O(n�)

and query time O(log n), and let D2 be another decomposition scheme of size O(n) and

query time O(n�). If either D1 or D2 is hierarchical, e�cient, and r-convergent, then for

any n � m � n�, we can construct a decomposition scheme for P of size O(m) and query

time

O

 �
n�

m

��=(��1)

+ log
m

n

!
:

Proof: Suppose D1 is hierarchical, e�cient, and r-convergent. We present a decomposition

scheme D of size O(m). We �rst de�ne the canonical subsets F(S) constructed by D and

then de�ne C(; S) for each range .

Let F1 = F1(S) be the family of canonical subsets constructed by D1 on S and T 1 be

the corresponding tree. If � = 1, we can take D = D1, so assume that � > 1. We de�ne a

parameter

� = 1 +

�
logr(n

�=m)

�� 1

�
:

Informally, to construct F , we discard all nodes in T 1 whose parents are associated with

canonical subsets of size less than r� . Then we replace the deleted subsets by constructing,

for for every leaf z of the pruned tree, the canonical subsets F2(Cz) using the second

decomposition scheme D2. See Figure 7.

F1(S)

A

X

A

M

F2(X) F2(Y)

Y

Figure 7. The general space query-time tradeo� scheme.

Geometric Range Searching and Its Relatives 29

More formally, let A =
S
i�� F1

i , and let M � F1 n A be the set of canonical subsets

whose predecessors lie in A. Since D1 is r-convergent,

jAj =
X
i��

jF1
i j =

X
i��

O
�� n

ri

���
= O

�� n
r�

���
:

The degree of each canonical subset in F1 is O(r�), so

jM j = O(r�) � jAj = O
�� n

r��1

���
:

For each canonical subset C 2 M , we compute F2(C) using the second decomposition

scheme D2. The size of each subset in M is at most r��1, so jF2(C)j = O(r��1). Set

F(S) = A [
[
C2M

F2(C):

The total number of canonical subsets in F(S) is

jAj+
X
C2M

��F2(C)
�� = O

�
n�

r��

�
+O

�
n�

r(��1)�

�
� O(r��1)

= O

�
n�

r(��1)(��1)

�
= O(m):

For a query range , let M = M \ C1(; S) and A = A \ C1(; S). We now de�ne

C(; S) as follows.

C(; S) = A [
[

C2M

C2(;C):

It can be shown that C(; S) forms a partition of \ S. Since D1 is e�cient, A and M

can be computed in time O(log(n=r�)) = O(log(m=n)). The size of each canonical subset

C 2 M is at most r��1; therefore, each C2(;C) can be computed in time O(r�(��1)) =

O((n�=m)�=(��1)). By condition (C3), jM j = O(1), so the overall query time is

O

 �
n�

m

��=(��1)

+ log
m

n

!
;

as desired.

A similar approach can be used to construct D if D2 is r-convergent and e�cient. We

omit further details. �

For the d-dimensional simplex range-counting problem, for example, we have � = d+ "

and � = 1� 1=d. Thus, we immediately obtain the following space query-time tradeo�.

30 Pankaj K. Agarwal and Je� Erickson

Corollary 8. For any n � m � nd+", a simplex range-counting query can be answered in

time O(n1+"=d=m1=d + log(m=n)) using O(m) space.

We conclude this section by making a few remarks on Theorem 7.

(i) Theorem 7 can be re�ned to balance polylogarithmic factors in the sizes and query

times of D1 and D2. For example, if the size of D1 is O(n� polylogn) and rest of

the parameters are the same as in the theorem, then the query time of the new data

structure is

O

 �
n�

m

��=(��1)

polylog
�m
n

�!
:

Using a similar argument, Matou�sek [203] showed that a simplex range-counting query

can be answered in time O((n=m1=d) logd+1(m=n)), which improves Corollary 8 when-

ever m = O(nd).

(ii) Theorem 7 is quite general and holds for any decomposable geometric searching prob-

lem as long as there exists an e�cient, r-convergent decomposition scheme for the

problem. We will discuss some such results in the next two sections.

(iii) Theorem 7 actually holds under weaker assumptions on D1 and D2. For example, even

though halfspace range-reporting data structures do not �t in the above framework,

they nevertheless admit a tradeo�. In particular, a halfspace reporting query in Rd

can be answered in O((npolylogn)=m1=bd=2c + k) using O(m) space.

(iv) Finally, it is not essential for D1 or D2 to be tree-based data structures. It is su�cient

to have an e�cient, r-convergent decomposition scheme with a partial order on the

canonical subsets, where each canonical subset satis�es a property similar to (P1).

4.4 Lower bounds

Fredman [134] showed that a sequence of n insertions, deletions, and halfplane queries on

a set of points in the plane requires
(n4=3) time, in the semigroup model. His technique,

however, does not extend to static data structures. In a series of papers, Chazelle has proved

nontrivial lower bounds on the complexity of online simplex range searching, using various

elegant mathematical techniques. The following theorem is perhaps the most interesting

result on lower bounds.

Theorem 9 (Chazelle [59]). Let n;m be positive integers such that n � m � nd, and let

S be a random set of points in [0; 1]d. If only m units of storage are available, then with

high probability, the worst-case query time for a simplex range query in S is
(n=
p
m) for

d = 2, or
(n=(m1=d log n)) for d � 3, in the semigroup model.

Geometric Range Searching and Its Relatives 31

It should be pointed out that this theorem holds even if the query ranges are wedges or

strips, but not if the ranges are hyperplanes. Chazelle and Rosenberg [81] proved a lower

bound of
(n1�"=m + k) for simplex range reporting under the pointer-machine model.

These lower bounds do not hold for halfspace range searching. A somewhat weaker lower

bound for halfspace queries was proved by Br�onnimannet al. [52].

As we saw earlier, faster data structures are known for halfspace emptiness queries.

A recent series of papers by Erickson established the �rst nontrivial lower bounds for

online and o�ine emptiness query problems, in the partition-graph model of computa-

tion. His techniques were �rst applied to Hopcroft's problem | Given a set of n points

and m lines, does any point lie on a line? | for which he obtained a lower bound

of
(n logm + n2=3m2=3 + m log n) [118], almost matching the best known upper bound

O(n logm+ n2=3m2=32O(log
�(n+m)) +m logn), due to Matou�sek [203]. Slightly better lower

bounds are known for higher-dimensional versions of Hopcroft's problem [118, 117], but for

the special case n = m, the best known lower bound is still only
(n4=3), which is quite

far from the best known upper bound O(n2d=(d+1)2O(log
� n)). More recently, Erickson es-

tablished tradeo� lower bounds between space and query time, or preprocessing and query

time, for online hyperplane emptiness queries [119]. The space-time tradeo�s are estab-

lished by showing that a partition graph that supports hyperplane emptiness queries also

(implicitly) supports halfspace semigroup queries, and then applying the lower bounds of

Br�onnimann et al.[52]. For d-dimensional hyperplane queries,
(nd=polylogn) preprocess-

ing time is required to achieve polylogarithmic query time, and the best possible query time

is
(n1=d=polylogn) if only O(npolylogn) preprocessing time is allowed. More generally,

in two dimensions, if the preprocessing time is p, the query time is
(n=
p
p). Erickson's

techniques also imply nontrivial lower bounds for online and o�ine halfspace emptiness

searching, but with a few exceptions, these are quite weak.

Table 4 summarizes the best known lower bounds for online simplex queries, and Table 5

summarizes the best known lower bounds for o�ine simplex range searching. Lower bounds

for emptiness problems apply to counting and reporting problems as well. No nontrivial

lower bound was known for any o�ine range searching problem under the group model until

Chazelle's result [64].

See the survey papers [63, 204] for a more detailed discussion on lower bounds.

5 Variants and Extensions

In this section we review some extensions of range-searching data structures, including

multi-level data structures, semialgebraic range searching, and dynamization. As in the

previous section, the preprocessing time for each of the data structures we describe is at

most a polylogarithmic or n" factor larger than its size.

32 Pankaj K. Agarwal and Je� Erickson

Range Problem Model Query Time Source

Simplex Semigroup Semigroup (d = 2)
np
m

[59]

Semigroup Semigroup (d > 2)
n

m
1=d log n

[59]

Reporting Pointer machine
n
1�"

m
1=d

+ k [81]

Hyperplane Semigroup Semigroup
�

n

m
1=d

�2=(d+1)

[119]

Emptiness Partition graph

�
n

log n

� d
2+1

d2+d

� 1

m
1=d

[119]

Halfspace Semigroup Semigroup

�
n

log n

� d
2+1

d2+d

� 1

m
1=d

[52]

Emptiness Partition graph

�
n

log n

� �
2+1

�2+�

� 1

m
1=�

, where d � �(� + 3)=2 [119]

Table 4. Asymptotic lower bounds for online simplex range searching using O(m) space.

Range Problem Model Time Source

Halfspace Emptiness Algebraic computation tree n log n [40]

Partition graph (d � 4) n log n [117]

Partition graph (d � 5) n
4=3 [117]

Counting Partition graph n
4=3 [118]

Group Group (with n=2 help gates) n log n [64]

Hyperplane Emptiness Algebraic computation tree n log n [40]

Partition graph n
4=3 [118]

Semigroup Semigroup n
4=3 [65, 118]

Simplex Semigroup Semigroup
n
2�2=(d�1)

log5=2 n
[65]

Table 5. Asymptotic lower bounds for o�ine simplex range searching.

Geometric Range Searching and Its Relatives 33

5.1 Multi-level data structures

A rather powerful property of data structures based on decomposition schemes (described

in Section 2) is that they can be cascaded together to answer more complex queries, at the

increase of a logarithmic factor in their performance. This property has been implicitly

used for a long time; see, for example, [112, 192, 196, 290, 252]. The real power of the

cascading property was �rst observed by Dobkin and Edelsbrunner [102], who used this

property to answer several complex geometric queries. Since their result, several papers have

exploited and extended this property to solve numerous geometric-searching problems; see

[10, 149, 274, 203, 238]. In this subsection we briey sketch the general cascading scheme,

as described in [203].

Let S be a set of weighted objects. Recall that a geometric-searching problem P, with
underlying relation �, requires computing

P
p� w(p) for a query range . Let P1 and P2

be two geometric-searching problems, and let �1 and �2 be the corresponding relations.

Then we de�ne P1 � P2 to be the conjunction of P1 and P2, whose relation is �1 \ �2.

That is, for a query range , we want to compute
P

p�1;p�2 w(p). Suppose we have

hierarchical decomposition schemes D1 and D2 for problems P1 and P2. Let F1 = F1(S)

be the set of canonical subsets constructed by D1, and for a range , let C1 = C1(S;) be
the corresponding partition of fp 2 S j p �1 g into canonical subsets. For each canonical

subset C 2 F1, let F2(C) be the collection of canonical subsets of C constructed by D2,

and let C2(C;) be the corresponding partition of fp 2 C j p �2 g into level-two canonical
subsets. The decomposition scheme D1�D2 for the problem P1�P2 consists of the canonical

subsets F =
S
C2F1 F2(C). For a query range , the query output is C =

S
C2C1

C2(C;).
Note that we can cascade any number of decomposition schemes in this manner.

If we view D1 and D2 as tree data structures, then cascading the two decomposition

schemes can be regarded as constructing a two-level tree, as follows. We �rst construct the

tree induced by D1 on S. Each node v of D1 is associated with a canonical subset Cv. We

construct a second-level tree D2
v on Cv and store D2

v at v as its secondary structure. A

query is answered by �rst identifying the nodes that correspond to the canonical subsets

Cv 2 C1 and then searching the corresponding secondary trees to compute the second-level

canonical subsets C2(Cv;).

The range tree, de�ned in Section 3.1, �ts in this framework. For example, a two

dimensional range tree is obtained by cascading two one-dimensional range trees, as follows.

Let S be a set of nweighted points andR the set of all orthogonal rectangles in the plane. We

de�ne two binary relations �1 and �2, where for any rectangle = [�1; �1]� [�2; �2], p �
i

if xi(p) 2 [�i; �i]. Let Pi be the searching problem associated with �i, and let Di be the

data structure corresponding to Pi. Then the two-dimensional orthogonal range-searching

problem is the same as P1 � P2. We can therefore cascade D1 and D2, as described above,

to answer a two-dimensional orthogonal range-searching query. Similarly, a data structure

for d-dimensional simplex range-searching can be constructed by cascading d+ 1 halfspace

range-searching structures, since a d-simplex is an intersection of at most d+ 1 halfspaces.

Multi-level data structures were also proposed for range restriction, introduced by Willard

34 Pankaj K. Agarwal and Je� Erickson

and Lueker [290] and Scholten and Overmars [252].

The following theorem, whose straightforward proof we omit, states a general result for

multi-level data structures.

Theorem 10. Let S;P1;P2;D1;D2 be as de�ned above, and let r be a constant. Sup-

pose the size and query time of each decomposition scheme are at most S(n) and Q(n),

respectively. If D1 is e�cient and r-convergent, then we obtain a hierarchical decomposition

scheme D for P1 � P2 whose size and query time are O(S(n) logr n) and O(Q(n) logr n). If

D2 is also e�cient and r-convergent, then D is also e�cient and r-convergent.

In some cases, the added logarithmic factor in the query time or the space can be

saved. The real power of multi-level data structures stems from the fact that there are no

restrictions on the relations �1 and �2. Hence, any query that can be represented as a

conjunction of a constant number of \primitive" queries, each of which admits an e�cient,

r-convergent decomposition scheme, can be answered by cascading individual decomposition

schemes. We will describe a few multi-level data structures in this and the following sections.

5.2 Semialgebraic range searching

So far we assumed that the ranges were bounded by hyperplanes, but many applications

involve ranges bounded by nonlinear functions. For example, a query of the form \For a

given point p and a real number r, �nd all points of S lying within distance r from p" is a

range-searching problem in which ranges are balls.

As shown below, range searching with balls in Rd can be formulated as an instance of

halfspace range searching in Rd+1 . So a ball range-reporting (resp. range-counting) query in

R
d can be answered in time O((n=m1=dd=2e) polylogn+k) (resp. O((n=m1=(d+1)) log(m=n))),

using O(m) space. (Somewhat better performance can be obtained using a more direct

approach, which we will describe shortly.) However, relatively little is known about range-

searching data structures for more general ranges.

A natural class of more general ranges is the family of Tarski cells. A Tarski cell is a real

semialgebraic set de�ned by a constant number of polynomials, each of constant degree. In

fact, it su�ces to consider the ranges bounded by a single polynomial because the ranges

bounded by multiple polynomials can be handled using multi-level data structures. We

assume that the ranges are of the form

f (a) = fx 2 Rd j f(a; x) � 0g;
where f is a (d+ b)-variate polynomial specifying the type of range (disks, cylinders, cones,

etc.), and a is a b-tuple specifying a speci�c range of the given type (e.g., a speci�c disk).

Let �f = ff (a) j a 2 Rbg. We will refer to the range-searching problem in which the ranges

are from the set �f as the �f -range searching.

One approach to answer �f -range queries is to use linearization, originally proposed by

Yao and Yao [293]. We represent the polynomial f(a; x) in the form

f(a; x) = 0(a)'0(x) + 1(a)'1(x) + � � �+ `(a)'`(x)

Geometric Range Searching and Its Relatives 35

where '0; : : : ; '`; 0; : : : ; ` are polynomials. A point x 2 Rd is mapped to the point

'(x) = ['0(x); '1(x); '2(x); : : : ; '`(x)] 2 R` ;

represented in homogeneous coordinates. Then each range f (a) = fx 2 R
d j f(x; a) � 0g

is mapped to a halfspace

 #(a) : fy 2 R` j 0(a)y0 + 1(a)y1 + � � � + `(a)y` � 0g;

where, again, [y0; y1; : : : ; y`] are homogeneous coordinates.

The constant ` is called the dimension of the linearization. The following algorithm,

based on an algorithm of Agarwal and Matou�sek [8], computes a linearization of smallest

dimension.7 Write the polynomial f(a; x) as the sum of monomials

f(a; x) =
X
�2M

X
�2N

c�;�a
�x� ;

whereM � N
b and N � N

d are �nite sets of exponent vectors, c�;� are real coe�cients, and

a� and x� are shorthand for the monomials a
�1
1 a

�2
2 : : : a

�b
d and x�11 x

�2
2 : : : x�dd , respectively.

Collect the coe�cients c�;� into a matrix C whose rows are indexed by elements of M

(i.e., monomials in a) and whose columns are indexed by elements of N (i.e., monomials

in x). The minimum dimension of linearization is one less than the rank of this matrix.

The polynomials 'i(x) and �j(a) are easily extracted from any basis of the vector space

spanned by either the rows or columns of the coe�cient matrix C.

For example, a disk with center (a1; a2) and radius a3 in the plane can be regarded as

a set of the form f (a), where a = (a1; a2; a3) and f is a 5-variate polynomial

f(a1; a2; a3;x1; x2) = �(x1 � a1)
2 � (x2 � a2)

2 + a23

This polynomial has the following coe�cient matrix.

1 x1 x2 x21 x22
1 0 0 0 �1 �1
a1 0 2 0 0 0

a2 0 0 2 0 0

a21 �1 0 0 0 0

a22 �1 0 0 0 0

a23 1 0 0 0 0

This matrix has rank 4, so the linearization dimension of f is 3. One possible linearization

is given by the following set of polynomials:

 0(a) = �a21 � a22 + a23; 1(a) = 2a1; 2(a) = 2a2; 3(a) = �1;
'0(x) = 1; '1(x) = x1; '2(x) = x2; '3(x) = x21 + x22:

7In some cases, Agarwal andMatou�sek's algorithm returns a dimension one higher than the true minimum,

since they consider only linearizations with 0(a) = 1.

36 Pankaj K. Agarwal and Je� Erickson

In general, balls in R
d admit a linearization of dimension d + 1; cylinders and other

quadrics in R3 admit a linearization of dimension 9. One of the most widely used lineariza-

tions in computational geometry uses the so-called Pl�ucker coordinates, which map a line

in R3 to a point in R5 ; see [73, 265, 268] for more details on Pl�ucker coordinates.

A �f -range query can now be answered using a `-dimensional halfspace range-searching

data structure. Thus, for counting queries, we immediately obtain a linear-size data struc-

ture with query time O(n1�1=`) [203], or a data structure of size O(n`= log` n) with logarith-

mic query time [62]. When d < `, the performance of the linear-size data structures can be

improved by exploiting the fact that the points '(x) have only d degrees of freedom. Using

results of Aronov et al. [23] on the size of the zone of an algebraic variety in a k-dimensional

hyperplane arrangement, Agarwal and Matou�sek [8] show that the query time for a linear-

space data structure can be reduced to O(n1�1=b(d+`)=2c+"). It is an open problem whether

one can similarly exploit the fact that the halfspaces #(a) have only b degrees of freedom

to reduce the size of data structures with logarithmic query time when b < `.

In cases where the linearization dimension is very large, semialgebraic queries can also be

answered using the following more direct approach proposed by Agarwal and Matou�sek [8].

Let S be a set of n points in Rd . For each point pi, we can de�ne a b-variate polynomial

gi(a) � f(pi; a). Then �f (a) \ S is the set of points pi for which gi(a) � 0. Hence, the

problem reduces to point location in the arrangement of algebraic surfaces gi = 0 in R
b .

Let G be the set of resulting surfaces. The following result of Chazelle et al. [70, 71] leads

to a point-location data structure.

Theorem 11 (Chazelle et al. [70]). Let F = ff1; : : : ; fng be a set of n d-variate poly-

nomials, with d � 3, where each fi has maximum degree � in any variable. Then R
d be

partitioned into a set � of O
�
n2d�32�(n)

(2�)2
d
�1 �

Tarski cells so that the sign of each fi
remains the same for all points within each cell of �. Moreover, � can be computed in

O(n2d�1 logn) time.

Improving the combinatorial upper bound in Theorem 11 is an open problem. The

best known lower bound is
(nd), and this is generally believed to be the right bound. Any

improvement would also improve the bounds for the resulting semialgebraic range searching

data structures.

Returning to the original point-location problem for gi's, using this theorem and results

on "-nets and cuttings, G can be preprocessed into a data structure of size O(n2b�3+") if

b � 3, or O(n2+") if b = 2, so that for a query point a 2 Rb , we can compute
P

gi(a)�0
w(pi)

in O(log n) time.

Using Theorem 11, Agarwal and Matou�sek [8] also extended Theorem 3 to Tarski cells

and showed how to construct partition trees using this extension, obtaining a linear-size

data structure with query time O(n1�1=+"), where = 2 if d = 2 and = 2d� 3 if d � 3.

As in Section 4.3, the best data structures with linear space and logarithmic query time

can be combined to obtain the following tradeo� between space and query time.

Geometric Range Searching and Its Relatives 37

Theorem 12. Let f : Rd � R
b ! R be a (d + b)-variate polynomial with linearization

dimension `. Let � = min(2d � 3; b(d + `)=2c; `), and let = min(2b � 3; `). For any

n � m � n , we can build a data structure of size O(m) that supports �f -counting queries

in time

O

 �
n

m

�(��1)=�(�1)+"
+ log

m

n

!
:

For example, if our ranges are balls in R
d , we have b = d + 1, ` = d + 1, � = d, and

 = d+1, so we can answer queries in time O((nd+1=m)(d�1)=d
2+"+ log(m=n)) using space

O(m).

5.3 Dynamization

All the data structures discussed above assumed S to be �xed, but in many applications

one needs to update S dynamically | insert a new point into S or delete a point from

S. We cannot hope to perform insert/delete operations on a data structure in less than

P (n)=n time, where P (n) is the preprocessing time of the data structure. If we allow only

insertions (i.e., a point cannot be deleted from the structure), static data structures can

be modi�ed using standard techniques [44, 211, 230], so that a point can be inserted in

time O(P (n) log n=n) and a query can be answered in time O(Q(n) log n), where Q(n) is

the query time of the original static data structure. Roughly speaking, these techniques

proceed as follows. Choose a parameter r � 2 and set t = dlogr ne. Maintain a partition

of S into t subsets S0; : : : St�1 so that jSij � (r � 1)ri, and preprocess each Si for range

searching separately. We call a subset Si full if jSij = (r � 1)ri. A query is answered by

computing w(Si \) for each subset Si independently and then summing them up. The

total time spent in answering a query is thus O(t+
Pt

i=1Q(r
i)). Suppose we want to insert

a point p. We �nd the least index i such that the subsets S0; : : : ; Si�1 are full. Then we

add the point p and
S
j<i Sj to Si, set Sj = ; for all j < i, and preprocess the new Si for

range searching. The amortized insertion time is O(
Pt�1

i=0 P (r
i)=ri). We can convert this

amortized behavior into a worst-case performance using known techniques [263]. In some

cases the logarithmic overheard in the query or update time can be avoided.

Although the above technique does not handle deletions, many range-searching data

structures, such as orthogonal and simplex range-searching structures, can handle deletions

at polylogarithmic or n" overhead in query and update time, by exploiting the fact that

a point is stored at roughly S(n)=n nodes [10]. Table 6 summarizes the known results on

dynamic 2D orthogonal range-searching data structures; these results can be extended to

higher dimensions at a cost of an additional logd�2 n factor in the storage, query time, and

update time. Klein et al. [184] have described an optimal data structure for a special case

of 2D range-reporting in which the query ranges are translates of a polygon.

Although Matou�sek's O(n log n)-size data structure for d-dimensional halfspace range

reporting [199] can be dynamized, the logarithmic query time data structure is not easy to

dynamize because some of the points may be stored at
(nbd=2c) nodes of the tree. Agarwal

38 Pankaj K. Agarwal and Je� Erickson

Problem Size Query Time Update Time Source

Counting n log2 n log2 n [58]

n k log2(2n=k) log2 n [58]

n n
" + k log2 n [264]

Reporting n log n log n log log n+ k log n log log n [212]

n log n

log log n

log2+"
n

log log n
+ k

log2 n

log log n
[264]

Semigroup n log4 n log4 n [58]

Table 6. Asymptotic upper bounds for dynamic 2D orthogonal range-searching.

and Matou�sek [9] developed a rather sophisticated data structure that can insert or delete

a point in time O(nbd=2c�1+") time and can answer a query in O(log n+k) time. As in [82],

at each node of the tree, this structure computes a family of partitions (instead of a single

partition), each of size O(rbd=2c) for some parameter r. For every shallow hyperplane h,

there is at least one partition so that h intersects O(rbd=2c�1) simplices of the partition.

Grossi and Italiano [148], generalizing and improving earlier results of van Kreveld

and Overmars [275, 276], describe dynamic d-dimensional orthogonal range searching data

structures that also support split and merge operations, de�ned as follows. Given a point

set S, a point p 2 S, and an integer i between 1 and d, a split operation divides S into two

disjoint subsets S1; S2 separated by the hyperplane normal the xi-axis passing through p,

and splits the data structure for S into data structures for S1 and S2. Given two point sets

S1 and S2 separated by a hyperplane normal to some coordinate axis, the merge operation

combines the data structures for S1 and S2 into a single data structure for their union S1[S2.
Grossi and Italiano's data structure, called a cross tree, requires linear space and O(n logn)

preprocessing time and supports insertions and deletions in time O(log n); splits, merges,

and counting queries in time O(n1�1=d); and reporting queries in time O(n1�1=d+k). Their

technique gives e�cient solutions to many other order-decomposable problems involving

split and merge operations, including external-memory range searching.

Since an arbitrary sequence of deletions is di�cult to handle in general, researchers

have examined whether a random sequence of insertions and deletions can be handled

e�ciently; see [221, 222, 254]. Mulmuley [221] proposed a reasonably simple data structure

for halfspace range reporting that can process a random update sequence of length m in

expected time O(mbd=2c+") and can answer a query in time O(k logn). If the sequence

of insertions, deletions, and queries is known in advance, the corresponding static data

structures can be modi�ed to handle such a sequence of operations by paying a logarithmic

overhead in the query time [113]. These techniques work even if the sequence of insertions

and queries is not known in advance, but the deletion time of a point is known when it is

inserted [106]; see also [263]. See the survey paper by Chiang and Tamassia [86] for a more

detailed review of dynamic geometric data structures.

Geometric Range Searching and Its Relatives 39

6 Intersection Searching

A general intersection-searching problem can be formulated as follows. Given a set S of

objects in Rd , a semigroup (S;+), and a weight function w : S ! S, we wish to preprocess

S into a data structure so that for a query object , we can compute the weighted sumP
p\ 6=;w(p), where the sum is taken over all objects p 2 S that intersect . Range

searching is a special case of intersection searching in which S is a set of points. Just as

with range searching, there are several variations on intersection searching: intersection

counting (\How many objects in S intersect ?"), intersection detection (\Does any object

in S intersect ?"), intersection reporting (\Which objects in S intersect ?"), and so on.

Intersection searching is a central problem in a variety of application areas such as

robotics, geographic information systems, VLSI, databases, and computer graphics. For

example, the collision-detection problem | Given a set O of obstacles and a robot B,

determine whether a placement p of B is free | can be formulated as a point intersection-

detection query amid a set of regions. If B has k degrees of freedom, then a placement of B

can be represented as a point in Rk , and the set of placements of B that intersect an obstacle

Oi 2 m is a region Ki � R
k . If B and the obstacles are semialgebraic sets, then each Ki

is also a semialgebraic set. A placement p of B is free if and only if p does not intersect

any of Ki's. See [191] for a survey of known results on the collision-detection problem.

Another intersection searching problem that arises quite frequently is the clipping problem:

Preprocess a given set of polygons into a data structure so that all polygons intersecting a

query rectangle can be reported e�ciently.

An intersection-searching problem can be formulated as a semialgebraic range-searching

problem by mapping each object p 2 S to a point '(p) in a parametric space R` and

every query range to a semialgebraic set #() so that p intersects if and only if

'(p) 2 #(). For example, let S be a set of segments in the plane and the query ranges

be also segments in the plane. Each segment e 2 S with left and right endpoints (px; py)

and (qx; qy), respectively, can be mapped to a point '(e) = (px; py; qx; qy) in R
4 and a query

segment can be mapped to a semialgebraic region #() so that intersects e if and only

if '(e) 2 #(). Hence, a segment intersection query can be answered by preprocessing

the set f'(e) j e 2 Sg for semialgebraic searching. A drawback of this approach is that the

dimension of the parametric space is typically much larger than d, and, therefore, it does

not lead to an e�cient data structure.

The e�ciency of an intersection-searching structure can be signi�cantly improved by

expressing the intersection test as a conjunction of simple primitive tests (in low dimensions)

and then using a multi-level data structure to perform these tests. For example, a segment

 intersects another segment e if the endpoints of e lie on the opposite sides of the line

containing and vice-versa. Suppose we want to report those segments of S whose left

endpoints lie below the line supporting a query segment (the other case can be handled

in a similar manner). We de�ne three searching problems P1;P2, and P3, with relations

�1;�2;�3, as follows:

e �1 : The left endpoint of e lies below the line supporting .

40 Pankaj K. Agarwal and Je� Erickson

e �2 : The right endpoint of e lies above the line supporting .

e �3 : The line `e supporting e intersects ; equivalently, in the dual plane, the point dual

to `e lies in the double wedge dual to e.

`�e

`e

�

p

q

e

Figure 8. Segment intersection searching

For 1 � i � 3, let Di denote a data structure for Pi. Then D1 (resp. D2) is a halfplane

range-searching structure on the left (resp. right) endpoints of segments in S, and D3 is

(essentially) a triangle range-searching structure for points dual to the lines supporting

S. By cascading D1, D2, and D3, we obtain a data structure for segment-intersection

queries. Therefore, by Theorem 10, a segment-intersection query can be answered in time

O(n1=2+") using O(n log3 n) space, or in O(log3 n) time using O(n2+") space; the size in

the �rst data structure and the query time in the second one can be improved to O(n) and

O(log n), respectively. As usual, we can obtain a tradeo� between query time and space

using Theorem 7.

It is beyond the scope of this survey paper to cover all intersection-searching prob-

lems. Instead, we discuss a few basic problems that have been studied extensively. All

intersection-counting data structures described here can also answer intersection-reporting

queries at an additional cost that is proportional to the output size. In some cases, an

intersection-reporting query can be answered faster. Moreover, using intersection-reporting

data structures, intersection-detection queries can be answered in time proportional to their

query-search time. Finally, all the data structures described in this section can be dynamized

at an expense of O(n") factor in the storage and query time.

6.1 Point intersection searching

Preprocess a set S of objects (such as balls, halfspaces, simplices, or Tarski cells) in Rd into

a data structure so that all the objects of S containing a query point can be reported (or

counted) e�ciently. This is the inverse or dual of the usual range-searching problem. As

discussed in Section 4.2, using the duality transformation, a halfspace range-searching prob-

lem can be reduced to a point-intersection problem for a set of halfspaces, and vice versa.

In general, as mentioned in Section 5.2, a d-dimensional �f -range searching query, where f

is (d+ b)-variate polynomial, can be viewed as a b-dimensional point-intersection searching

problem. Therefore, a very close relationship exists between the data structures for range

searching (including orthogonal range searching) and for point-intersection searching. Point

Geometric Range Searching and Its Relatives 41

intersection queries can also be viewed as locating a point in the subdivision of Rd induced

by the objects in S.

Suppose the objects in S are semialgebraic sets of the form fx 2 R
d j f1(x) � 0; : : : ;

fu(x) � 0g, where each fi is a (d + b)-variate polynomial of bounded degree that ad-

mits a linearization of dimension at most `. Let � = min(`; 2d � 3) and = min(2b� 3;

b(b+ `)=2c; `). By constructing a multi-level data structure, point-intersection queries for S
can be answered in time O(log n) using O(n�+") space, or in time O(n1�1=+") using O(n)

space. Once again, we can obtain a space-time tradeo�, similar to Theorem 12. Table 7

gives some of the speci�c bounds that can be attained using this general scheme.

d Objects Problem Size Query Time Source

Disks Counting m (n4=3=m2=3) log(m=n) [8]

Disks Reporting n log n log n+ k [16]

d = 2 Triangles Counting m

np
m

log3 n [10]

Fat triangles Reporting n log2 n log3 n+ k [182]

Tarski cells Counting n
2+" log n [71]

d = 3 Functions Reporting n
1+" log n+ k [6]

Fat tetrahedra Reporting m

n
1+"

p
m

+ k [115]

Simplices Counting m

n

m
1=d

logd+1
n

d � 3 Balls Counting n
d+" log n [8]

Balls Reporting m

n

m
1=dd=2e

polylog n + k [199]

Tarski cells Counting n
2d�3+" log n [71]

n
+" log n [8]

Table 7. Asymptotic upper bounds for point intersection searching.

Agarwal et al. [6] extended the approach for dynamic halfspace range searching to answer

point-intersection queries amid the graphs of bivariate algebraic functions, each of bounded

degree. Let F be an in�nite family of bivariate polynomials, each of bounded degree, and

let �(m) denote the maximum size of the lower envelope of a subset of F of size m. Their

techniques maintains an n-element subset F � F in a data structure of size O(�(n) � n"),
so that a polynomial f 2 F can be inserted into or deleted from F in O(n") time and,

for a query point p, all functions of F whose graphs lie below p can be reported in time

O(log n+ k).

Besides the motion-planning application discussed above, point location in an arrange-

ment of surfaces, especially determining whether a query point lies above a given set of

regions of the form xd+1 � f(x1; : : : ; xd), has many other applications in computational

geometry; see [13, 71, 72] for examples. However, most of these applications call for an

o�ine data structure because the query points are known in advance.

6.2 Segment intersection searching

Preprocess a set of objects in Rd into a data structure so that all the objects of S intersected

by a query segment can be reported (or counted) e�ciently. We have already given an

42 Pankaj K. Agarwal and Je� Erickson

example of segment intersection-searching in the beginning of this section. See Table 8 for

some of the known results on segment intersection searching. For the sake of clarity, we

have omitted polylogarithmic factors from the query-search time whenever it is of the form

n=m�.

If we are interested in just determining whether a query segment intersects any of

the input objects, better bounds can be achieved in some cases. For example, a segment

intersection-detection query for a set of balls in Rd , where d � 3, can be answered inO(log n)

time using O(nd+") storage [4].

d Objects Problem Size Query Time Source

Simple polygons Reporting n (k + 1) log n [164]

Lines Reporting m n=

p
m+ k [10, 85]

d = 2 Segments Counting m n=

p
m [10, 85]

Circles Counting n
2+" log n [15]

Circular arcs Counting m n=m
1=3 [15]

Planes Counting m n=m
1=3 [7]

Halfplanes Reporting m n=m
1=3 + k [7]

d = 3 Triangles Counting m n=m
1=4 [8]

Spheres Counting m n=m
1=4 [8]

Spheres Reporting n
3+" (k + 1) log2 n [4]

Hyperplanes Counting m n=m
1=d [7]

Table 8. Asymptotic upper bounds for segment intersection searching, with polylogarithmic factors omitted.

A special case of segment intersection searching, in which the objects are horizontal

segments in the plane and query ranges are vertical segments, has been widely studied.

In this case a query can be answered in time O(log n + k) using O(n logn) space and

preprocessing [273]. If we also allow insertions and deletions, the query and update time are

respectively O(log n log log n+ k) and O(log n log log n) [212], or O(log2 n+ k) and O(log n)

using only linear space [84]; if we allow only insertions, the query and update time become

O(log n+ k) and O(log n) [173].

A problem related to segment intersection searching is the stabbing problem. Given a

set S of objects in Rd , determine whether a query k-at (0 < k < d) intersects all objects of

S. Such queries can also be answered e�ciently using semialgebraic range-searching data

structures. A line-stabbing query amid a set of triangles in R3 can be answered in O(log n)

time using O(n2+") storage [240]. The paper by Goodman et al. [142] is an excellent survey

of this topic.

6.3 Rectangle intersection searching

Given a set S of polygons in the plane, preprocess them into a data structure so that all

objects intersecting a query rectangle can be reported e�ciently. This problem, also known

as the windowing query problem, arises in a variety of applications. In many situations, the

query output is required to be clipped within the query rectangle. In practice, each polygon

in S is approximated by its smallest enclosing rectangle and the resulting rectangles are

Geometric Range Searching and Its Relatives 43

preprocessed for rectangle-rectangle intersection searching, as discussed in Section 3.6. If

the polygons in S are large, then this scheme is not e�cient, especially if we want to clip

the query output within the query rectangle. A few data structures, for example, strip

trees [32] and V-trees [209], have been proposed that store each polygon hierarchically. We

can use these data structures to store each polygon and then construct an R-tree or any

other orthogonal range-searching data structure on the smallest enclosing rectangles of the

polygons. Nievergelt and Widmayer [225] describe another data structure, called a guard

�le, which is suitable if the polygons are fat (have bounded aspect ratio). They place a set

of well-chosen points, called guards, and associate a subset of polygons with each guard that

either contain the guard or lie \near" the guard. For a query rectangle , they determine

the set of guards that lie inside ; the lists of polygons associated with these guards give

the candidates that intersect .

6.4 Colored intersection searching

Preprocess a given set S of colored objects in Rd (i.e., each object in S is assigned a color)

so that the we can report (or count) the colors of the objects that intersect the query range.

This problem arises in many contexts where one wants to answer intersection-searching

queries for input objects of non-constant size. For example, given a set P = fP1; : : : ; Pmg
of m simple polygons, one may wish to report all the simple polygons that intersect a query

segment; the goal is to return the index, and not the description, of these polygons. If we

color the edges of Pi by the color i, the problem reduces to colored segment intersection

searching in a set of segments.

If an intersection-detection query for S with respect to a range can be answered in

Q(n) time, then a colored intersection-reporting query with can be answered in time

O((k log(n=k) + 1)Q(n)). Thus, logarithmic query-time intersection-searching data struc-

tures can easily be modi�ed for colored intersection reporting, but very little is known

about linear-size colored intersection-searching data structures, except in some special cases

[14, 50, 153, 154, 155, 176].

Gupta et al. [153] have shown that the colored halfplane-reporting queries in the plane

can be answered in O(log2 n + k) using O(n logn) space. Agarwal and van Kreveld [14]

presented a linear-size data structure with O(n1=2+" + k) query time for colored segment

intersection-reporting queries amid a set of segments in the plane, assuming that the seg-

ments of the same color form a connected planar graph, or if they form the boundary of a

simple polygon; these data structures can also handle insertions of new segments. Gupta

et al. [153, 155] present segment intersection-reporting structures for many other special

cases.

7 Optimization Queries

The goal of an optimization query is to return an object that satis�es a certain condition

with respect to a query range. Ray-shooting queries are perhaps the most common example

44 Pankaj K. Agarwal and Je� Erickson

of optimization queries. Other examples include segment-dragging and linear-programming

queries.

7.1 Ray-shooting queries

Preprocess a set S of objects in Rd into a data structure so that the �rst object (if any) hit

by a query ray can be reported e�ciently. This problem arises in ray tracing, hidden-surface

removal, radiosity, and other graphics problems. Recently, e�cient solutions to many other

geometric problems have also been developed using ray-shooting data structures.

A general approach to the ray-shooting problem, using segment intersection-detection

structures and Megiddo's parametric searching technique [210], was proposed by Agarwal

and Matou�sek [7]. Suppose we have a segment intersection-detection data structure for

S. Let � be a query ray. Their algorithm maintains a segment ab � � such that the

�rst intersection point of ab with S is the same as that of �. If a lies on an object of S, it

returns a. Otherwise, it picks a point c 2 ab and determines, using the segment intersection-
detection data structure, whether the interior of the segment ac intersects any object of S.

If the answer is yes, it recursively �nds the �rst intersection point of ac with S; otherwise,

it recursively �nds the �rst intersection point of cb with S. Using parametric searching,

the points c at each stage can be chosen in such a way that the algorithm terminates after

O(log n) steps. In some cases, by using a more direct approach, we can improve the query

time by a polylogarithmic factor. For example, by exploiting some additional properties of

input objects and of partition trees, we can modify a segment intersection-searching data

structure in some cases to answer ray shooting queries [3, 85, 149].

Another approach for answering ray-shooting queries is based on visibility maps. A ray

in Rd can be represented as a point in Rd �Sd�1. Given a set S of objects, we can partition

the parametric space Rd � S
d�1 into cells so that all points within each cell correspond to

rays that hit the same object �rst; this partition is called the visibility map of S. Using this

approach and some other techniques, Chazelle and Guibas [77] showed that a ray-shooting

query in a simple polygon can be answered in O(log n) time using O(n) space. Simpler data

structures were subsequently proposed by Chazelle et al. [69] and Hershberger and Suri

[164]. Following a similar approach, Pocchiola and Vegter [241] showed that a ray-shooting

query amid a set P of s disjoint convex polygons, with a total of n vertices, can be answered

in O(log n) time, using O(n+m) space, where m = O(s2) is the size of the visibility graph

of P.8
Table 9 gives a summary of known ray-shooting results. For the sake of clarity, we

have omitted polylogarithmic factors from query times of the form n=m�. The ray-shooting

structures for d-dimensional convex polyhedra by Matou�sek and Schwarzkopf [205] assume

that the source point of the query ray lies inside the polytope. All the ray-shooting data

structures mentioned in Table 9 can be dynamized at a cost of polylogarithmic or n" factor

8The vertices of the visibility graph are the vertices of the polygons. Besides the polygon edges, there is

an edge in the graph between two vertices vi; vj of convex polygons Pi and Pj if the line segment vivj does

not intersect any other convex polygon and the line supporting the segment is tangent to both Pi and Pj .

Geometric Range Searching and Its Relatives 45

d Objects Size Query Time Source

Simple polygon n log n [164]

s disjoint simple polygons n

p
s [11, 164]

s disjoint simple polygons (s2 + n) log s log s log n [11]

d = 2 s disjoint convex polygons s
2 + n log n [241]

s convex polygons sn log s log s log n [11]

Segments m n=

p
m [10, 85]

Circular arcs m n=m
1=3 [15]

Disjoint arcs n

p
n [15]

Convex polytope n log n [104]

c-oriented polytopes n log n [100]

s convex polytopes s
2
n
2+" log2 n [12]

d = 3 Halfplanes m n=m
1=3 [7]

Terrain m n=

p
m [7, 73]

Triangles m n=m
1=4 [8]

Spheres n
3+" log2 n [4]

Hyperplanes m n=m
1=d [7]

d > 3 Hyperplanes
n
d

logd�"
n

log n [75, 202]

Convex polytope m n=m
1=bd=2c [7, 205]

Convex polytope
n
bd=2c

logbd=2c�"
n

log n [205]

Table 9. Asymptotic upper bounds for ray shooting queries, with polylogarithmic factors omitted.

in the query time. Goodrich and Tamassia [143] have developed a dynamic ray-shooting

data structure for connected planar subdivisions, with O(log2 n) query and update time.

Like range searching, many practical data structures have been proposed that, despite

having bad worst-case performance, work well in practice. The books by Foley et al. [128]

and Glassner [140] describe several practical data structures for ray tracing that are used

in computer graphics. One common approach is to construct a subdivision of Rd into

constant-size cells so that the interior of each cell does not intersect any object of S. A

ray-shooting query can be answered by traversing the query ray through the subdivision

until we �nd an object that intersects the ray. The worst-case query time is proportional to

the maximum number of cells intersected by a segment that does not intersect any object

in S; we refer to this quantity as the crossing number of the triangulation. Hershberger and

Suri [164] showed that if S is the boundary of a simple polygon, then a triangulation (using

Steiner points) with O(logn) crossing number can be constructed in O(n log n) time. See

[5, 216, 105, 197, 283] and the references therein for other ray-shooting results using this

approach. Agarwal et al. [5] proved worst-case bounds for many cases on the number of cells

in the subdivision that a line can intersect. For example, they show that the crossing number

for a set of k disjoint convex polyhedra in R3 is
(k+log n), and they present an algorithm

that constructs a triangulation of size O(nk log n) with stabbing number O(k log n). Aronov

and Fortune [22] prove a bound on the average crossing number of set of disjoint triangles

in R3 , and present a polynomial-time algorithm to construct a triangulation that achieves

this bound. In practice, however, very simple decompositions, such as oct-trees and binary

46 Pankaj K. Agarwal and Je� Erickson

space partitions [139] are used to trace a ray.

7.2 Nearest-neighbor queries

The nearest-neighbor query problem is de�ned as follows: Preprocess a set S of points in Rd

into a data structure so that a point in S closest to a query point � can be reported quickly.

This is one of the most widely studied problems in computational geometry because it

arises in so many di�erent areas, including pattern recognition [98, 107], data compression

[25, 243], information retrieval [124, 249], CAD [213], molecular biology [261], image anal-

ysis [186, 188], data mining [123, 160], machine learning [97], and geographic information

systems [246, 266]. Most applications use so-called feature vectors to map a complex object

to a point in high dimensions. Examples of feature vectors include color histograms, shape

descriptors, Fourier vectors, and text descriptors.

For simplicity, we assume that the distance between points is measured in the Euclidean

metric, though a more complicated metric can be used depending on the application. For

d = 2, one can construct the Voronoi diagram of S and preprocess it for point-location

queries in O(n logn) time [242]. For higher dimensions, Clarkson [89] presented a data

structure of size O(ndd=2e+") that can answer a query in 2O(d) logn time. The query time

can be improved to O(d3 log n), using a technique of Meiser [214].

A nearest-neighbor query for a set of points under the Euclidean metric can be formu-

lated as an instance of the ray-shooting problem in a convex polyhedron in Rd+1 , as follows.

We map each point p = (p1; : : : ; pd) 2 S to a hyperplane p̂ in Rd+1 , which is the graph of

the function

fp(x1; : : : ; xd) = 2p1x1 + � � �+ 2pdxd � (p21 + � � �+ p2d):

Then p is a closest neighbor of a point � = (�1; : : : ; �d) if and only if

fp(�1; : : : ; �d) = max
q2S

fq(�1; : : : ; �d):

That is, if and only if fp is the �rst hyperplane intersected by the vertical ray �(�) em-

anating from the point (�1; : : : ; �d; 0) in the negative xd+1-direction. If we de�ne P =T
p2Sf(x1; : : : ; xd+1) j xd+1 � fp(x1; : : : ; xd)g, then p is the nearest neighbor of � if and only

if the intersection point of �(�) and @P lies on the graph of fp. Thus a nearest-neighbor

query can be answered in time roughly n=m1=dd=2e using O(m) space. This approach can be

extended to answer farthest-neighbor and k-nearest-neighbor queries also. In general, if we

have an e�cient data structure for answering disk-emptiness queries for disks under a given

metric �, we can apply parametric searching to answer nearest-neighbor queries under the

�-metric, provided the data structure satis�es certain mild assumptions [7].

Note that the query time of the above approach is exponential in d, so it is impractical

even for moderate values of d (say d � 10). This has lead to the development of algorithms

for �nding approximate nearest neighbors [26, 28, 29, 91, 185, 188] or for special cases, such

as when the distribution of query points is known in advance [87, 296].

Geometric Range Searching and Its Relatives 47

Because of wide applications of nearest-neighbor searching, many heuristics have been

developed, especially in higher dimensions. These algorithms use practical data structures

described in Section 3, including kd-trees, R-trees, R�-trees, and Hilbert R-trees; see e.g.

[138, 166, 188, 186, 123, 160, 246, 266]. White and Jain [284] described a variant of R-

tree for answering nearest-neighbor queries in which they use spheres instead of rectangles

as enclosing regions. This approach was further extended by Katayama and Satoh [181].

Berchtold et al. [45] present a parallel algorithm for nearest-neighbor searching. For large

input sets, one desires an algorithm that minimizes the number of disk accesses. Many of

the heuristics mentioned above try to optimize the I/O e�ciency, though none of them gives

any performance guarantee. A few recent papers [24, 46, 236, 93] analyze the e�ciency of

some of the heuristics, under certain assumptions on the input.

7.3 Linear programming queries

Let S be a set of n halfspaces in R
d . We wish to preprocess S into a data structure

so that for a direction vector ~v, we can determine the �rst point of
T
h2S h in the direc-

tion ~v. For d � 3, such a query can be answered in O(log n) time using O(n) storage, by

constructing the normal diagram of the convex polytope
T
h2S h and preprocessing it for

point-location queries. For higher dimensions, Matou�sek [201] showed that, using multi-

dimensional parametric searching and a data structure for answering halfspace emptiness

queries, a linear-programming query can be answered in O((n=m1=bd=2c) polylogn) with

O(m) storage. Recently Chan [54] has described a randomized procedure whose expected

query time is n1�1=bd=2c2O(log
� n), using linear space.

7.4 Segment dragging queries

Preprocess a set S of objects in the plane so that for a query segment e and a ray �, the

�rst position at which e intersects any object of S as it is translated (dragged) along �

can be determined quickly. This query can be answered in O((n=
p
m) polylogn) time, with

O(m) storage, using segment intersection-searching structures and parametric searching.

Chazelle [57] gave a linear-size, O(logn) query-time data structure for the special case in

which S is a set of points, e is a horizontal segment, and � is the vertical direction. Instead

of dragging a segment along a ray, one can ask the same question for dragging along a

more complex trajectory (along a curve and allowing both translation and rotation). These

problems arise quite often in motion planning and manufacturing. See [215, 253] for a few

such examples.

8 Concluding Remarks

In this survey paper we reviewed both theoretical and practical data structures for range

searching. Theoretically optimal or near-optimal data structures are known for most range

searching problems. However, from a practical standpoint, range searching is still largely

open; known data structures are rather complicated and do not perform well in practice,

48 Pankaj K. Agarwal and Je� Erickson

especially as the dimension increases. Lower bounds suggest that we cannot hope for data

structures that do signi�cantly better than the na��ve algorithm in the worst case (and for

some problems, even in the average case), but it is still an interesting open question to de-

velop simple data structures that work well on typical inputs, especially in high dimensions.

As we saw in this survey, range-searching data structures are useful for other geometric-

searching problems as well. In the quest for e�cient range-searching data structures, re-

searchers have discovered several elegant geometric techniques that have enriched compu-

tational geometry as a whole. It is impossible to describe in a survey paper all the known

techniques and results on range searching and their applications to other geometric prob-

lems. We therefore chose a few of these techniques that we thought were most interesting.

For further details, we refer the interested reader to the books by Mulmuley [223], Preparata

and Shamos [242], and Samet [251], and the survey papers by Chazelle [63], G�uting [156],

Matou�sek [200, 204], and Nievergelt and Widmayer [226].

References

[1] D. J. Abel and D. Mark, A comparative analysis of some two-dimensional orderings, Intl. J.
Geographic Informations Systems, 4 (1990), 21{31.

[2] P. K. Agarwal, Geometric partitioning and its applications, in: Computational Geometry:

Papers from the DIMACS special year (J. E. Goodman, R. Pollack, and W. Steiger, eds.),
American Mathematical Society, 1991.

[3] P. K. Agarwal, Ray shooting and other applications of spanning trees with low stabbing
number, SIAM J. Comput., 21 (1992), 540{570.

[4] P. K. Agarwal, B. Aronov, and M. Sharir, Computing envelopes in four dimensions with
applications, Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994, pp. 348{358.

[5] P. K. Agarwal, B. Aronov, and S. Suri, Line stabbing bounds in three dimensions, Proc. 11th
Annu. ACM Sympos. Comput. Geom., 1995, pp. 267{276.

[6] P. K. Agarwal, A. Efrat, and M. Sharir, Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications, Proc. 11th Annu. ACM Sympos. Comput.

Geom., 1995, pp. 39{50.

[7] P. K. Agarwal and J. Matou�sek, Ray shooting and parametric search, SIAM J. Comput.,
22 (1993), 794{806.

[8] P. K. Agarwal and J. Matou�sek, On range searching with semialgebraic sets, Discrete Comput.
Geom., 11 (1994), 393{418.

[9] P. K. Agarwal and J. Matou�sek, Dynamic half-space range reporting and its applications,
Algorithmica, 13 (1995), 325{345.

[10] P. K. Agarwal and M. Sharir, Applications of a new space partitioning technique, Discrete
Comput. Geom., 9 (1993), 11{38.

Geometric Range Searching and Its Relatives 49

[11] P. K. Agarwal and M. Sharir, Ray shooting amidst convex polygons in 2D, J. Algorithms,
21 (1996), 508{519.

[12] P. K. Agarwal and M. Sharir, Ray shooting amidst convex polyhedra and polyhedral terrains
in three dimensions, SIAM J. Comput., 25 (1996), 100{116.

[13] P. K. Agarwal, M. Sharir, and S. Toledo, Applications of parametric searching in geometric
optimization, J. Algorithms, 17 (1994), 292{318.

[14] P. K. Agarwal and M. van Kreveld, Polygon and connected component intersection searching,
Algorithmica, 15 (1996), 626{660.

[15] P. K. Agarwal, M. van Kreveld, and M. Overmars, Intersection queries in curved objects, J.
Algorithms, 15 (1993), 229{266.

[16] A. Aggarwal, M. Hansen, and T. Leighton, Solving query-retrieval problems by compacting
Voronoi diagrams, Proc. 22nd Annu. ACM Sympos. Theory Comput., 1990, pp. 331{340.

[17] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-

rithms, Addison-Wesley, Reading, MA, 1974.

[18] A. Andersson and K. Swanson, On the di�culty of range searching, Proc. 4th Workshop

Algorithms Data Struct., Lecture Notes Comput. Sci., Vol. 955, Springer-Verlag, 1995, pp. 473{
481.

[19] M. Anthony and N. Biggs, Computational Learning Theory, Cambridge University Press,
Cambridge, 1992.

[20] L. Arge, The Bu�er Tree: A new technique for optimal I/O-algorithms, Proc. 4th Workshop

Algorithms Data Struct., number 955 in Lecture Notes Comput. Sci., 1995, pp. 334{345.

[21] L. Arge and J. S. Vitter, Optimal interval management in external memory, Proc. 37th Annu.

IEEE Sympos. Found. Comput. Sci., October 1996, pp. 560{569.

[22] B. Aronov and S. Fortune, Average-case ray shooting and minimum weight triangulation,
Proc. 23th Annu. Sympos. Comput. Geom., 1997, pp. 203{211.

[23] B. Aronov, M. Pellegrini, and M. Sharir, On the zone of a surface in a hyperplane arrangement,
Discrete Comput. Geom., 9 (1993), 177{186.

[24] S. Arya, D. Mount, and O. Narayan, Accounting for boundary e�ects in nearest neighbor
searching, Proc. 11th Annu. ACM Sympos. Comput. Geom., 1995, pp. 336{344.

[25] S. Arya and D. M. Mount, Algorithms for fast vector quantization, Data Compression Con-

ference, IEEE Press, 1993, pp. 381{390.

[26] S. Arya and D. M. Mount, Approximate nearest neighbor queries in �xed dimensions, Proc.
4th ACM-SIAM Sympos. Discrete Algorithms, 1993, pp. 271{280.

[27] S. Arya and D. M. Mount, Approximate range searching, Proc. 11th Annu. ACM Sympos.

Comput. Geom., 1995, pp. 172{181.

50 Pankaj K. Agarwal and Je� Erickson

[28] S. Arya, D. M. Mount, and O. Narayan, Accounting for boundary e�ects in nearest-neighbor
searching, Discrete Comput. Geom., 16 (1996), 155{176.

[29] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu, An optimal algorithm for
approximate nearest neighbor searching, Proc. 5th ACM-SIAM Sympos. Discrete Algorithms,
1994, pp. 573{582.

[30] T. Asano, T. Roos, P. Widmayer, and E. Welzl, Space �lling curves and their use in the design
of geometric data structures, Proc. 2nd Latin Amer. Sympos. Theoret. Informatics, Lecture
Notes Comput. Sci., Vol. 911, Springer-Verlag, 1995, pp. 36{48.

[31] D. Avis, Non-partitionable point sets, Inform. Process. Lett., 19 (1984), 125{129.

[32] D. H. Ballard, Strip trees: A hierarchical representation for curves, Commun. ACM, 24 (1981),
310{321.

[33] R. Bar-Yehuda and S. Fogel, Partitioning a sequence into few monotone subsequences, Tech-
nical Report 640, Technion IIT, Haifa, Israel, 1990.

[34] R. Bar-Yehuda and S. Fogel, Variations on ray shooting, Algorithmica, 11 (1994), 133{145.

[35] R. Bayer and McCreight, Organization of large ordered indexes, Acta Inform., 1 (1972), 173{
189.

[36] B. Becker, H. Six, and P. Widmayer, Spatial priority search: An access technique for scaleless
maps, Proc. ACM SIGMOD Conf. on Management of Data, 1991, pp. 128{138.

[37] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, The R�-tree: An e�cient and
robust access method for points and rectangles, Proc. ACM SIGMOD Conf. on Management

of Data, 1990, pp. 322{331.

[38] A. M. Ben-Amram, Lower bounds on algebraic random access machines, Proc. 22nd Internat.

Colloq. Automata Lang. Prog., Lecture Notes Comput. Sci., Vol. 944, Springer-Verlag, 1995,
pp. 360{371.

[39] A. M. Ben-Amram, What is a \pointer machine"?, SIGACT News, 26 (1995), 88{95.

[40] M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th Annu. ACM Sympos.

Theory Comput., 1983, pp. 80{86.

[41] J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun.
ACM, 18 (1975), 509{517.

[42] J. L. Bentley, Multidimensional divide-and-conquer, Commun. ACM, 23 (1980), 214{229.

[43] J. L. Bentley and J. H. Friedman, Data structures for range searching, ACM Comput. Surv.,
11 (1979), 397{409.

[44] J. L. Bentley and J. B. Saxe, Decomposable searching problems I: Static-to-dynamic trans-
formation, J. Algorithms, 1 (1980), 301{358.

Geometric Range Searching and Its Relatives 51

[45] S. Berchtold, C. B�ohm, B. Barunm�uller, D. A. Keim, and H.-P. Kriegel, Fast parallel similarity
search in multimedia databases, Proc. ACM SIGMOD Conf. on Management of Data, 1997,
pp. 1{12.

[46] S. Berchtold, C. B�ohm, D. A. Keim, and H.-P. Kriegel, A cost model for nearest neighbor
search in high-dimensional data space, Proc. ACM Sympos. Principles of Database Systems,
1997, pp. 78{86.

[47] S. Berchtold, D. A. Keim, and H.-P. Kriegel, The X-tree: An index structure for higher
dimensional data, Proc. 22th VLDB Conference, 1996, pp. 28{39.

[48] T. Bially, Space-�lling curves: Ttheir generation and their application to bandwidth reduction,
IEEE Trans. Information Theory, 15 (1969), 658{664.

[49] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, Classifying learnable geometric
concepts with the Vapnik-Chervonenkis dimension, J. ACM, 36 (1989), 929{965.

[50] P. Bozanis, N. Ktsios, C. Makris, and A. Tsakalidis, New upper bounds for generalized inter-
section searching problems, Proc. 22nd Inter. Colloq. Auto. Lang. Program., Lecture Notes in
Computer Science, Vol. 944, 1995, pp. 464{475.

[51] P. Bozanis, N. Ktsios, C. Makris, and A. Tsakalidis, New results on intersection query prob-
lems, unpublished manuscript, 1996.

[52] H. Br�onnimann, B. Chazelle, and J. Pach, How hard is halfspace range searching, Discrete
Comput. Geom., 10 (1993), 143{155.

[53] P. B�urgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Springer-
Verlag, 1996.

[54] T. M. Chan, Fixed-dimensional linear programming queries made easy, Proc. 12th Annu.

ACM Sympos. Comput. Geom., 1996, pp. 284{290.

[55] B. Chazelle, Filtering search: A new approach to query-answering, SIAM J. Comput.,
15 (1986), 703{724.

[56] B. Chazelle, Computing on a free tree via complexity-preserving mappings, Algorithmica,
2 (1987), 337{361.

[57] B. Chazelle, An algorithm for segment-dragging and its implementation, Algorithmica,
3 (1988), 205{221.

[58] B. Chazelle, A functional approach to data structures and its use in multidimensional search-
ing, SIAM J. Comput., 17 (1988), 427{462.

[59] B. Chazelle, Lower bounds on the complexity of polytope range searching, J. Amer. Math.

Soc., 2 (1989), 637{666.

[60] B. Chazelle, Lower bounds for orthogonal range searching, I: The reporting case, J. ACM,
37 (1990), 200{212.

[61] B. Chazelle, Lower bounds for orthogonal range searching, II: The arithmetic model, J. ACM,
37 (1990), 439{463.

52 Pankaj K. Agarwal and Je� Erickson

[62] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom., 9 (1993),
145{158.

[63] B. Chazelle, Computational geometry: A retrospective, Proc. 26th Annu. ACM Sympos. The-

ory Comput., 1994, pp. 75{94.

[64] B. Chazelle, A spectral approach to lower bounds, Proc. 35th Annu. IEEE Sympos. Found.

Comput. Sci., 1994, pp. 674{682.

[65] B. Chazelle, Lower bounds for o�-line range searching, Proc. 27th Annu. ACM Sympos. Theory

Comput., 1995, pp. 733{740.

[66] B. Chazelle, R. Cole, F. P. Preparata, and C. K. Yap, New upper bounds for neighbor search-
ing, Inform. Control, 68 (1986), 105{124.

[67] B. Chazelle and H. Edelsbrunner, Optimal solutions for a class of point retrieval problems, J.
Symbolic Comput., 1 (1985), 47{56.

[68] B. Chazelle and H. Edelsbrunner, Linear space data structures for two types of range search,
Discrete Comput. Geom., 2 (1987), 113{126.

[69] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink, Ray shooting in polygons using geodesic triangulations, Algorithmica, 12 (1994),
54{68.

[70] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly-exponential strati�cation
scheme for real semi-algebraic varieties and its applications, Proc. 16th Internat. Colloq. Au-

tomata Lang. Program., Lecture Notes Comput. Sci., Vol. 372, Springer-Verlag, 1989, pp. 179{
192.

[71] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly-exponential strati�cation
scheme for real semi-algebraic varieties and its applications, Theoret. Comput. Sci., 84 (1991),
77{105.

[72] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest line pair
and parametric searching, Discrete Comput. Geom., 10 (1993), 183{196.

[73] B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and J. Stol�, Lines in space: Combi-
natorics and algorithms, Algorithmica, 15 (1996), 428{447.

[74] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry,
Combinatorica, 10 (1990), 229{249.

[75] B. Chazelle and J. Friedman, Point location among hyperplanes and unidirectional ray-
shooting, Comput. Geom. Theory Appl., 4 (1994), 53{62.

[76] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algorith-
mica, 1 (1986), 133{162.

[77] B. Chazelle and L. J. Guibas, Visibility and intersection problems in plane geometry, Discrete
Comput. Geom., 4 (1989), 551{581.

Geometric Range Searching and Its Relatives 53

[78] B. Chazelle, L. J. Guibas, and D. T. Lee, The power of geometric duality, BIT, 25 (1985),
76{90.

[79] B. Chazelle and F. P. Preparata, Halfspace range search: An algorithmic application of k-sets,
Discrete Comput. Geom., 1 (1986), 83{93.

[80] B. Chazelle and B. Rosenberg, Computing partial sums in multidimensional arrays, Proc. 5th
Annu. ACM Sympos. Comput. Geom., 1989, pp. 131{139.

[81] B. Chazelle and B. Rosenberg, Simplex range reporting on a pointer machine, Comput. Geom.
Theory Appl., 5 (1996), 237{247.

[82] B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range searching
and new zone theorems, Algorithmica, 8 (1992), 407{429.

[83] B. Chazelle and E. Welzl, Quasi-optimal range searching in spaces of �nite VC-dimension,
Discrete Comput. Geom., 4 (1989), 467{489.

[84] S. W. Cheng and R. Janardan, E�cient dynamic algorithms for some geometric intersection
problems, Inform. Process. Lett., 36 (1990), 251{258.

[85] S. W. Cheng and R. Janardan, Algorithms for ray-shooting and intersection searching, J.
Algorithms, 13 (1992), 670{692.

[86] Y.-J. Chiang and R. Tamassia, Dynamic algorithms in computational geometry, Proc. IEEE,
80 (1992), 1412{1434.

[87] K. Clarkson, Nearest neighbor queries in metric spaces, Proc. 29th Annu. ACM Sympos.

Theory Comput., 1997, pp. 609{617.

[88] K. L. Clarkson, New applications of random sampling in computational geometry, Discrete
Comput. Geom., 2 (1987), 195{222.

[89] K. L. Clarkson, A randomized algorithm for closest-point queries, SIAM J. Comput.,
17 (1988), 830{847.

[90] K. L. Clarkson, Randomized geometric algorithms, in: Computing in Euclidean Geometry

(D.-Z. Du and F. K. Hwang, eds.), World Scienti�c, Singapore, 1992, pp. 117{162.

[91] K. L. Clarkson, An algorithm for approximate closest-point queries, Proc. 10th Annu. ACM

Sympos. Comput. Geom., 1994, pp. 160{164.

[92] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry,
II, Discrete Comput. Geom., 4 (1989), 387{421.

[93] J. G. Cleary, Analysis of an algorithm for �nding nearest neighbors in Euclidean space, ACM
Trans. Math. Softw., 5 (1979), 183{192.

[94] R. Cole, Partitioning point sets in 4 dimensions, Proc. 12th Internat. Colloq. Automata Lang.

Program., Lecture Notes Comput. Sci., Vol. 194, Springer-Verlag, 1985, pp. 111{119.

[95] R. Cole and C. K. Yap, Geometric retrieval problems, Inform. Control, 63 (1985), 39{57.

54 Pankaj K. Agarwal and Je� Erickson

[96] D. Comer, The ubiquitous B-tree, ACM Comput. Surv., 11 (1979), 121{137.

[97] S. Cost and S. Salzberg, A weighted nearest neighbor algorithm for learning with symbolic
features, Machine Learning, 10 (1993), 57{67.

[98] T. Cover and P. Hart, Nearest neighbor pattern classi�cation, IEEE Trans. Information The-

ory, 13 (1967), 21{27.

[99] M. de Berg, L. J. Guibas, and D. Halperin, Vertical decompositions for triangles in 3-space,
Discrete Comput. Geom., 15 (1996), 35{61.

[100] M. de Berg and M. Overmars, Hidden surface removal for c-oriented polyhedra, Comput.
Geom. Theory Appl., 1 (1992), 247{268.

[101] D. P. Dobkin and H. Edelsbrunner, Organizing point sets in two and three dimensions, Tech.
Report F130, Inst. Informationsverarb., Tech. Univ. Graz, Graz, Austria, 1984.

[102] D. P. Dobkin and H. Edelsbrunner, Space searching for intersecting objects, J. Algorithms,
8 (1987), 348{361.

[103] D. P. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, Implicitly searching convolutions
and computing depth of collision, Proc. 1st Annu. SIGAL Internat. Sympos. Algorithms,
Lecture Notes Comput. Sci., Vol. 450, Springer-Verlag, 1990, pp. 165{180.

[104] D. P. Dobkin and D. G. Kirkpatrick, A linear algorithm for determining the separation of
convex polyhedra, J. Algorithms, 6 (1985), 381{392.

[105] D. P. Dobkin and D. G. Kirkpatrick, Determining the separation of preprocessed polyhedra
{ A uni�ed approach, Proc. 17th Internat. Colloq. Automata Lang. Program., Lecture Notes

Comput. Sci., Vol. 443, Springer-Verlag, 1990, pp. 400{413.

[106] D. P. Dobkin and S. Suri, Maintenance of geometric extrema, J. ACM, 38 (1991), 275{298.

[107] R. O. Duda and P. E. Hart, Pattern Classi�cation and Scene Analysis, Wiley Interscience,
New York, 1973.

[108] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

[109] H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl,
Implicitly representing arrangements of lines or segments, Discrete Comput. Geom., 4 (1989),
433{466.

[110] H. Edelsbrunner and F. Huber, Dissecting sets of points in two and three dimensions, Report
F138, Inst. Informationsverarb., Tech. Univ. Graz, Graz, Austria, 1984.

[111] H. Edelsbrunner, D. G. Kirkpatrick, and H. A. Maurer, Polygonal intersection searching,
Inform. Process. Lett., 14 (1982), 74{79.

[112] H. Edelsbrunner and H. A. Maurer, A space-optimal solution of general region location,
Theoret. Comput. Sci., 16 (1981), 329{336.

[113] H. Edelsbrunner and M. H. Overmars, Batched dynamic solutions to decomposable searching
problems, J. Algorithms, 6 (1985), 515{542.

Geometric Range Searching and Its Relatives 55

[114] H. Edelsbrunner and E. Welzl, Halfplanar range search in linear space and O(n0:695) query
time, Inform. Process. Lett., 23 (1986), 289{293.

[115] A. Efrat, M. Katz, F. Nielsen, and M. Sharir, Dynamic data structures for fat objects and
their applications, Proc. 5th Workshop Algorithms Data Struct., 1997. To appear.

[116] P. Erd}os and G. Szekeres, A combinatorial problem in geometry, Compositio Math., 2 (1935),
463{470.

[117] J. Erickson, New lower bounds for halfspace emptiness, 37th Annu. ACM Sympos. Found.

Comput. Sci., 1996, pp. 472{481.

[118] J. Erickson, New lower bounds for Hopcroft's problem, Discrete Comput. Geom., 16 (1996),
389{418.

[119] J. Erickson, Space-time tradeo�s for emptiness queries, Proc. 13th Annu. ACM Sympos. Com-

put. Geom., 1997. To appear.

[120] G. Evangelidis, D. Lomet, and B. Salzberg, The hB�-tree: A multi-attribute index supporting
concurrency, recovery and node consolidation, VLDB Journal, 6 (1997), 1{25.

[121] C. Faloutsos, Gray codes for partial match and range queries, IEEE Trans. on Software Eng.,
44 (1988), 1381{1393.

[122] C. Faloutsos and V. Gaede, Analysis of n-dimensional quadtrees using the Hausdor� fractal
dimension, Proc. 22nd VLDB Conference, 1996, pp. 40{50.

[123] C. Faloutsos and K.-I. Lin, FastMap: A fast algorithm for indexing, data-mining and visual-
ization of traditional and multimedia databases, Proc. ACM SIGMOD Conf. on Management

of Data, 1995, pp. 163{173.

[124] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast subsequence matching in time-
series databases, Proc. ACM SIGMOD Conf. on Management of Data, 1994, pp. 86{93.

[125] C. Faloutsos and Y. Rong, DOT: A spatial access method using fractals, Proc. 7th IEEE

Internat. Conf. on Data Engineering, 1991, pp. 152{158.

[126] C. Faloutsos and S. Roseman, Fractals for secondary key retrieval, Proc. ACM SIGMOD Conf.

on Management of Data, 1989, pp. 247{252.

[127] R. A. Finkel and J. L. Bentley, Quad trees: a data structure for retrieval on composite keys,
Acta Inform., 4 (1974), 1{9.

[128] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and
Practice, Addison-Wesley, Reading, MA, 1990.

[129] F. W. Fredman and D. E. Willard, Surpassing the information theoretic bound with fusion
trees, J. Comput. Syst. Sci., 48 (1993), 424{436.

[130] M. L. Fredman, The complexity of maintaining an array and computing its partial sums, J.
ACM, 29 (1979), 250{260.

56 Pankaj K. Agarwal and Je� Erickson

[131] M. L. Fredman, Inherent complexity of range query problems, Proc. 17th Allerton Conf.

Commun. Control Comput., 1979, pp. 231{240.

[132] M. L. Fredman, The inherent complexity of dynamic data structures which accommodate
range queries, Proc. 21st Annu. IEEE Sympos. Found. Comput. Sci., 1980, pp. 191{199.

[133] M. L. Fredman, A lower bound on the complexity of orthogonal range queries, J. ACM,
28 (1981), 696{705.

[134] M. L. Fredman, Lower bounds on the complexity of some optimal data structures, SIAM J.

Comput., 10 (1981), 1{10.

[135] M. L. Fredman and D. J. Volper, The complexity of partial match retrieval in a dynamic
setting, J. Algorithms, 3 (1982), 68{78.

[136] H. Freeston, The BANG �le: a new kind of grid �le, Proc. ACM SIGMOD Conf. on Manage-

ment of Data, 1987, pp. 260{269.

[137] M. Freestone, A general solution of the n-dimensional B-tree problem, Proc. ACM SIGMOD

Conf. on Management of Data, 1995, pp. 80{91.

[138] J. H. Friedman, J. L. Bentley, and R. A. Finkel, An algorithm for �nding best matches in
logarithmic expected time, ACM Trans. Math. Softw., 3 (1977), 209{226.

[139] H. Fuchs, Z. M. Kedem, and B. Naylor, On visible surface generation by a priori tree structures,
Comput. Graph., 14 (1980), 124{133. Proc. SIGGRAPH '80.

[140] A. S. Glassner, Ray Tracing, Academic Press, 1989.

[141] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.-B. Yu, Processing queries by linear con-
straints, Proc. ACM Sympos. Principles of Database Systems, 1997, pp. 257{267.

[142] J. E. Goodman, R. Pollack, and R. Wenger, Geometric transversal theory, in: New Trends

in Discrete and Computational Geometry (J. Pach, ed.), Springer-Verlag, Heidelberg{New
York{Berlin, 1993, pp. 163{198.

[143] M. T. Goodrich and R. Tamassia, Dynamic ray shooting and shortest paths via balanced
geodesic triangulations, Proc. 9th Annu. ACM Sympos. Comput. Geom., 1993, pp. 318{327.

[144] J. Gray, A. Bosworth, A. Layman, and H. Patel, Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals, Proc. 12th IEEE Internat. Conf. on Data

Engineering, 1996, pp. 152{159.

[145] D. Greene, An implementation and performance analysis of spatial data access methods, Proc.
5th IEEE Internat. Conf. on Data Engineering, 1989, pp. 606{615.

[146] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press,
Cambridge, 1988.

[147] D. Grigoriev and N. Vorobjov, Complexity lower bounds for computation trees with elemen-
tary transcendental function gates, Theoret. Comput. Sci., 157 (1996), 185{214.

Geometric Range Searching and Its Relatives 57

[148] R. Grossi and G. F. Italiano, E�cient splitting and merging algorithms for order decomposable
problems, Proc. 24th Internat. Colloq. Automata, Lang. Prog., 1997, to appear.

[149] L. Guibas, M. Overmars, and M. Sharir, Ray shooting, implicit point location, and related
queries in arrangements of segments, Report 433, Dept. Comput. Sci., New York Univ., New
York, NY, March 1989.

[150] O. G�unther, The design of the cell tree: An object oriented index structure for geometric data
bases, Proc. 5th IEEE Internat. Conf. on Data Engineering, 1989, pp. 598{605.

[151] O. G�unther and J. Bilmes, Tree based access methods for spatial databases: Implementation
and performance evaluation, IEEE Trans. Knowledge and Data Engineering, 3 (1991), 342{
356.

[152] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman, Index selection for OLAP, Proc.
ACM SIGMOD Conf. on Management of Data, 1996, pp. 205{216.

[153] P. Gupta, R. Janardan, and M. Smid, E�cient algorithms for generalized intersection search-
ing on non-iso-oriented objects, Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994,
pp. 369{378.

[154] P. Gupta, R. Janardan, and M. Smid, On intersection searching problems involving curved
objects, Proc. 4th Scand. Workshop Algorithm Theory, Lecture Notes Comput. Sci., Vol. 824,
Springer-Verlag, 1994, pp. 183{194.

[155] P. Gupta, R. Janardan, and M. Smid, Further results on generalized intersection searching
problems: counting, reporting and dynamization, J. Algorithms, 19 (1995), 282{317.

[156] R. G�uting, An introduction to spatial database systems, VLDB Journal, 4 (1994), 357{399.

[157] A. Guttman, R-trees: a dynamic index structure for spatial searching, Proc. ACM SIGACT-

SIGMOD Conf. Principles Database Systems, 1984, pp. 569{592.

[158] D. Harel and R. E. Tarjan, Fast algorithms for �nding nearest common ancestors, SIAM J.

Comput., 13 (1984), 338{355.

[159] V. Harinarayan, A. Rajaraman, and J. D. Ullman, Implementing data cubes e�ciently, Proc.
13th IEEE Internat. Conf. on Data Engineering, 1997, pp. 208{219.

[160] T. Hastie and R. Tibshirani, Discriminant adaptive nearest neighbor classi�cation, IEEE
Trans. Pattern Anal. Mach. Intell., 18 (1996), 607{616.

[161] D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete Comput. Geom.,
2 (1987), 127{151.

[162] J. H. Hellerstein, E. Koustsoupias, and C. H. Papadimtriou, On the analysis of indexing
schemes, Proc. ACM Sympos. Principles of Database Systems, 1997, pp. 249{256.

[163] A. Henrich, Improving the performance of multi-dimensional access structures based on kd-
trees, Proc. 12th IEEE Intl. Conf. on Data Engineering, 1996, pp. 68{74.

[164] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a walk,
J. Algorithms, 18 (1995), 403{431.

58 Pankaj K. Agarwal and Je� Erickson

[165] K. H. Hinrichs, The grid �le system: implementation and case studies of applications, Report
Diss. ETH 7734, Swiss Federal Inst. Tech. Z�urich, Z�urich, Switzerland, 1985.

[166] G. R. Hjaltason and H. Samet, Ranking in spatial databases, Advances in Spatial Databases

- Fourth International Symposium (M. J. Egenhofer and J. R. Herring, eds.), number 951 in
Lecture Notes Comput. Sci., August 1995, pp. 83{95.

[167] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant, Range queries in OLAP data cubes, Proc.
ACM SIGMOD Conf. on Management of Data, 1997, pp. 73{88.

[168] C.-T. Ho, J. Bruck, and R. Agrawal, Partial-sum queries in OLAP data cubes using covering
codes, Proc. ACM Sympos. Principles of Database Systems, 1997, pp. 228{237.

[169] E. G. Hoel and H. Samet, A qualitative comparison study of data structures for large line
segment databases, Proc. ACM SIGMOD Conf. on Management of Data, 1992, pp. 205{214.

[170] P. Houthuys, Box sort, a multidimensional binary sorting method for rectangular boxes, used
for quick range searching, Visual Comput., 3 (1987), 236{249.

[171] A. Hutesz, H.-W. Six, and P. Widmayer, Globally order preserving multidimensional linear
hashing, Proc. 4th Intl. Conf. on Data Engineering, 1988, pp. 572{579.

[172] A. Hutesz, H.-W. Six, and P. Widmayer, Twin grid �les: Space optimizing access schemes,
Proc. ACM SIGMOD Conf. on Management of Data, 1988, pp. 183{190.

[173] H. Imai and T. Asano, Dynamic orthogonal segment intersection search, J. Algorithms,
8 (1987), 1{18.

[174] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala, Locality-preserving hashing in multidi-
mensional space, Proc. 29th Annu. ACM Sympos. Theory Comput., 1997, pp. 618{625.

[175] H. V. Jagdish, Linear clustering of objects with multiple attributes, Proc. ACM SIGMOD

Conf. on Management of Data, 1990, pp. 332{342.

[176] R. Janardan and M. Lopez, Generalized intersection searching problems, Internat. J. Comput.
Geom. Appl., 3 (1993), 39{69.

[177] I. Kamel and C. Faloutsos, Parallel R-trees, Proc. ACM SIGMOD Conf. on Management of

Data, 1992, pp. 195{204.

[178] I. Kamel and C. Faloutsos, On packing R-trees, Proc. 2nd Internat. Conf. on Information

and Knowledge Management, 1993, pp. 490{499.

[179] I. Kamel and C. Faloutsos, Hilbert R-tree: An improved R-tree using fractals, Proc. 20th
VLDB Conference, 1994, pp. 500{510.

[180] P. C. Kanellakis, S. Ramaswamy, D. E. Vengro�, and J. S. Vitter, Indexing for data mod-
els with constraints and classes, Proc. 12th ACM SIGACT-SIGMOD-SIGART Conf. Princ.

Database Sys., 1993, pp. 233{243.

[181] N. Katayama and S. Satoh, The SR-tree: An index structure for high-dimensional nearest-
neighbor queries, Proc. ACM SIGMOD Conf. on Management of Data, 1997, pp. 369{380.

Geometric Range Searching and Its Relatives 59

[182] M. Katz, 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting
amidst convex fat objects, Research Report 2583, INRIA, BP93, 06902 Sophia-Antipolis,
France, 1995.

[183] M. D. Katz and D. J. Volper, Data structures for retrieval on square grids, SIAM J. Comput.,
15 (1986), 919{931.

[184] R. Klein, O. Nurmi, T. Ottmann, and D. Wood, A dynamic �xed windowing problem, Algo-
rithmica, 4 (1989), 535{550.

[185] J. Kleinberg, Two algorithms for nearest-neighbor search in high dimension, Proc. 29th Annu.
ACM Sympos. Theory Comput., 1997, pp. 599{608.

[186] V. Koivune and S. Kassam, Nearest neighbor �lters for multivariate data, IEEE Workshop

on Nonlinear Signal and Image Processing, 1995.

[187] J. Koml�os, J. Pach, and G. Woeginger, Almost tight bounds for �-nets, Discrete Comput.

Geom., 7 (1992), 163{173.

[188] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapa, Fast nearest neighbor
search in medical image database, Proc. 22nd VLDB Conference, 1996, pp. 215{226.

[189] H.-P. Kriegel and B. Seeger, Multidimensional order preserving linear hashing with partial
expansions, in: Proc. Intl. Conf. on Database Theory, Lecture Notes Comput. Sci., Vol. 243,
Springer-Verlag, 1986, pp. 203{220.

[190] R. Krishnamurthy and K.-Y. Wang, Multilevel grid �les, Tech. report, IBM T. J. Watson
Center, Yorktown Heights, NY, 1985.

[191] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991.

[192] D. T. Lee and C. K. Wong, Finding intersections of rectangles by range search, J. Algorithms,
2 (1981), 337{347.

[193] S. Leutenegger, M. A. Lopez, and J. Edington, STR: A simple and e�cient algorithm for
R-tree packing, Proc. 13th IEEE Internat. Conf. on Data Engineering, 1997, pp. 497{506.

[194] K. Lin, H. Jagdish, and C. Faloutsos, The TV-tree: An index structure for higher dimensional
data, VLDB Journal, 4 (1994), 517{542.

[195] D. Lomet and B. Salzberg, The hB-tree: A multiattribute indexing method with good guar-
anteed performance, ACM Trans. Database systems, 15 (1990), 625{658.

[196] G. S. Lueker, A data structure for orthogonal range queries, Proc. 19th Annu. IEEE Sympos.

Found. Comput. Sci., 1978, pp. 28{34.

[197] J. MacDanold and K. Booth, Heuristics for ray tracing using space subdivision, Visual Com-
put., 6 (1990), 153{166.

[198] J. Matou�sek, E�cient partition trees, Discrete Comput. Geom., 8 (1992), 315{334.

[199] J. Matou�sek, Reporting points in halfspaces, Comput. Geom. Theory Appl., 2 (1992), 169{186.

60 Pankaj K. Agarwal and Je� Erickson

[200] J. Matou�sek, Epsilon-nets and computational geometry, in: New Trends in Discrete and

Computational Geometry (J. Pach, ed.), Algorithms and Combinatorics, Vol. 10, Springer-
Verlag, 1993, pp. 69{89.

[201] J. Matou�sek, Linear optimization queries, J. Algorithms, 14 (1993), 432{448.

[202] J. Matou�sek, On vertical ray shooting in arrangements, Comput. Geom. Theory Appl.,
2 (1993), 279{285.

[203] J. Matou�sek, Range searching with e�cient hierarchical cuttings, Discrete Comput. Geom.,
10 (1993), 157{182.

[204] J. Matou�sek, Geometric range searching, ACM Comput. Surv., 26 (1994), 421{461.

[205] J. Matou�sek and O. Schwarzkopf, On ray shooting in convex polytopes, Discrete Comput.

Geom., 10 (1993), 215{232.

[206] J. Matou�sek and E. Welzl, Good splitters for counting points in triangles, J. Algorithms,
13 (1992), 307{319.

[207] J. Matou�sek, E. Welzl, and L. Wernisch, Discrepancy and "-approximations for bounded VC-
dimension, Combinatorica, 13 (1993), 455{466.

[208] E. M. McCreight, Priority search trees, SIAM J. Comput., 14 (1985), 257{276.

[209] M. R. Mediano, M. A. Casanova, and M. Dreux, V-trees: A storage method for long vector
data, Proc. 20th VLDB Conference, 1994, pp. 321{329.

[210] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.
ACM, 30 (1983), 852{865.

[211] K. Mehlhorn, Multi-dimensional Searching and Computational Geometry, Springer-Verlag,
Heidelberg, West Germany, 1984.

[212] K. Mehlhorn and S. N�aher, Dynamic fractional cascading, Algorithmica, 5 (1990), 215{241.

[213] H. Mehrotra and J. E. Gary, Feature-based retrieval of similar shapes, Proc. 9th IEEE Intl.

Conf. on Data Engineering, 1996, pp. 108{115.

[214] S. Meiser, Point location in arrangements of hyperplanes, Inform. Comput., 106 (1993), 286{
303.

[215] J. S. B. Mitchell, Shortest paths among obstacles in the plane, Proc. 9th Annu. ACM Sympos.

Comput. Geom., 1993, pp. 308{317.

[216] J. S. B. Mitchell, D. M. Mount, and S. Suri, Query-sensitive ray shooting, Proc. 10th Annu.

ACM Sympos. Comput. Geom., 1994, pp. 359{368.

[217] G. Morton, A computer oriented geodetic data base and a new technique in �le sequencing,
Tech. Rep., IBM Ltd., Ottawa, Canada, 1966.

[218] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New
York, NY, 1995.

Geometric Range Searching and Its Relatives 61

[219] J. Mullin, Spiral storage: E�cient dynamic hashing with constant-performance, The Com-

puter Journal, 28 (1985), 330{334.

[220] K. Mulmuley, A fast planar partition algorithm, I, J. Symbolic Comput., 10 (1990), 253{280.

[221] K. Mulmuley, Randomized multidimensional search trees: Dynamic sampling, Proc. 7th Annu.
ACM Sympos. Comput. Geom., 1991, pp. 121{131.

[222] K. Mulmuley, Randomized multidimensional search trees: Further results in dynamic sam-
pling, Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., 1991, pp. 216{227.

[223] K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms,
Prentice Hall, Englewood Cli�s, NJ, 1994.

[224] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, The grid �le: An adaptable, symmetric
multi-key �le structure, ACM Trans. Database Systems, 9 (1984), 38{71.

[225] J. Nievergelt and P. Widmayer, Guard �les: Stabbing and intersection queries on fat spatial
objects, The Computer Journal, 36 (1993), 107{116.

[226] J. Nievergelt and P. Widmayer, Spatial data structures: Concepts and design choices, unpub-
lished manuscript, 1996.

[227] J. Orenstein, A comparison of spatial query processing techniques for native and parameter
spaces, Proc. ACM SIGMOD Conf. on Management of Data, 1990, pp. 343{352.

[228] J. Orenstein and T. Merrett, A class of data structures for associative searching, Proc. ACM
SIGMOD Conf. on Management of Data, 1984, pp. 181{190.

[229] M. Ouksel, The interpolation-based grid �le, Proc. ACM Sympos. Principles of Database

Systems, 1985, pp. 20{27.

[230] M. H. Overmars, The Design of Dynamic Data Structures, Springer-Verlag, Heidelberg, West
Germany, 1983.

[231] M. H. Overmars, E�cient data structures for range searching on a grid, J. Algorithms,
9 (1988), 254{275.

[232] M. H. Overmars, M. H. M. Smid, M. T. de Berg, and M. J. van Kreveld, Maintaining range
trees in secondary memory, part I: Partitions, Acta Inform., 27 (1990), 423{452.

[233] M. H. Overmars and A. F. van der Stappen, Range searching and point location among fat
objects, Algorithms { ESA'94 (J. van Leeuwen, ed.), Lecture Notes Comput. Sci., Vol. 855,
Springer-Verlag, 1994, pp. 240{253.

[234] J. Pach, Notes on geometric graph theory, in: Discrete and Computational Geometry: Papers

from the DIMACS Special Year (J. E. Goodman, R. Pollack, and W. Steiger, eds.), American
Mathematical Society, 1991, pp. 273{285.

[235] B.-U. Pagel, H.-W. Six, and H. Toben, The transformation technique for spatial objects
revisited, in: Proc. 3rd Intl. Symp. on Large Spatial Databases, Lecture Notes Comput. Sci.,
Vol. 692, Springer-Verlag, 1993, pp. 73{88.

62 Pankaj K. Agarwal and Je� Erickson

[236] A. Papadpoulos and Y. Manolopoulos, Performance of nearest neighbor queries in R-trees, in:
Proc. 6th Intl. Conf. Database Theory, Lecture Notes Comput. Sci., Vol. 1186, 1997, pp. 394{
408.

[237] M. S. Paterson and F. F. Yao, E�cient binary space partitions for hidden-surface removal
and solid modeling, Discrete Comput. Geom., 5 (1990), 485{503.

[238] M. Pellegrini, Ray shooting on triangles in 3-space, Algorithmica, 9 (1993), 471{494.

[239] M. Pellegrini, On point location and motion planning among simplices, Proc. 25th Annu.

ACM Sympos. Theory Comput., 1994, pp. 95{104.

[240] M. Pellegrini and P. Shor, Finding stabbing lines in 3-space, Discrete Comput. Geom.,
8 (1992), 191{208.

[241] M. Pocchiola and G. Vegter, Pseudo-triangulations: Theory and applications, Proc. 12th
Annu. ACM Sympos. Comput. Geom., 1996, pp. 291{300.

[242] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, New York, 1985.

[243] V. Ramasubramanian and K. K. Paliwal, Fast k-dimensional tree algorithms for nearest neigh-
bor search with applications to vector quantization encoding, IEEE Trans. Signal Processing,
40 (1992), 518{531.

[244] S. Ramaswamy and S. Subramanian, Path caching: A technique for optimal external search-
ing, Proc. 13th Annu. ACM Sympos. Principles Database Syst., 1994, pp. 25{35.

[245] J. T. Robinson, The k-d-b-tree: a search structure for large multidimensional dynamic indexes,
Proc. ACM SIGACT-SIGMOD Conf. Principles Database Systems, 1981, pp. 10{18.

[246] N. Roussopoulos, S. Kelley, and F. Vincent, Nearest neighbor queries, Proc. ACM SIGMOD

Conf. on Management of Data, 1995, pp. 71{79.

[247] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos, Cubetree: Organization of and bulk
incremental updates on the data cube, Proc. ACM SIGMOD Conf. on Management of Data,
1997, pp. 89{99.

[248] H. Sagan, Space-Filling Curves, Springer-Verlag, New York, 1994.

[249] G. Salton, Automatic Text Processing, Addison-Wesley, Reading, MA, 1989.

[250] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing,

and GIS, Addison-Wesley, Reading, MA, 1990.

[251] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading,
MA, 1990.

[252] H. W. Scholten and M. H. Overmars, General methods for adding range restrictions to de-
composable searching problems, J. Symbolic Comput., 7 (1989), 1{10.

[253] E. Sch�omer and C. Thiel, E�cient collision detection for moving polyhedra, Proc. 11th Annu.

ACM Sympos. Comput. Geom., 1995, pp. 51{60.

Geometric Range Searching and Its Relatives 63

[254] O. Schwarzkopf, Dynamic maintenance of geometric structures made easy, Proc. 32nd Annu.

IEEE Sympos. Found. Comput. Sci., 1991, pp. 197{206.

[255] B. Seeger and H.-P. Kriegel, The buddy-tree: An e�cient and robust access method for spatial
data base systems, Proc. 16th VLDB Conference, 1990, pp. 590{601.

[256] R. Seidel, Backwards analysis of randomized geometric algorithms, in: New Trends in Discrete

and Computational Geometry (J. Pach, ed.), Springer-Verlag, Heidelberg, Germany, 1993,
pp. 37{68.

[257] T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+-tree: A dynamic index for multi-
dimensional objects, Proc. 13th VLDB Conference, 1987, pp. 507{517.

[258] K. Sevcik and N. Koudas, Filter trees for managing spatial data over a range of size granu-
larities, Proc. 22nd VLDB Conference, 1996, pp. 16{27.

[259] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applica-

tions, Cambridge University Press, New York, 1995.

[260] K. Shim, R. Srikant, and R. Agrawarl, High-dimensional similarity joins, Proc. 13th IEEE

Internat. Conf. on Data Engineering, 1997, pp. 301{311.

[261] B. K. Shoichet, D. L. Bodian, and I. D. Kuntz, Molecular docking using shape descriptors, J.
Computational Chemistry, 13 (1992), 380{397.

[262] A. Shoshani, OLAP and statistical databases: Similarities and di�erences, Proc. ACM Sym-

pos. Principles of Database Systems, 1997, pp. 185{196.

[263] M. Smid, Algorithms for semi-online updates on decomposable problems, Proc. 2nd Canad.

Conf. Comput. Geom., 1990, pp. 347{350.

[264] M. Smid, Maintaining the minimal distance of a point set in less than linear time, Algorithms
Rev., 2 (1991), 33{44.

[265] D. M. H. Sommerville, Analytical Geometry in Three Dimensions, Cambridge University
Press, Cambridge, 1951.

[266] R. F. Sproull, Re�nements to nearest-neighbor searching, Algorithmica, 6 (1991), 579{589.

[267] J. M. Steele and A. C. Yao, Lower bounds for algebraic decision trees, J. Algorithms, 3 (1982),
1{8.

[268] J. Stol�, Oriented Projective Geometry: A Framework for Geometric Computations, Academic
Press, New York, NY, 1991.

[269] V. Strassen, Algebraic complexity theory, in: Algorithms and Complexity (J. van Leeuwen,
ed.), Handbook of Theoretical Computer Science, Vol. A, MIT Press, 1990, chapter 11, pp. 633{
672.

[270] S. Subramanian and S. Ramaswamy, The P -range tree: A new data structure for range
searching in secondary memory, Proc. 6th ACM-SIAM Sympos. Discrete Algorithms, 1995,
pp. 378{387.

64 Pankaj K. Agarwal and Je� Erickson

[271] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1987.

[272] P. M. Vaidya, Space-time tradeo�s for orthogonal range queries, SIAM J. Comput., 18 (1989),
748{758.

[273] V. K. Vaishnavi and D. Wood, Rectilinear line segment intersection, layered segment trees
and dynamization, J. Algorithms, 3 (1982), 160{176.

[274] M. J. van Kreveld, New Results on Data Structures in Computational Geometry, Ph.D. Dis-
sertation, Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, 1992.

[275] M. J. van Kreveld and M. H. Overmars, Divided k-d trees, Algorithmica, 6 (1991), 840{858.

[276] M. J. van Kreveld and M. H. Overmars, Concatenable structures for decomposable problems,
Inform. Comput., 110 (1994), 130{148.

[277] J. S. Vitter and D. E. Vengro�, E�cient 3-d range searching in external memory, Proc. 28th
Annu. ACM Sympos. Theory Comput., 1996, pp. 192{201.

[278] J. von zur Gathen, Algebraic complexity theory, in: Annual Review of Computer Science,
Vol. 3, Annual Reviews, Palo Alto, CA, 1988, pp. 317{347.

[279] J. Vuillemin, A unifying look at data structures, Commun. ACM, 23 (1980), 229{239.

[280] E. Welzl, Partition trees for triangle counting and other range searching problems, Proc. 4th
Annu. ACM Sympos. Comput. Geom., 1988, pp. 23{33.

[281] E. Welzl, On spanning trees with low crossing numbers, in: Data Structures and E�cient

Algorithms, Final Report on the DFG Special Joint Initiative, Lecture Notes Comput. Sci.,
Vol. 594, Springer-Verlag, 1992, pp. 233{249.

[282] H. Weyl, Randbemerkungen zu Hauptproblemen der Mathematik, II, Fundamentalsatz der
Alegbra und Grundlagen der Mathematik, Math. Z., 20 (1924), 131{151.

[283] K. Y. Whang, J. W. Song, J. W. Chang, J. Y. Kim, W. S. Cho, C. M. Park, and I. Y.
Song, Octree-R: An adaptible octree for e�cient ray tracing, IEEE Trans. Visual. and Comp.

Graphics, 1 (1995), 343{349.

[284] D. A. White and R. Jain, Similarity indexing with the SS-tree, Proc. 12th IEEE Intl. Conf.

on Data Engineering, 1996, pp. 516{523.

[285] M. White, N-trees: Large ordered indexes for multidimensional space, Tech. report, US Bureau
of the Census, Statistical Research Division, Washington, DC, 1982.

[286] D. E. Willard, Polygon retrieval, SIAM J. Comput., 11 (1982), 149{165.

[287] D. E. Willard, Lower bounds for the addition-subtraction operations in orthogonal range
queries and related problems, Inform. Comput., 82 (1989), 45{64.

[288] D. E. Willard, Applications of the fusion tree method to computational geometry and search-
ing, Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, 1992, pp. 286{296.

Geometric Range Searching and Its Relatives 65

[289] D. E. Willard, Applications of range query theory to relational data base join and selection
operations, J. Comput. Syst. Sci., 52 (1996), 157{169.

[290] D. E. Willard and G. S. Lueker, Adding range restriction capability to dynamic data struc-
tures, J. ACM, 32 (1985), 597{617.

[291] A. C. Yao, Space-time trade-o� for answering range queries, Proc. 14th Annu. ACM Sympos.

Theory Comput., 1982, pp. 128{136.

[292] A. C. Yao, On the complexity of maintaining partial sums, SIAM J. Comput., 14 (1985),
277{288.

[293] A. C. Yao and F. F. Yao, A general approach to d-dimensional geometric queries, Proc. 17th
Annu. ACM Sympos. Theory Comput., 1985, pp. 163{168.

[294] F. F. Yao, A 3-space partition and its applications, Proc. 15th Annu. ACM Sympos. Theory

Comput., 1983, pp. 258{263.

[295] F. F. Yao, D. P. Dobkin, H. Edelsbrunner, and M. S. Paterson, Partitioning space for range
queries, SIAM J. Comput., 18 (1989), 371{384.

[296] P. N. Yianilos, Data structures and algorithms for nearest neighbor search in general metric
spaces, Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, 1993, pp. 311{321.

