
Tracing Compressed Curves in Triangulated Surfaces∗1

Jeff Erickson† Amir Nayyeri
University of Illinois, Urbana-Champaign

{jeffe,nayyeri2}@illinois.edu

2

Submitted to Discrete & Computational Geometry — June 27, 20123

Revised and resubmitted – March 17, 20134

Abstract5

A simple path or cycle in a triangulated surface is normal if it intersects any triangle6

in a finite set of arcs, each crossing from one edge of the triangle to another. A normal7

curve is a finite set of disjoint normal paths and normal cycles. We describe an algorithm to8

“trace” a normal curve in O(min{X , n2 log X }) time, where n is the complexity of the surface9

triangulation and X is the number of times the curve crosses edges of the triangulation.10

In particular, our algorithm runs in polynomial time even when the number of crossings11

is exponential in n. Our tracing algorithm computes a new cellular decomposition of12

the surface with complexity O(n); the traced curve appears in the 1-skeleton of the new13

decomposition as a set of simple disjoint paths and cycles.14

We apply our abstract tracing strategy to two different classes of normal curves: abstract15

curves represented by normal coordinates, which record the number of intersections with16

each edge of the surface triangulation, and simple geodesics, represented by a starting17

point and direction in the local coordinate system of some triangle. Our normal-coordinate18

algorithms are competitive with and conceptually simpler than earlier algorithms by Schaefer,19

Sedgwick, and Štefankovic [COCOON 2002, CCCG 2008] and by Agol, Hass, and Thurston20

[Trans. AMS 2005].21

Un poète doit laisser des traces de son passage, non des preuves.
Seules les traces font rêver.

— René Char, La Parole en Archipel (1962)

A typical simple closed curve on a surface is complicated,
from the point of view of someone tracing out the curve.

— William P. Thurston, “On the geometry and dynamics
of diffeomorphisms of surfaces” (1988)

22

∗This work was partially supported by NSF grant CCF 09-15519. A preliminary version of this paper was presented at the
28th Annual Symposium on Computational Geometry [24].

†Portions of this work were done while this author was visiting IST Austria.

{jeffe,nayyeri2}@illinois.edu

Tracing Compressed Curves 1

1 Introduction1

Curves on abstract surfaces are usually represented by describing the interaction between the curve2

and a decomposition of the surface into elementary pieces. For example, given a triangulation of the3

surface, any sufficiently well-behaved curve that avoids the vertices of the triangulation can be described4

by listing the sequence of edges that the curve crosses, in order along the curve. (See Section 2 for5

more precise definitions.) This crossing sequence identifies the curve up to a continuous deformation that6

avoids the vertices. We call a subpath of a curve between two consecutive edge crossings an elementary7

segment.8

For simple curves, however, there are several more compact representations. For example, given9

a triangulation of the surface, any sufficiently well-behaved simple curve can be described by listing10

the number of elementary segments connecting each pair of edges in each triangle. These numbers11

are called the normal coordinates of the curve [28,40]. Any vector of normal coordinates identifies a12

unique simple curve (again up to continuous deformation), because there is only one way to fill each13

triangle with the correct number of elementary segments without intersection. The normal coordinate14

representation is remarkably compact; only O(n log(X/n)) bits are needed to list the normal coordinates15

of a curve with X crossings on a triangulated surface with complexity n. Several algorithms in two-16

and three-dimensional topology owe their efficiency to the compactness of the normal-coordinate17

representation [1,10,11,29,63,64,66,68,75].18

Schaefer et al. [63, 66, 75] consider several algorithmic questions about normal curves, such as19

computing the number of components of a curve, deciding whether two given curves are isotopic, and20

computing algebraic and geometric intersection numbers of pairs of curves. Classical algorithms for21

these problems require explicit traversal or crossing sequences as input.22

By connecting normal coordinates with grammar-based text compression [45,46,49,61] and word23

equations [18,57,59,60], Schaefer et al. developed algorithms whose running times are polynomial in24

the bit complexity of the normal coordinate vector, which they call the normal complexity of the curve.25

These algorithms rely on a complex algorithm of Plandowski and Rytter [57] to compute compressed26

solutions of word equations. We are unaware of any precise time analysis, but as Plandowski and Rytter’s27

algorithm uses a nested sequence of quadratic- and cubic-time reductions, its running time is quite high.28

Štefankovic [75] described simpler algorithms for some of these problems in time linear in the normal29

complexity, or O(n log(X/n)) time in our notation, by reducing them to an elegant algorithm of Robson30

and Deikert [59,60] to solve word equations with a certain special structure.31

Some of the problems considered by Schaefer et al. can also be solved in polynomial time using the32

polynomial-time orbit-counting algorithm of Agol, Hass, and Thurston [1], which was originally designed33

to compute the number of components of normal surfaces in triangulated 3-manifolds in polynomial34

time, but in fact (like the word-equation algorithms of Schaefer et al. [63, 66, 75]) works for similar35

problems in any dimension. Agol et al. do not claim a precise time bound, but a direct reading of their36

analysis implies a running time of O(n4 log3(X/n)). Dynnikov and Wiest [19] later developed a special37

case of the orbit-counting algorithm to reconstruct braids from their planar curve diagrams; Dehornoy38

et al. [16] refer to this variant as the transmission-relaxation method.39

Other compact representations of curves include weighted train tracks [5, 6, 25, 26, 56], Dehn-40

Thurston coordinates (with respect to a fixed pants decomposition of the surface) [15,25,26,55,77],41

and compressed intersection sequences [66,75].42

1.1 New Results: Normal Curves43

We propose an alternate strategy to efficiently compute with curves on surfaces. Instead of using44

complex compression techniques to avoid unpacking the crossing sequence of the input curve, our45

2 Jeff Erickson and Amir Nayyeri

algorithms modify the underlying cellular decomposition of the surface so that the curve has a small1

explicit description with respect to the new decomposition. Specifically, given the normal coordinates of a2

curve γ on a triangulated surface with n edges, we compute a new cellular decomposition of the surface3

with complexity O(n), called a street complex, such that γ is a simple path or cycle in the 1-skeleton.4

After reviewing some background terminology, we formally define the street complex in Section 2; see5

Figure 2.2 for an example.6

At a high level, our algorithm simply traces the curve, continuously updating the street complex to7

reflect the portion of the curve traced so far. A naïve implementation of our tracing strategy runs in O(X)8

time, where X is the total number of edge crossings; each time the curve enters a triangle by crossing9

an edge, we can easily determine in O(1) time which of the other two edges of the triangle to cross10

next. The main result of this paper is a tracing algorithm that runs in O(n2 log X) time, an exponential11

improvement over the naïve algorithm for any fixed surface triangulation.12

Our new algorithm relies on two simple ideas. First, we observe that for typical curves, most of13

the decisions made by the brute-force tracing algorithm are redundant. If a curve enters a triangle ∆14

between two older elementary segments that leave ∆ through the same edge, the new elementary15

segment must also leave ∆ through that edge; see Figure 1.1. The street complex allows us to skip these16

redundant decisions automatically.17

① ② ③

Figure 1.1. Tracing three segments of a curve through a triangle. Tracing the third segment does not require any decisions.

Second, even with redundant decisions filtered out, the naïve algorithm may repeat the same series18

of crossings many times when the input curve contains a spiral [19,54,65,67]. Our algorithm detects19

spirals as they occur, quickly determines the depth of the spiral (the number of repetitions), and then20

skips ahead to the first crossing after the spiral. See Figure 3.3 below.21

We describe our generic tracing algorithm in Section 3 and analyze its running time in Section 4. We22

also describe and analyze a symmetric untracing algorithm in Section 5, which works backward from the23

street complex of a curve to its normal coordinates.24

The street complex allows us to answer several fundamental topological questions about simple25

curves using elementary algorithms. For example, to determine whether a curve represented by normal26

coordinates is connected, we can trace one component of the curve, and then check whether the number27

of edge crossings we encountered is equal to the sum of the normal coordinates. To determine whether28

a connected normal curve is contractible, we can trace the curve and then apply a O(n)-time depth-first29

search in the dual of the resulting street complex [23]. To find the normal coordinates of a single30

component of a curve, we can trace just that component, discard the untraced components, and then31

untrace the street complex.32

In Section 6, we describe algorithms to solve these and several other related problems for normal33

curves in O(n2 log X) time. All of the problems we consider were previously solved in (large) polynomial34

time by Schaefer et al. [63]; however, our algorithms are significantly faster and simpler. Our algorithms35

are also faster than the orbit-counting algorithm of Agol et al. [1] and more general than Dynnikov and36

Wiest’s transmission-relaxation method [16,19]. For some of the problems we consider, our algorithms37

appear to be slower by a factor of n than algorithms described by Štefankovic [75]; however, we38

optimistically conjecture that this gap can be closed with more careful time analysis.39

Tracing Compressed Curves 3

1.2 New Results: Geodesics1

Finally, in Section 7, we describe an extension of our tracing algorithm to simple geodesic paths on2

piecewise-linear surfaces. Here, the input surface is presented as a set of n triangles, each with its own3

local Euclidean coordinate system, with some pairs of equal-length edges identified; the geodesic path4

is specified by a starting point and a direction, in the local coordinate system of one of the triangles.5

In particular, we do not assume that the input surface is embedded (or embeddable) in any Euclidean6

space. As an example application, we sketch an algorithm to find the first point of self-intersection on a7

geodesic path in O(n2 log X) time.8

We regard our algorithm as a first step toward efficiently computing shortest paths on arbitrary9

piecewise-linear surfaces. Many algorithms have already been proposed to compute both exact and10

approximate shortest paths in piecewise-linear surfaces; Mitchell [48] and Bose et al. [7] provide11

exhaustive surveys. However, despite some claims to the contrary [14], these algorithms are efficient12

(and some are correct) only under the assumption that any shortest path crosses any edge of the input13

complex at most a constant number of times. This crossing assumption is reasonable in practice; for14

example, it holds if the input complex is PL-embedded in Rd for any d (in which case any shortest path15

crosses any edge at most once), or if all face angles are larger than some fixed constant. However, this16

assumption does not hold in general. As an elementary bad example, consider the piecewise-linear17

annulus defined by identifying the non-horizontal edges of the parallelogram with vertices (0, 0), (1, 0),18

(x , 1), (x + 1, 1), for some arbitrarily large integer x; as shown in Figure 1.2. This annulus is isometric to19

a “toilet paper tube” cut by x turns of a helix; although this tube is curved, its Gaussian curvature is zero20

everywhere. The shortest path in this annulus between its two vertices is a vertical segment that crosses21

the oblique edge x − 1 times; all existing shortest-path algorithm require at least constant time for each22

crossing. Essentially the same example appears as Figure 1 in a seminal paper of Alexandrov [2].23

Figure 1.2. A shortest path in a piecewise-linear toilet paper tube

A shortest-path map for a surface Σ with source point s is a subdivision of Σ into regions, such24

that for each region, all shortest paths from s to that region cross the same sequence of edges of Σ.25

Suppose Σ is a piecewise-linear surface such that the sum of angles around every vertex is at most 2π.26

Alexandrov’s theorem [2] implies that Σ is isometric to the surface of a convex polyhedron; it follows27

that the edges of any shortest-path map on Σ are themselves geodesics. (Without the angle assumption,28

some edges of shortest-path maps may be hyperbolic arcs.) The results of Schaefer et al. [63] imply that29

any shortest-path map on Σ has a compressed representation of complexity O(n2 log X), where X is the30

number of intersections between edges of the shortest-path map and edges of Σ. Mount [52] described31

a similar compressed representation of size O((n+m) log(m+ n)) for a decomposition of Σ into disks32

by m interior-disjoint geodesic paths, but only under the explicit assumption that each geodesic traverses33

each edge of Σ at most once. Mount’s data structure stores the sequence of intersections along each34

edge of Σ in a binary tree; to save space, common subtrees are shared between edges. Schreiber and35

Sharir [69,70] extended and applied Mount’s data structure in their algorithm to compute shortest paths36

on convex polyhedra in O(n log n) time. The compressed intersection sequences of Schaefer et al. [63]37

(and our equivalent tracing history, defined in Section 3.3) can be viewed as a generalization of Mount’s38

representation.39

4 Jeff Erickson and Amir Nayyeri

In light of these results, it is natural to ask whether compressed shortest-path maps can be constructed1

in time polynomial in n and log X ; our research in this paper was originally motivated by this open2

problem. We leave further exploration of these ideas to future papers.3

1.3 Computational Assumptions4

Most of our time bounds are stated functions of two variables: the number n of triangles in the input5

triangulation and the total crossing number X of the traced curve. We assume that X = Ω(n2), since6

otherwise our analysis yields a time bound slower than the trivial bound O(n+ X); this assumption7

implies that log(X/n) = Θ(log X).8

We formulate and analyze our algorithms for normal curves in the standard unit-cost integer RAM9

with w-bit words, where w = Ω(log X); that is, we assume that the sum of the normal coordinates10

can be stored in a single memory word. This assumption implies that all necessary integer arithmetic11

operations (comparison, addition, subtraction, multiplication, and division) required by our tracing12

algorithm can be executed in constant time. The O(n log X) time bound for Štefankovic’s word-equation13

algorithms [59, 60, 75] and the O(n4 log3 X) time bound for the Agol-Hass-Thurston orbit-counting14

algorithm [1] require the same model of computation.1 For integer RAMs with smaller word sizes (for15

example, if the word size is only large enough to the largest individual normal coordinate), all these16

running times increase by at most a polylogarithmic factor in X .17

However, like many other exact geometric shortest-path algorithms, the geodesic-tracing algorithm18

we describe in Section 7 requires the real RAM model of computation, to avoid prohibitive numerical19

issues; the real RAM model supports exact real addition, subtraction, multiplication, division, and square20

roots in constant time [58]. Specifically, we require exact real arithmetic to efficiently compute and apply21

transformations between the local coordinate systems of faces of the input surface. (Square roots are22

not required if the input surface is given as a set of triangles in the plane specified by vertex coordinates,23

but they are necessary for other reasonable input representations, such as polyhedra in R3 or planar24

triangles specified by their edge lengths.)25

2 Background26

We begin by establishing some terminology and notation. In Section 2.1–2.3, we recall several standard27

definitions from combinatorial topology; for further background, see Edelsbrunner and Harer [20] or28

Stillwell [76]. We define the street complex and its components in Section 2.4. We defer background on29

piecewise-linear surfaces and geodesics to Section 7.1.30

2.1 Surfaces, Curves, and Isotopy31

A surface (more formally, a 2-manifold with boundary) is a Hausdorff space in which every point has an32

open neighborhood homeomorphic to either the plane R2 or the closed halfplane {(x , y) | x ≥ 0}. The33

set of points in a surface Σ with halfplane neighborhoods is the boundary of the surface, denoted ∂Σ;34

the boundary is homeomorphic to a finite set of disjoint circles. A surface is orientable if it does not35

contain a subset homeomorphic to the Möbius band. We consider only compact, connected, orientable36

surfaces in this paper; we use a fixed but arbitrary orientation of the surface to distinguish the “left” and37

“right”, and “clockwise” and “counterclockwise”.38

1For several of his algorithms, Štefankovic [1] only claims running times on integer RAMs with significantly larger word
sizes, but his estimates are unnecessarily conservative.

Tracing Compressed Curves 5

Formally, a simple cycle in a surface Σ is a continuous injective map γ: S1 → Σ. A simple path1

is (the image of) a continuous injective map π: [0,1] → Σ; a simple arc is a simple path α whose2

endpoints α(0) and α(1) lie on the boundary ∂Σ. Except where explicitly noted, our algorithms deal with3

undirected curves; we do not normally distinguish between a cycle or arc and its reversal, or between4

different parametrization of the same cycle or arc. A simple arc is properly embedded if it intersects ∂Σ5

only at its endpoints; similarly, a simple cycle is properly embedded if it avoids ∂Σ entirely. A properly6

embedded curve is a finite collection of disjoint, properly embedded arcs and cycles. We emphasize that7

curves may have multiple components.8

A homotopy between two curves is a continuous deformation of one curve to the other; if the curve9

remains properly embedded during the entire deformation, the homotopy is called a (proper) isotopy.10

More formally, a homotopy between two cycles γ and γ′ is a continuous map h: [0,1]× S1→ Σ such11

that h(0, ·) = γ and h(1, ·) = γ′; the homotopy is an isotopy if h(t, ·) is a properly embedded cycle for all12

t ∈ [0, 1]. Similarly, a homotopy between two arcs α and α′ is a continuous map h: [0, 1]× [0, 1]→ Σ13

such that h(0, ·) = α and h(1, ·) = α′; again, the homotopy is a proper isotopy if h(t, ·) is a properly14

embedded arc for all t ∈ [0, 1]. The formal definitions of homotopy and proper isotopy extend naturally15

to properly embedded curves with multiple components; in particular, a proper isotopy is a continuous16

deformation of the entire curve, so that the entire curve is always properly embedded. Two curves are17

isotopic, or in the same isotopy class, if there is a isotopy between them; homotopic curves are defined18

similarly. A simple cycle or arc is contractible if it is homotopic to a point.19

An ambient isotopy is a continuous deformation of the entire surface, that is, a continuous function20

H : [0, 1]×Σ→ Σ such that H(0, ·) is the identity map and H(t, ·) is a homeomorphism for all t. Classical21

results of Epstein [22] imply that two properly embedded curves γ and γ′ are isotopic if and only if22

there is an ambient isotopy H such that H(1,γ) = γ′; see also Hirsch [33, Theorem 1.3].23

The genus of a surface is the maximum number of disjoint simple cycles that can be removed without24

disconnecting the surface. Up to homeomorphism, there is exactly one orientable surface with genus g25

and b boundary components for any non-negative integers g and b.26

2.2 Triangulations and Euler Characteristics27

An embedding of a graph G on a surface Σ is a function mapping the vertices of G to distinct points in Σ28

and the edges of G to paths in Σ that are simple and disjoint except at common endpoints. The faces29

of the embedding are maximal connected subsets of Σ that are disjoint from the image of the graph.30

An embedding is cellular if every face is homeomorphic to an open disk; in particular, ∂Σ must be the31

image of a set of disjoint cycles in G. A triangulation of Σ is a cellularly embedded graph in which a32

walk around the boundary of any face has length three. Equivalently, a triangulation expresses Σ as a set33

of disjoint triangles with certain pairs of edges identified; the 1-skeleton of the resulting cell complex is34

the induced graph of vertices and edges.35

We assume that our input surfaces are presented as triangulations, either as a set of triangles and36

gluing rules, or as an abstract graph with a rotation system [39,51] specifying the counterclockwise37

order of edges around each vertex. We do not assume that triangulations are simplicial complexes. That38

is, triangulations may contain parallel edges and loops; two triangles may share more than a single39

vertex or a single edge; and the same triangle may be incident to a vertex or edge more than once.40

The Euler characteristic of a triangulation T is the number of vertices and faces minus the number41

of edges; the Euler characteristic χ(Σ) of a surface Σ is the Euler characteristic of any triangulation of Σ.42

A classical extension of Euler’s formula, originally due to l’Huillier [43,44], implies that χ(Σ) = 2−2g−b43

for the orientable surface Σ with genus g and b boundary components.44

6 Jeff Erickson and Amir Nayyeri

Lemma 2.1. The components of a properly embedded curve on a surface with genus g and b boundary1

cycles fall into at most 9g + 6b− 8 isotopy classes.2

Proof: Fix a properly embedded curve γ on a surface Σ. We separately bound the contractible compo-3

nents, noncontractible cycles, and noncontractible arcs in γ; thus, our analysis is not tight.4

Two contractible arcs are isotopic if and only if their endpoints lie on the same boundary cycle of Σ;5

thus, contractible arcs fall into at most b isotopy classes. All contractible cycles in Σ are isotopic. We6

conclude that γ has at most b+ 1 contractible components.7

Let C be a maximal set of pairwise-disjoint noncontractible cycles in distinct isotopy classes. Cutting8

the surface along any cycle leaves its Euler characteristic unchanged. Each component of Σ \ C is9

either a pair of pants bounded by three cycles in C or an annulus bounded by a cycle in C and a10

boundary cycle of Σ; a component of any other topological type would contain a non-contractible11

cycle that is not isotopic to any cycle in C. A pair of pants has Euler characteristic −1; an annulus has12

Euler characteristic 0; and each annular component of Σ \C contains exactly one boundary cycle of Σ.13

Thus, Σ \ C consists of exactly −χ(Σ) = 2g + b − 2 pairs of pants and b annuli, which implies that14

|C|= (3(2g + b− 2) + b)/2= 3g + 2b− 3.15

Similarly, let A be a maximal set of pairwise-disjoint noncontractible arcs in distinct isotopy classes.16

Each component of Σ \ A is a disk bounded by exactly three arcs in A and three boundary arcs.17

Contracting each boundary cycle of Σ to a point transforms A into a b-vertex triangulation of a surface18

of genus g with no boundary. Thus, Euler’s formula implies that b−|A|+ 2
3
|A| = 2−2g, or equivalently,19

|A|= 6g + 3b− 6. �20

2.3 Normal Curves, Normal Isotopy, and Normal Coordinates21

Let T be a triangulation of a surface Σ and let n be the number of triangles in T . A properly embedded22

curve γ in Σ is normal with respect to T if (1) γ avoids the vertices of T ; (2) every intersection23

between γ and an edge of T is transverse; and (3) the intersection of γ with any triangular face of T24

is a finite set of disjoint elementary segments: simple paths whose endpoints lie on distinct sides of25

the triangle. A normal isotopy between two normal curves is a proper isotopy h such that h(t, ·) is a26

normal curve for all t. Two curves are normal isotopic, or in the same normal isotopy class, if there is27

a normal isotopy between them.28

A normal cycle is trivial if it bounds a disk in Σ containing a single vertex of T . We call a normal29

curve γ reduced if no component of γ is a trivial cycle and no two components of γ are normal isotopic.30

Lemma 2.1 immediately implies that any reduced normal curve in T has at most O(n) components,31

where n is the number of triangles in T .32

Any normal curve can be identified, up to normal isotopy, by two different vectors of O(n) non-33

negative integers. There are three types of elementary segments within any face ∆, each separating one34

corner of ∆ from the other two; the corner coordinates of γ list the number of elementary segments35

of each type in each face of T . The edge coordinates of γ list the number of times γ intersects each36

edge of T . See Figure 2.1. We collectively refer to the corner and edge coordinates of a curve as its37

normal coordinates.2 Given either normal coordinate representation, it is easy to compute the other38

representation in O(n) time. Not every vector of non-negative integers gives rise to a normal curve; the39

sum of corner coordinates within each triangle must be even, and the edge coordinates on the boundary40

of each triangle must satisfy the triangle inequality.41

The total crossing number of a normal curve is the sum of its edge coordinates; this number is also42

equal to the sum of the curve’s corner coordinates plus the number of arc components of the curve.43

2Schaefer et al. [63,66,75] refer to the edge coordinates as “normal coordinates”, but the standard coordinate system for
normal surfaces [28] is a generalization of corner coordinates.

Tracing Compressed Curves 7

1

1

0

0

0

0

0

0

0
0 0

3 0

3

31

2

1
3

0

10

0

3

2
5

5

0

5
2

2
0

0

0

00

1

1

1

2
3

0
5

5

5
0

0

0

3

5

2

2

3

3

3

0

0

Figure 2.1. Corner and edge coordinates of a normal curve with two components in a triangulated disk.

2.4 Ports, Blocks, Junctions, and Streets1

We now introduce the street complex and its components.2

The intersections between any normal curve γ and the edges of any triangulation T partition γ into3

elementary segments and partition the edges of T into segments called ports. The overlay graph T‖γ4

is the cellularly embedded graph whose edges are these elementary segments and ports. Every vertex5

of T‖γ is either a vertex of T or an intersection point of γ and some edge of T . Every face of T‖γ is a6

subset of some face ∆ of T . We call each face a junction if it is incident to all three sides of its containing7

face ∆, and a block if it is incident to only two sides of ∆; these are the only two possibilities. Each face8

of T contains exactly one junction. Each block is bounded either by two elementary segments and two9

ports, or by one elementary segment and two ports that share a vertex of T .10

The following useful observation is essentially due to Kneser [40].11

Lemma 2.2. A reduced normal curve in a surface triangulation with n triangles has at most b(3n− 1)/2c =12

O(n) components.13

Proof: Fix a reduced normal curve γ on a triangulation T with n triangles and v vertices; obviously,14

v ≥ 1. Consider the non-reduced normal curve γ′ obtained from γ by adding v trivial cycles and arcs,15

one around each vertex of T . Orient each component of γ′ arbitrarily, and consider the faces of T‖γ′16

immediately to the left of some nontrivial component γi . Because γi is nontrivial, none of these faces is17

a triangular block. If all of these faces were quadrilateral blocks, the component just to the left of γi18

would be normal-isotopic to γi , contradicting our assumption that γ is reduced. Thus, at least one face19

on the left side of γi is a junction; symmetrically, at least one face on the right side of γi is a junction.20

Similarly, each trivial component of γ′ is incident to at least one junction. The overlay graph T‖γ′ has21

exactly n junctions, each incident to at most three components of γ′. We conclude that γ′ has at most22

b(3n− v)/2c non-trivial components. �23

We call a port redundant if it separates two blocks; because each face of T contains exactly one24

junction, each edge of T contains at most two non-redundant ports. Removing all the redundant25

ports from the overlay graph T‖γ merges contiguous sets of blocks into streets. Each street is either a26

single open disk with exactly two non-redundant ports on its boundary (called the ends of the street),27

an open annulus bounded by a trivial component of γ and a vertex of T , or an annulus bounded by28

two parallel components of γ. In particular, if γ is reduced, all streets are of the first type. For any29

reduced normal curve γ, the street complex S(T,γ) is the complex of streets and junctions in the overlay30

T‖γ. Figure 2.2 shows the street complex of the normal curve in Figure 2.1. Streets and junctions are31

two-dimensional analogues of the product regions and guts of normal surfaces, defined by Jaco, Letscher,32

and Rubinstein [35,36].33

8 Jeff Erickson and Amir Nayyeri

Figure 2.2. The street complex of the normal curve in Figure 2.1. Unshaded faces are junctions; shaded faces are streets;
one street is shaded darker (green) for emphasis.

By construction, the components of any reduced normal curve γ appear as disjoint paths and cycles1

in the 1-skeleton of the street complex. Although the complexity of the overlay graph T‖γ can be2

arbitrarily large, even when the curve γ is connected, the street complex S(T,γ) of a reduced normal3

curve is never more than a constant factor more complex than the original triangulation.4

Lemma 2.3. Let T be a surface triangulation with n triangles. For any reduced normal curve γ in T ,5

the street complex S(T,γ) has complexity O(n).6

Proof: The triangulation T trivially has at most 3n vertices and at most 3n edges. Each interior edge7

of T contains at most two non-redundant ports, so S(T,γ) has O(n) interior vertices. Each boundary8

vertex of S(T,γ) is either a boundary vertex of T or an endpoint of one of the O(n) components of γ, so9

S(T,γ) has O(n) boundary vertices. Each vertex of S(T,γ) is either a vertex of T or has degree at most 4,10

so S(T,γ) has O(n) edges. Each non-redundant port is an end of at most one street, so S(T,γ) has O(n)11

streets. Finally, S(T,γ) has exactly n junctions, one in each triangle of T . �12

Our restriction to reduced curves has two motivations. First, the street complex of any non-reduced13

curve γ contains annular faces, which would complicate our algorithms (but probably not seriously).14

More importantly, the street complex of a non-reduced curve can have arbitrarily high complexity, since15

the curve can have arbitrarily many components. Fortunately, as we argue in Section 6, it is easy to16

avoid tracing trivial components or more than one component in the same normal isotopy class.17

The crossing sequence of a street is the sequence of edges in the original triangulation T crossed by18

any path that traverses the street from one end to the other. The crossing length of a street is the length19

of its crossing sequence, or equivalently, the number of constituent blocks plus one. To simplify our20

analysis, we regard any port between two junctions, as well as any boundary port incident to a junction,21

as a street with crossing length 1. The sum of the crossing lengths of the streets in any street complex22

S(T,γ) is the total crossing number of γ plus the number of edges in T .23

Any normal curve γ′ that is disjoint from γ subdivides each port in S(T,γ) into smaller ports,24

each street in S(T,γ) into narrower “blocks”, and each junction in S(T,γ) into blocks and exactly one25

smaller junction. Removing all redundant ports from this refinement gives us the refined street complex26

S(T,γ∪ γ′). Conversely, the intersection of γ′ with any street or junction in S(T,γ) is a set of elementary27

arcs. There are three types of elementary arcs within any junction, each connecting two of the junction’s28

three ports. The junction coordinates of γ′ list the number of elementary arcs of each type in each29

junction of S(T,γ). Similarly, the street coordinates of γ′ list the number of such arcs within each street30

Tracing Compressed Curves 9

of S(T,γ). Junction and street coordinates have the same simple linear relationship as corner and edge1

coordinates; in fact, the normal coordinates of a curve γ are just the junction and street coordinates of γ2

in the trivial street complex S(T,∅).3

Our tracing strategy must handle normal curves that are partially drawn on the surface; we slightly4

extend our definitions to include such curves. A normal path is any simple path whose endpoints lie in5

the interior of edges of T and that can be extended to a normal curve on Σ. Let γ be composed of a6

normal curve γ′ and possibly a normal path π disjoint from γ′. A fork is the union of two ports that share7

one of the endpoints of π; for most purposes, we can think of a fork as a degenerate junction. Formally,8

we call a port redundant if it separates two blocks and it is not part of a fork; modified definitions of9

streets and the street complex follow immediately. The modified street complex S(T,γ) clearly still has10

complexity O(n). See Figure 2.3.11

1 1 2

2

2

1

1

1

1

2

22

1

1

1

1 1

1

1

Figure 2.3. Street complexes for two subcurves of the curve in Figure 2.1, with street and junction coordinates. On the
left, the arc component is being traced; on the right, the arc has been completely traced, but there is another untraced
component. Zero coordinates are omitted for clarity. Compare with Figure 2.2.

3 Tracing Connected Normal Curves12

In this section, we describe our algorithm to trace connected normal curves. Given a triangulation T of13

an orientable surface Σ and the corner and edge coordinates of a connected normal curve γ, our tracing14

algorithm computes the street complex S(T,γ). We extend our algorithm to reduced curves with multiple15

components in Section 4, and we consider arbitrary normal curves in Section 6.16

Our algorithm maintains a normal subpath π of γ that is growing at one end, along with the street17

complex S(T,π) and the junction and street coordinates of the complementary path γ \π. If γ is an arc,18

we trace it from one endpoint to the other. If γ is a cycle, we trace it starting at some intersection point19

with an edge of T . In either case, π is initially a single crossing point, which splits some edge into two20

smaller segments, each of which is a street with crossing length 1. If γ is a cycle, these two segments21

also define a fork. During the rest of the tracing algorithm, existing streets are extended, but no other22

streets are created or destroyed, except at the very last step if γ is a cycle, when two pairs of streets are23

merged together at the initial fork; see the middle of Figure 3.2.24

During the rest of the tracing algorithm no new streets are created and no streets are removed25

(except possibly at the last step when γ get closed); however, existing streets are extended.26

3.1 Steps27

In each step of our algorithm, we extend the path π through one junction or fork, and then through one28

street, updating both the street complex and the junction and street coordinates. After each step, we call29

10 Jeff Erickson and Amir Nayyeri

the streets on either side of the last segment added to π the left and right active streets. (Recall that1

“left” and “right” are defined with respect to a fixed but arbitrary orientation of the surface Σ.)2

Suppose π is about to enter a junction. We call the streets adjacent to the junction but not to the3

endpoint of π the left exit and the right exit. Suppose the local junction coordinates are a, b, and c, and4

the active street coordinates are l and r, as shown in Figure 3.1. These coordinates satisfy the equation5

l + r + 1 = a+ c, so either l < a or r < c. If l < a, we extend π through the junction and through its6

left exit into the next junction; the left active street grows to the end of the left exit, and the left exit7

becomes the new right active street. We call this case a left turn; the symmetric case r < c is called8

a right turn. In either case, we update the street and junction coordinates as shown in Figure 3.1. A9

similar case analysis applies when π crosses a fork; see Figure 3.2.10

a

b

c

l

a−
l−

1

b

c

l

b

a

r

c−
r−

1

r

r' l'

l < a r'=a+b – l – 1 l'=b+c – r – 1

a+
b b+

c

b+
c a+

b

l r l r

a

b

c

l r

r < c

a+
b b+

c

Figure 3.1. Tracing a curve through a junction.

l r
l r

a c

l=a, r=c Done!

l r

a c

l r

a l'

l'=c−r−1 r<c

rl

cr'

r'=a−l−1

l r

a c

l<a

c

a

l r c

r'
l

r

r'=a−l−1 l<a

a

c

arl

l'
r

l

l'=c−r−1 r<c

Figure 3.2. Tracing a curve through a fork.

The tracing algorithm ends when π hits either the boundary of Σ or the starting point of the trace.11

In all other cases, each step makes one active street longer, replaces the other active street, and makes12

the new active street narrower. All necessary operations for a single step—comparing and updating the13

junction and street coordinates and updating the street complex—can be performed in O(1) time.14

3.2 Phases and Spirals15

Unfortunately, executing each step by brute force is not necessarily efficient. To improve the brute-force16

algorithm, we more coarsely partition the tracing process into phases. Each phase is a maximal sequence17

of either left turns or right turns. Every step in a phase consisting of left turns extends the same left18

active street; similarly, every step in a right phase extends the same right active street. In either case,19

each phase extends a single active street.20

During each phase, we maintain a sequence of directed streets and junctions traversed during that21

phase. If the growing path π ever enters a street for the second time, in the same direction, during the22

same phase, then π has entered a spiral. In fact, the reentered street is the first street traversed during23

Tracing Compressed Curves 11

the current phase; for the remainder of the phase, π repeatedly traverses the same sequence of directed1

streets and junctions. The length of a spiral is the total number of streets it traverses, counted with2

multiplicity, and the depth of the spiral is the number of times it repeats the entire sequence of directed3

streets and junctions. If the spiral has length ` and traverses m distinct directed streets, its depth is4

d`/me − 1. Figure 3.3 shows a left spiral with length ` = 16 and depth d = 3 through m = 5 distinct5

streets, plus the first step of the next phase.6

Figure 3.3. A left spiral, plus one step of the next phase.

Instead of tracing the spiral step by step, we compute the depth of the spiral directly in O(m) time as7

follows. Let J0, J1, . . . , Jm−1 be the junction coordinates modified during the first iteration of the spiral.8

Let w denote the width of the active street, defined as the corresponding street coordinate plus 1. The9

depth of the spiral is d = minibJi/wc, and the spiral ends at the first junction whose coordinate Ji is10

smaller than dw. Once we compute d, we can update the street complex S(T,π) and the appropriate11

street and junction coordinates in O(m) time. In particular, as long as the depth of the spiral is at least 2,12

the combinatorial structure of S(T,π) (the 1-skeleton and the rotation system encoding its embedding13

in Σ) depends only on the last `mod m steps of the spiral.14

The lengths and widths of the streets, as well as junction and street coordinates of the remainder of15

the curve, can all be updated in O(m) time. The length of the active street increases by d times the total16

length of the m distinct directed streets in the spiral, plus the total length of the last `mod m streets;17

no other street changes length. Each undirected street in the spiral is traversed d, d + 1, 2d, 2d + 1 or18

2d + 2 times, depending on whether the street is traversed in one or both directions, and which of those19

traversals occur in the last `mod m steps of the phase. We can compute all such numbers in O(m) time,20

after which updating the widths of the streets traversed by the spiral is straightforward.21

The crude upper bound m = O(n) immediately implies that each phase of our tracing algorithm can22

be executed in O(n) time. We analyze the number of phases, as a function of the total crossing number23

of the traced curve, in Section 4.24

3.3 History25

For some applications of our tracing algorithm, it is useful to maintain the history of the street complex,26

which records the evolution of each street during the algorithm’s execution. We identify each street27

by a distinct numerical index. For each phase of the tracing algorithm, the history records the tuple28

(a; `; m; i0, i1, . . . , im−1), where29

• a is the index of the street that is active for the entire phase;30

12 Jeff Erickson and Amir Nayyeri

• ` is the number of steps in the phase;1

• m is the number of distinct directed streets traversed during the phase; and2

• i0, i1, . . . , im−1 are the indices of these m directed streets in the order they are traversed.3

If the same street is traversed in both directions during the phase, the index of that street will appear4

twice in the sequence i0, i1, . . . , im−1.5

The resulting history encodes a context-free grammar whose terminals correspond to the edges of T6

and most of whose productions have the following form, where d = dl/me − 1:7

Xa→ X b (X i0 X i1 · · · X im−1
)d X i0 X i1 · · · X i(`−1)mod m

X a→ X i(`−1)mod m
· · · X i1 X i0(X im−1

· · · X i1 X i0)
d X b.

8

(We refer readers unfamiliar with context-free grammars to Hopcroft et al. [34, Chapter 5] or Sipser [74,9

Chapter 4].) The language of each non-terminal X i is a single string, recording the crossing sequence10

of the street at the end of some phase. In the example above, Xa is the crossing sequence of the active11

street just after the phase ends; X b is the crossing sequence of the active street just before the phase12

begins; and X i denotes the reversal of X i. If the same street is traversed in both directions during a13

phase, we will have X i j
= X ik for some indices j 6= k, so both the forward and reverse productions are14

necessary; otherwise, the indices i j are distinct. The grammar also contains terminal productions of the15

form X i → ei and X i → ei for each edge ei in the input triangulation. (We can encode signed crossing16

sequences, which record the direction of each crossing in addition to the crossed edge, by changing17

these terminal productions to X i → ei and X i → ei .)18

This context-free grammar can be transformed into Chomsky normal form by replacing each pro-19

duction in the form above with O(m+ log d) productions of the form A→ B C . Context-free grammars20

whose language contains a single string are sometimes called straight-line programs [37] or grammar-21

based codes [38]. Thus, our history data structure is equivalent to the compressed intersection sequence22

constructed by Schaefer et al. [66,75]. We analyze the complexity of our history data structure and the23

resulting compressed intersection sequence in the next section.24

4 Analysis25

We now bound the running time of our tracing algorithm. In Section 4.1, we bound the time required to26

trace a connected normal curve; we extend our analysis to reduced curves with multiple components in27

Section 4.2 and to the complexity of compressed intersection sequences in Section 4.3. Throughout our28

analysis, we let N denote the current number of streets in the evolving street complex; N is constant if29

we are tracing a connected normal curve, but for disconnected curves, N increases or decreases by at30

most 2 when we start or finish tracing each component. Because we actually trace only reduced curves,31

Lemma 2.3 implies that N =Θ(n) at all times.32

Our analysis can be viewed as a generalization of Lamé’s classical analysis of Euclid’s GCD algorithm33

in terms of Fibonacci numbers [41,73]. This connection is not a coincidence; for tracing a single cycle34

on the unique triangulation of the torus with two triangles, our algorithm actually reduces to Euclid’s35

algorithm. In particular, handling each phase in O(n) time, instead of constant time per step, generalizes36

the use of division in Euclid’s algorithm instead of repeated subtraction. Euclid’s algorithm is invoked37

explicitly by the orbit-counting algorithm of Agol et al. [1] and by the compressed pattern-matching38

algorithms [37, 49, 61] underlying the results of Schaefer et al. [66, 75]. See also related results of39

Moeckel [50] and Series [71,72] on encoding (infinite) geodesics in surfaces of constant curvature by40

continued fractions.41

Tracing Compressed Curves 13

In retrospect, our analysis (at least for connected curves) is nearly identical to Dynnikov and Weist’s1

analysis of their transmission-relaxation method [16,19], although the algorithms themselves appear to2

be quite different. In particular, the potential function Φ in the proof of Lemma 4.1 closely resembles3

their definition of the AHT-complexity of a braid (named after Agol, Hass, and Thurston). Dehornoy4

et al. [16, page 196] draw a similar analogy between their approach and the fast Euclidean algorithm.5

4.1 Abstract Tracing6

In each phase of our tracing algorithm, the crossing length of the active street increases by the sum of7

the crossing lengths of the other traversed streets, counted with appropriate multiplicity. The algorithm8

ABSTRACTTRACE, shown in Figure 4.1, abstractly models this growth. For any positive integer k, we9

write [k] to denote the set {1, 2, . . . , k}.10

ABSTRACTTRACE(N):
for j← 1 to N

x[j]← 1
a← 1
while not done

choose an integer m ∈ [N]
choose an integer ` ≥ m
choose a vector (i0, i1, . . . , im−1) ∈ [N]m

d ← d`/me − 1
for j← 0 to m− 1

x[a]← x[a] + d · x[i j]
for j← 0 to (`− 1)mod m

x[a]← x[a] + x[i j]
a← i(`−1)mod m

Figure 4.1. Our abstract tracing algorithm.

ABSTRACTTRACE maintains an array x[1 .. N] of positive integers, corresponding to the crossing11

lengths of the streets maintained in our tracing algorithm, along with the index a of the current active12

street. Each iteration of the outer loop of ABSTRACTTRACE models a phase of our tracing algorithm. The13

inner loops update the crossing length x[a] of the active street as the curve traverses a spiral of length `14

and depth d, containing m distinct streets whose indices are in the vector (i0, i1, . . . , im−1). The last street15

traversed in the current phase becomes the active street for the next phase. For purposes of analysis, we16

assume that the termination condition for the outer loop and the parameters `, m, and (i0, i1, . . . , im−1)17

of each iteration are determined by a malicious adversary instead of the topology of the input curve.18

To analyze ABSTRACTTRACE, we derive an upper bound on the number of phases required to reach19

any fixed values of x[1 .. N]; equivalently, we derive a lower bound on the values x[1 .. N] for a given20

number of phases. To minimize the increase in x[a] and therefore maximize the number of phases, we21

can assume conservatively that m = 1 in every phase; equivalently, we can ignore the contribution to the22

active street’s crossing length from all but the last street in every spiral. (We could also conservatively23

assume that ` = 1 at this point, but it will be useful later to consider larger values of `.) Thus, we24

consider the simpler algorithm SIMPLETRACE shown in Figure 4.2. The new variable δ is the number25

of times the last street in the spiral is traversed; specifically, δ = d if `/m is an integer and δ = d + 126

otherwise. The other new variable ∆ is used only in the analysis. Note that an upper bound on the27

number of phases of ABSTRACTTRACE is implied by a lower bound on the summation of x i ’s.28

Lemma 4.1. At the end of each iteration of SIMPLETRACE, we have ∆≤ 2
∑N

i=1 lg x[i].29

14 Jeff Erickson and Amir Nayyeri

SIMPLETRACE(N):
for j← 1 to N

x[j]← 1
∆← 0
a← 1
while not done

choose an index i ∈ [N]
choose an integer δ ≥ 1
x[a]← x[a] +δ · x[i]
∆←∆+ lg(δ+ 1)
a← i

Figure 4.2. A simplified tracing algorithm for analysis.

Proof: Consider the potential function Φ := 2
∑N

i=1 lg x[i]− lg x[a]. Initially we have Φ = 0. There are1

two cases to consider, depending on whether x[a] is smaller or larger than x[i] at the start of each2

iteration of the loop.3

• If x[a]≤ x[i], then the assignment x[a]← x[a] +δ · x[i] increases Φ by at least lg(δ+ 1), and4

the assignment a← i does not decrease Φ.5

• If x[a]≥ x[i], then the assignment x[a]← x[a]+δ·x[i] does not decrease Φ, and the assignment6

a← i increases Φ by at least lg(δ+ 1).7

In both cases, Φ increases by at least lg(δ+1) in each iteration. It immediately follows by induction that8

∆≤ Φ≤ 2
∑N

i=1 lg x[i] at the end of every iteration. �9

Lemma 4.2. ABSTRACTTRACE(N) runs for at most 2L = O(N log X) phases, where L is the final value of10
∑N

i=1 lg x[i] and X is the final value of
∑N

i=1 x[i].11

Proof: To maximize the number of phases, we assume that m= `= 1 in every phase. This assumption12

allows us to simplify the execution to an instance of SIMPLETRACE where δ = 1 in every phase, and13

therefore ∆ is simply the number of phases. Lemma 4.1 implies that the algorithm terminates after at14

most 2L phases. The parameter L is maximized as a function of N and X when x[i] = X/N for all i.15

(Our assumption that X = Ω(n2) implies that log(X/N) = Θ(log X).) �16

The trivial inequality m≤ N now implies the following time bound:17

Corollary 4.3. ABSTRACTTRACE(N) runs in O(N L) = O(N2 log X) time, where L is the final value of18
∑N

i=1 lg x[i] and X is the final value of
∑N

i=1 x[i].19

Theorem 4.4. Let T be a surface triangulation with n triangles, and let γ be a connected normal curve20

in T with total crossing number X . Given the normal coordinates of γ, we can trace γ in O(n2 log X)21

time.22

There is an interesting tension between the two steps of our analysis. To bound the number of phases23

in Lemma 4.2, we conservatively assume that each phase traverses only a constant number of streets;24

however, to bound the total number of steps in Corollary 4.3, we conservatively assume that each phase25

traverses a constant fraction of the streets. Despite this tension, both bounds are asymptotically tight in26

the worst case, at least when X is sufficiently large.27

Lemma 4.5. ABSTRACTTRACE(N) executes Ω(N log X) phases in the worst case.28

Tracing Compressed Curves 15

Proof: Suppose the adversary chooses i = (a mod N) + 1 and δ = 1 in every phase of SIMPLETRACE. An1

easy inductive argument implies that for any integer r ≥ 1, at the end of r · (N − 1) phases we have2

x[i] ≤ 2r for all i. Thus, SIMPLETRACE must perform at least (N − 1) lg(X/N) = Ω(N log X) iterations3

before
∑

i x[i] = X . �4

Lemma 4.6. ABSTRACTTRACE(N) runs in Ω(N2 log X) time in the worst case, assuming X = Ω(N2+ε) for5

some ε > 0.6

Proof: Suppose N = 2k for some integer k ≥ 2, and in every phase of ABSTRACTTRACE, the adversary7

chooses ` = m = k+1 (and therefore d = 0) and (i0, i1, . . . , ik) = (k+1, k+2, . . . , 2k, (a mod k)+1). In8

other words, the adversary mimics the strategy described in the previous proof in the lower half x[1 .. k]9

of the array, but uses the upper half x[k+ 1 .. 2k] to add k additional steps to the start of each phase.10

The values in x[k+ 1 .. 2k] never change; at all times, we have a ≤ k and x[i] = 1 for all i > k. Thus,11

the additional steps have little impact on the growth of the sum
∑

i x[i].12

A straightforward inductive argument implies that for any integer r ≥ 1, at the end of r · (k− 1)13

phases, we have
∑k

i=1 x[i] < (2r − 1)k2 + k < 2r k2 − k and therefore
∑N

i=1 x[i] < 2r N2/4. Thus,14

ABSTRACTTRACE must execute at least (N − 1) lg(4X/N2) = Ω(N log X) phases before
∑N

i=1 x[i] = X .15

Each phase requires Ω(N) time. �16

We leave open the possibility that our analysis is not tight for instances that actually arise from17

tracing normal curves on triangulated surfaces. We conjecture that Lemma 4.2 is still tight in this context,18

but that Corollary 4.3 is not.19

4.2 Tracing Reduced Curves20

Now consider the more general case where γ is a reduced curve, possibly with more than one component.21

(For the applications we describe in Section 6, this is the most general case we need to consider.) Our22

tracing algorithm requires little modification to handle these curves; we simply trace the components23

one at a time, in arbitrary order. Each component refines the street complex defined by the previous24

components. Lemma 2.3 immediately implies that the resulting algorithm runs in O(n3 log X) time, but25

this time bound can be improved with more careful analysis.26

Theorem 4.7. Let T be a surface triangulation with n triangles, and let γ be a reduced normal curve27

in T with total crossing number X . Given the normal coordinates of γ, we can trace all components of γ28

in O(n2 log X) total time.29

Proof: Consider the effect of ending one component and starting another on the vector of crossing30

lengths modeled by the array x[1 .. N] in SIMPLETRACE. When we begin tracing a new cycle component,31

we split some street into three smaller streets by introducing a fork; one of the three new streets becomes32

the active street for the first phase of the new component. This update can be modeled in SIMPLETRACE33

by adding the following lines:34

if starting a cycle:
choose an index i ∈ [N]
choose an integer y ∈

�

x[i]
�

x[i]← x[i]− y + 1
x[N + 1]← y
x[N + 2]← y
N ← N + 2
a← N + 2

35

16 Jeff Erickson and Amir Nayyeri

When we finish tracing a cycle component, we merge the four streets adjacent to the initial fork into two1

longer streets; see the center of Figure 3.2. This update can be modeled in SIMPLETRACE by adding the2

following lines:3

if ending a cycle:
choose an index j ∈ [N]
choose an index k ∈ [N]
x[j]← x[j] + x[N − 1]− 1
x[k]← x[k] + x[N]− 1
N ← N − 2

4

Similarly, when we begin tracing a new arc component, we split some street (ending on the boundary5

of Σ) into two narrower streets. This update can be modeled in SIMPLETRACE by adding the following6

lines:7

if starting an arc:
choose an index i ∈ [N]
x[N + 1]← x[i]
N ← N + 1
a← N + 1

8

No additional changes are necessary when we end an arc component. Again, for purposes of analysis,9

we assume that the decision of when to end one component and begin another, whether each new10

component is an arc or a cycle, and the array elements involved in starting or ending a component are11

all chosen adversarially instead of being determined by the topology of a curve.12

Altogether, ending one component and starting a new one decreases the potential function Φ by at13

most O(log X). An easy modification of the proof of Lemma 4.1 now implies that after each iteration of14

SIMPLETRACE, we have ∆ ≤ 2
∑N

i=1 lg x[i] +O(t lg X), where t is the number of components we have15

completely traced so far. Lemma 2.2 implies that any reduced normal curve has O(n) components. We16

conclude that SIMPLETRACE(N) executes at most O(N log X) = O(n log X) phases; each phase trivially17

requires O(n) time. �18

When we trace curves with multiple components, we also record the start and end of each component19

in the tracing history. We omit the straightforward but tedious details.20

4.3 Logarithmic Spiral Cost21

Recall from Section 3.3 that our history data structure can be transformed into a context-free grammar22

in Chomsky normal form, also known as a straight-line program, that encodes the crossing sequence of23

every component of the traced curve γ. For each phase of the tracing algorithm, this grammar contains24

O(m+ log d) productions, where m is the number of distinct streets traversed in that phase and d is the25

depth of that phase’s spiral.26

Lemma 4.1 immediately implies that the total size of this grammar is O(n2 log X) for any connected27

normal curve. In particular, the sum of all the O(log d) terms is only O(n log X); this sum is bounded by28

the parameter ∆ maintained in SIMPLETRACE. The sum of all the O(m) terms is bounded by the running29

time of the tracing algorithm, which is O(n2 log X) by Corollary 4.3. The proof of Theorem 4.7 extends30

this analysis to reduced curves with multiple components.31

Theorem 4.8. Let T be a surface triangulation with n triangles, and let γ be a reduced normal curve32

in T with total crossing number X . Given the normal coordinates of γ, we can compute a straight-33

line program of length O(n2 log X) that encodes the crossing sequences of every component of γ, in34

O(n2 log X) total time.35

Tracing Compressed Curves 17

Štefankovic [75, Lemma 3.4.2] (also [66, Lemma 3.1]) proves that the crossing sequence of any1

connected normal curve can be compressed into a straight-line program of length O(n log X), which can2

be computed in O(n log X) time; his time and length bounds are smaller than the bounds in Theorem 4.83

by a factor of O(n). However, Štefankovic’s result does not generalize immediately to disconnected4

curves, at least with the same time and length bounds; the most direct generalization of his algorithm5

would require advance knowledge of the crossing length of each component.6

The geodesic tracing algorithm described in Section 7 requires O(m+ log d) time to trace a spiral of7

depth d through m distinct streets; thus, the same analysis implies that the overall running time of that8

algorithm is also O(n2 log X). We defer further details to Section 7.9

5 Untracing10

Several of the problems we consider ask for the normal coordinates of one or more components of the11

input curve, with respect to the input triangulation. These coordinates can be recovered from the street12

complex and some additional information, essentially by running the tracing algorithm backward. We13

emphasize that recovering the normal coordinates of a curve from the street complex alone is impossible;14

two curves may have combinatorially isomorphic street complexes even if they are not normal isotopic.15

5.1 Untracing from History16

The simplest method to untrace a curve uses the full history of the street complex, as defined in17

Section 3.3. The normal coordinates of any normal curve γ can be recovered from a straight-line18

program of length T encoding the crossing sequences of γ’s components, by straightforward dynamic19

programming, in O(nT) time [27,66,75]. Theorem 4.8 immediately implies that we can extract the20

normal coordinates of any subcurve of γ in O(n3 log X) time from the tracing history. Our untracing21

algorithm improves this approach by a factor of O(n).22

Our untracing algorithm maintains the street coordinates of the already-untraced components in the23

devolving street complex. Initially, all street coordinates are equal to zero; when the curve is completely24

untraced, the streets degenerate to edges, and the street coordinates are the required edge coordinates.25

We can then easily recover the corner coordinates in O(n) time.26

Lemma 5.1. Let T be a surface triangulation with n triangles, let γ be a reduced normal curve in T27

with total crossing number X , and let λ be the union of any subset of components of γ. Given the28

street complex S(T,γ) and its history, we can compute the normal coordinates of λ with respect to T29

in O(n2 log X) time.30

Proof: Our untracing algorithm maintains an array st[1 .. N] of street coordinates, initially all equal to31

zero, and a bit φ that indicates whether we are currently untracing a component of λ. We consider the32

phases stored in the history in reverse order. To undo a phase with parameters (a;`; m; i0, i1, . . . , im−1),33

we update the street coordinates as follows:34

d ← d`/me − 1
for j← 0 to m− 1

st[i j]← st[i j] + d · (st[a] +φ)

for j← 0 to (`− 1)mod m
st[i j]← st[i j] + (st[a] +φ)

35

18 Jeff Erickson and Amir Nayyeri

(Compare with the ABSTRACTTRACE algorithm in Figure 4.1.) Some additional bookkeeping is required1

at the beginning and end of each component of γ; we omit the straightforward but tedious details.2

Note that the street coordinates st[· · ·] do not actually change until we start untracing a component3

of λ. When the algorithm ends, the array st[· · ·] contains the edge coordinates of λ; we can then easily4

recover the corner coordinates of λ in O(n) time.5

Since we spend O(m) time untracing each phase, the total time to untrace the entire curve is the6

same as the time spent tracing the curve, up to small constant factors. The O(n2 log X) time bound now7

follows directly from Theorem 4.7. �8

5.2 Untracing Without History9

Even without the complete tracing history, we can untrace a curve γ given only the crossing lengths10

of every street in street complex S(T,γ). In fact, it is not necessary to follow the tracing algorithm11

backward; we can untrace the components of γ in any order, starting each cycle component at any12

crossing.13

Lemma 5.2. Let T be a surface triangulation with n triangles, let γ be a reduced normal curve in T14

with total crossing number X , and let λ be the union of any subset of components of γ. Given the street15

complex S(T,γ) and the crossing length of every street, we can compute the normal coordinates of λ16

with respect to T in O(n2 log X) time.17

Proof: Our untracing algorithm maintains the devolving street complex, its associated street and18

junction coordinates (all initially zero), and an array x[1 .. N] storing the crossing lengths of each street.19

Our algorithm untraces every component of γ \ λ (in arbitrary order), resets all street and junction20

coordinates to 0, and then untraces the components of λ (again in arbitrary order). When the algorithm21

terminates, all crossing lengths are equal to 1, and the street and junction coordinates are just the22

normal coordinates of λ.23

First consider the untracing process for a single component of γ. Following the intuition of the24

tracing algorithm, we maintain a normal subpath π that is shrinking from one end toward the other. The25

last segment of π either separates two streets or separates a street and a junction. We can easily remove26

the last segment of π and update the appropriate street coordinates and crossing lengths in O(1) time,27

by time-reversing the case analysis in Figures 3.1 and 3.2.28

To complete the proof, it remains only to prove that we can untrace any spiral of any depth through m29

distinct streets in O(m) time. The last segment of π separates two streets; call the longer of these the30

active street. The last segment of π is a spiral if and only if the active street is incident to itself at the31

junction where π ends; see Figures 3.3 and 5.1. This condition can be tested easily in constant time at32

each step.33

Figure 5.1. After tracing a spiral, the active street is incident to itself at the terminal junction.

Tracing Compressed Curves 19

Without loss of generality, suppose the active street lies to the left of the last segment of π, so we1

are untracing a left spiral, as shown in Figure 5.1. The m directed streets and junctions traversed by2

the spiral are all incident to the right side of the active street. Thus, we can recover the number m and3

indices i0, i1, . . . , im−1 of the relevant streets in O(m) time by traversing π backward until some edge is4

incident on the left. The depth of the spiral is5

d :=

x[a]
∑m−1

j=0 x[i j]

 .6

To untrace d complete turns of the spiral, we add d · (st[a]+ 1) to the m relevant street and junction7

coordinates (where st[a] is the street coordinate of the active street) and subtract d ·
∑m−1

j=0 x[i j] from8

the active crossing length x[a]. We then untrace the last `mod m steps of the spiral by brute force in9

constant time each. Although computing the length ` of the spiral is straightforward, it is not actually10

necessary. The total time to untrace the entire spiral is O(m), as required. �11

5.3 Abstract Untracing12

We can also analyze our untracing algorithm directly by considering the growth of the street coordinates,13

just as we analyzed the forward tracing algorithm by the evolution of crossing lengths. Moreover,14

because our tracing and untracing algorithms have the same running time (up to constant factors),15

we obtain a new analysis of our tracing algorithm. Although our backward analysis leads to the same16

asymptotic time bound O(n2 log X), we obtain more refined bounds for connected normal curves in terms17

of the bit-complexity of the normal coordinates. As in Section 4, N = Θ(n) denotes the number of streets18

in the current street complex.19

First, suppose we are untracing a connected normal curve. Again, we ignore the actual topology of20

the curve and consider instead the abstract untracing algorithm shown in Figure 5.2. This algorithm21

includes the instructions described in the proof of Lemma 5.1 to update the street coordinates, with φ22

fixed to 1 for purposes of analysis.23

ABSTRACTUNTRACE(N):
for j← 1 to N

st[j]← 0
i0← 1
while not done

choose an integer a ∈ [N]
choose an integer m ∈ [N]
choose an integer ` ≥ m
choose a vector (i1, . . . , im−1) ∈ [N]m−1

d ← d`/me − 1
for j← 0 to m− 1

st[i j]← st[i j] + d · (st[a] + 1)
for j← 0 to (`− 1)mod m

st[i j]← st[i j] + (st[a] + 1)
i0← a

Figure 5.2. Our abstract untracing algorithm.

The values in the array st[1 .. N] correspond to the street coordinates of the N streets. At the end24

of each backward phase, the current active street becomes one of the streets traversed (and therefore25

widened) in the next phase; we re-index the streets in each spiral so that i0 is always the index of the26

20 Jeff Erickson and Amir Nayyeri

previous active street. As in the forward analysis, we conservatively assume that the parameters of each1

phase and the termination condition for the main loop are determined adversarially instead of by the2

topology or tracing history of the curve.3

As in the forward analysis, to maximize the number of phases, we can assume conservatively that4

m = 1 in every phase, which simplifies the abstract algorithm to the form shown in Figure 5.3. To5

simplify the algorithm further, we work with an array w[1, .. N] of street widths, where w[i] = st[i] + 16

for all i. Again, we introduce a new variable ∆ strictly for purposes of analysis. Except for variable7

names, SIMPLEUNTRACE is identical to our earlier algorithm SIMPLETRACE, so our earlier analysis applies8

immediately.9

SIMPLEUNTRACE(N):
for j← 1 to N

w[j]← 1
∆← 0
i← 1
while not done

choose an index a ∈ [n]
choose an integer δ ≥ 1
w[i]← w[i] +δ ·w[a]
∆←∆+ lg(δ+ 1)
i← a

Figure 5.3. Our simplified abstract untracing algorithm; compare with Figure 4.2.

Lemma 5.3. ABSTRACTUNTRACE(N) runs for at most 2W = O(N log X) phases and O(nW) = O(n2 log X)10

total time, where W is the final value of
∑N

i=1 lg w[i] and X is the final value of
∑N

i=1 w[i].11

Again, both bounds in Lemma 5.3 are tight in the worst case.12

Ignoring lower-order terms, the parameter W is the number of bits needed to store the edge13

coordinates of the traced curve γ; Schaefer et al. [63,66,75] call W the normal complexity of γ. Recall14

from Section 4.1 that L is the total number of bits needed to store the crossing lengths in the street15

complex S(T,γ). Both W and L are between Ω(n+ log X) and O(n log X), which implies the crude16

bounds W = O(nL) and L = O(nW). In fact, these crude bounds are tight in the worst case, even for17

actual curves; we leave the proof as an amusing exercise for the reader.18

Corollary 5.4. Let T be a surface triangulation with n triangles, let γ be a connected normal curve19

in T . Given the normal coordinates of γ, we can trace γ in O(n ·min{L, W}) time, where W is the total20

bit-length of the normal coordinates of γ, and L is the total bit-length of all crossing lengths in the21

resulting street complex S(T,γ).22

The backward analysis can be extended to disconnected reduced curves, exactly as in Section 4.23

However, since the resulting time bound does not improve our earlier analysis, we omit further details.24

6 Normal Coordinate Algorithms25

In this section, we describe efficient algorithms for several problems involving normal curves represented26

by their normal coordinates. For each of our algorithms, the input consists of a surface triangulation T27

with n triangles and the edge and corner coordinates of either one or two normal curves with total28

crossing length at most X . All of the problems we consider were previously solved by Schaefer et al. [63,29

Tracing Compressed Curves 21

66,75]. Table 1 summarizes our results and the best previous result for each problem. We list only the1

time bounds explicitly claimed by Schaefer et al.; however, it seems likely that more of these bounds can2

be improved using Štefankovic’s techniques [75].3

Problem Our result Previous best result

Connectedness O(n2 log X) [Theorem 6.1] O(n log X) [75]

Normal coordinates of one component O(n2 log X) [Theorem 6.2] O(n2 log X) [75]

Arc-index of crossing with a given edge-index O(n2 log X) [Theorem 6.3] O(poly(n, log X)) [63]

Edge-index of crossing with a given arc-index O(n2 log X) [Theorem 6.4] —

Number and multiplicities of normal isotopy classes O(n2 log X) [Theorem 6.5] O(n3 log2 X) [75]

Normal coordinates of each normal isotopy class O(n3 log X) [Corollary 6.6] O(n3 log2 X) [75]

Number of components O(n2 log X) [Corollary 6.7] O(n log X) [75]

Number and multiplicities of isotopy classes O(n2 log X) [Theorem 6.9] O(poly(n, log X)) [63]

Normal coordinates of each isotopy class O((g + b)n2 log X) [Corollary 6.10] O(poly(n, log X)) [63]

Signed normal coordinates O(n2 log X) [Corollary 6.11] O(n log X) [75]

Algebraic intersection number O(n2 log X) [Corollary 6.12] O(n log X) [75]

Table 1. Summary of our normal-coordinate algorithms. Bold time bounds are the best known for each problem.

6.1 Connectedness4

Theorem 6.1. Let T be a surface triangulation with n triangles, and let γ be a normal curve in T with5

total crossing length X , represented by its normal coordinates. We can determine whether γ is connected6

in O(n2 log X) time.7

Proof: The input curve γ is connected if and only if, after tracing an arbitrary component of γ, every8

street coordinate in the resulting street complex is equal to zero. Because we need only trace one9

component of γ, the result now follows immediately from Theorem 4.4. �10

Štefankovic described an algorithm to test whether a normal curve γ is connected in O(W) =11

O(n log X) time, where W is the bit-complexity of γ’s normal coordinates [75, Observation 3.3.1]. Our12

backward analysis in Section 5.3 implies that our algorithm actually runs in O(nW ′) time, where W ′ is13

the bit-complexity of the normal coordinates of just the traced component of γ.14

6.2 One Component15

Theorem 6.2. Let T be a surface triangulation with n triangles, and let γ be a normal curve in T with16

total crossing length X , represented by its normal coordinates; and let x be any intersection point of γ17

with an edge of T , represented by its index along that edge. We can compute the normal coordinates of18

the component of γ containing x in O(n2 log X) time.19

Proof: Suppose x is the ith crossing point along some edge e; let γ(e) denote the number of crossings20

between γ and e; and let γx denote the component of γ containing x . We trace γx starting at x , by21

splitting e into two smaller edges with street coordinates i− 1 and γ(e)− i; these two new edges and e22

define a fork. If γx is a cycle, the tracing algorithm eventually reaches x again. Otherwise, when the23

tracing algorithm reaches an endpoint y of γx , we continue the trace from x to the other endpoint, as if24

starting a new component of γ. (Alternatively, we can simply start over and trace γx from y to the other25

endpoint.) In all cases, tracing γx requires O(n2 log X) time. Finally, to recover the normal coordinates26

of γx , we reset all the street and junction coordinates in S(T,γx) to zero and then untrace γx , using either27

Lemma 5.1 or Lemma 5.2. �28

22 Jeff Erickson and Amir Nayyeri

Štefankovic described an algorithm for this problem that runs in O(nW) = O(n2 log X) time; see the1

proof of Lemma 3.3.3 in his thesis [75]. Like the previous theorem, more careful analysis implies that2

our algorithm runs in O(nW ′) time, where W ′ is the bit-complexity of the normal coordinates of γx .3

6.3 Forward and Reverse Indexing4

Let x be a point of intersection between γ with an edge e of the surface triangulation. The edge-index5

of x is the position of x in the sequence of intersection points along e (directed arbitrarily). Similarly,6

if x lies on an arc component of γ, the arc-index of x is the position of x in the sequence of intersection7

points along that arc (again, directed arbitrarily). Schaefer et al. [63] describe an algorithm to compute8

the arc-index of an intersection point from its edge-index in time polynomial in n log X . We can more9

efficiently transform edge-either-arc index into the other using our tracing and untracing algorithms.10

Theorem 6.3. Let T be a surface triangulation with n triangles, and let γ be a normal arc in T with11

total crossing length X , represented by its normal coordinates; and let x be any intersection point of γ12

with an edge e of T , represented by its edge-index. We can compute the arc-index of x in O(n2 log X)13

time.14

Proof: We trace γ against its chosen indexing direction, starting at x . As we trace γ, we maintain the15

crossing lengths of all streets in the evolving street complex. Also, whenever we traverse a street, we16

add its crossing length to a running counter. When the trace reaches the boundary of the surface, the17

counter contains the arc-index of x . �18

Theorem 6.4. Let T be a surface triangulation with n triangles, and let γ be a normal arc in T with19

total crossing length X , represented by its normal coordinates; and let x be any intersection point of γ20

with an edge of T , represented by its arc-index. We can compute the edge of T containing x and the21

index of x along that edge in O(n2 log X) time.22

Proof: We trace γ along its chosen indexing direction, starting at one boundary point, maintaining the23

crossing lengths of all streets. Whenever the tracing algorithm traverses a street, we add its crossing24

length to a running counter. When the counter reaches the curve-index of x , we stop the tracing25

algorithm and add a fork to the street complex at the point x . Note that x may lie in the interior of the26

last street traversed by the trace. We then untrace the traced subpath of γ, again starting at the boundary27

endpoint and untracing toward x . When the untracing algorithm reaches x , the desired edge-index is28

one of the street coordinates of the fork. �29

6.4 Normal Isotopy Classes30

Theorem 6.5. Let T be a surface triangulation with n triangles, and let γ be a normal curve in T with31

total crossing length X , represented by its normal coordinates. We can compute the number of normal32

isotopy classes of components of γ and the number of components in each normal isotopy class in33

O(n2 log X) time.34

Proof: We begin by counting and deleting the trivial components of γ. Each trivial component is a cycle35

that separates an interior vertex v form the other vertices; the number of such cycles is just the minimum36

of the corner coordinates incident to v. Thus, we can easily count trivial cycles and delete them from γ,37

by reducing the appropriate normal coordinates, in O(n) time.38

Next, we repeatedly trace one component of γ and then count and remove all other components39

in the same normal isotopy class, as follows. Suppose we have already traced components γ1, . . . ,γi−1.40

Tracing Compressed Curves 23

Let γ̂<i denote the reduced normal curve γ1 ∪ · · · ∪ γi−1, and let γ≥i denote the union of all components1

of γ that are not normal-isotopic to any component of γ̂<i . In particular, we have γ̂<1 =∅ and γ≥1 = γ. By2

assumption, we have computed the street complex S(T, γ̂<i) as well as the street and junction coordinates3

of γ≥i . Let x be the leftmost intersection point between γ≥i and some non-redundant port p in S(T, γ̂<i),4

and let γi denote the component of γ≥i that contains x . We trace γi through S(T, γ̂<i) to produce the5

street complex S(T, γ̂<(i+1)), along with the street and junction coordinates of γ≥i \ γi. The number of6

other components of γ that are normal isotopic to γi is the minimum of the junction coordinates just to7

the right of γi in the new street complex S(T, γ̂<(i+1)). Thus, we can easily count these components and8

reduce the appropriate street and junction coordinates in O(n) time, thereby computing the street and9

junction coordinates of γ≥(i+1).10

Theorem 4.7 implies that the total time spent tracing all components γi is O(n2 log X). Lemma 2.111

implies that there are at most O(n) normal-isotopy classes of components in γ, so the total time spent12

counting and removing parallel components of γ is only O(n2). �13

The output of our algorithm is the street complex S(T, γ̂), where γ̂ is the reduced normal curve14

consisting of all traced components of γ. Each normal isotopy class in γ appears as a single cycle or arc15

in γ̂, and thus is represented by a simple walk or cycle in the 1-skeleton of S(T, γ̂). Štefankovic described16

an algorithm to count normal isotopy classes in O(n3 log2 X) time [75, Lemma 3.3.3]; his algorithm17

actually computes the normal coordinates of one component in each class. We can compute the same18

output representation by independently untracing each component of γ̂, using either Lemma 5.1 or19

Lemma 5.2. Lemma 2.2 implies that the total time to untrace all components is O(n3 log X), which is20

still slightly faster than Štefankovic’s algorithm.21

Corollary 6.6. Let T be a surface triangulation with n triangles, and let γ be a normal curve in T with22

total crossing length X , represented by its normal coordinates. We can compute the normal coordinates23

of each normal-isotopy class of components of γ in O(n3 log X) time.24

Theorem 6.5 also implies immediately that we can compute the number of components of a given25

normal curve in O(n2 log X). Štefankovic described an algorithm that solves this problem in O(n log X)26

time [75, Observation 3.3.1].27

Corollary 6.7. Let T be a surface triangulation with n triangles, and let γ be a normal curve in T28

with total crossing length X , represented by its normal coordinates. We can compute the number of29

components of γ in O(n2 log X) time.30

6.5 Isotopy Classes31

Recall that two properly embedded cycles or arcs are isotopic if one can be continuously deformed to the32

other, keeping the curve properly embedded at all times. Our algorithm for counting isotopy classes uses33

the following classical characterizations of contractible and isotopic cycles and arcs. Parts (a) and (b)34

were proved by Epstein [22, Theorem 1.7 and Lemma 2.4]; parts (c) and (d) follow easily by considering35

the surface obtained by gluing two copies of Σ along corresponding boundary points.36

Lemma 6.8. Let Σ be an arbitrary orientable 2-manifold, possibly with boundary.37

(a) A simple cycle in Σ is contractible if and only if it is the boundary of a disk in Σ.38

(b) Two disjoint simple non-contractible cycles in Σ are isotopic if and only if they are the boundary of39

an annulus in Σ.40

(c) A simple arc in Σ is contractible if and only if there is a disk in Σ whose boundary consists of that41

arc and a segment of ∂Σ.42

24 Jeff Erickson and Amir Nayyeri

(d) Two disjoint simple arcs in a surface Σ are isotopic if and only if there is a disk in Σ whose boundary1

consists of those two arcs and two segments of ∂Σ.2

Theorem 6.9. Let T be a surface triangulation with n triangles, and let γ be a normal curve in T with3

total crossing length X , represented by its normal coordinates. We can compute the number of isotopy4

classes of components of γ and the number of components in each isotopy class in O(n2 log X) time.5

Proof: We begin by computing the number and multiplicities of the normal isotopy classes of components6

of γ in O(n2 log X) time, as described in the proof of Theorem 6.5. Let γ̂ be the reduced curve containing7

one component of γ in each non-trivial normal isotopy class, and let γ1,γ2, . . . denote the components8

of γ̂. The rest of the algorithm requires only O(n) time.9

Next we compute the Euler characteristic of the components of Σ \ γ̂, where Σ is the surface10

triangulated by T ; to avoid confusion, we will refer to the components of Σ \ γ̂ as pieces. Because each11

curve γi is a simple arc or cycle in the 1-skeleton of the street complex S(T, γ̂), we can compute the Euler12

characteristic of every piece in O(n) time using a depth-first search in the dual graph of S(T, γ̂) [23]. In13

particular, we can identify which pieces are disks (χ = 1) and annuli (χ = 0).14

We can now cluster the components of γ̂ into isotopy classes as follows. Call a cycle or arc γi obviously15

contractible if it is the only component of γ̂ on the boundary of a disk piece. Call two arcs γi and γj16

obviously isotopic if they are the only components of γ̂ on the boundary of a disk piece. Finally, call two17

cycles γi and γj obviously isotopic if they comprise the boundary of an annulus piece. Let G be the graph18

whose nodes are the components of γ̂ and whose edges connect obviously isotopic components. This19

graph has O(n) nodes and O(n) edges, and we can easily construct it in O(n) time.20

Lemma 6.8 implies by induction that an arc or cycle in γ̂ is contractible if and only if it lies in the21

same component of G as an obviously contractible arc or cycle, and two arcs or cycles in γ̂ are isotopic if22

and only if they lie in the same component of G. Thus, we can easily cluster the components of γ̂ into23

isotopy classes in O(n) time. We can also compute the number of components of γ in each isotopy class24

in O(n) time by adding the sizes of the appropriate normal-isotopy classes. �25

Schaefer et al. [63] describe an algorithm to compute isotopy classes of normal curves in time26

polynomial in n log X .3 Their algorithm actually computes the normal coordinates of one component27

in each isotopy class. We can compute these normal coordinates by untracing one component in each28

isotopy class; Lemma 2.1 implies that there are at most O(g + b) classes to consider.29

Corollary 6.10. Let T be a surface triangulation with n triangles, and let γ be a normal curve in T with30

total crossing length X , represented by its normal coordinates. We can compute the normal coordinates31

of each isotopy class of components of γ in O((g + b)n2 log X) time.32

6.6 Algebraic Intersection Numbers33

Finally, suppose γ+ and δ+ are directed curves that intersect only transversely and only at a finite number34

of points. We call an intersection point in γ ∩ δ a positive (resp. negative) crossing if γ+ crosses δ+35

from left to right (resp. from right to left) at that point; see Figure 6.1. The algebraic intersection36

number ι̂(γ+,δ+) is the number of positive crossings minus the number of negative crossings. We easily37

observe that ι̂(γ+,δ+) =−ι̂(δ+,γ+) =−ι̂(γ−,δ+), where γ− is the reversal of γ+. Algebraic intersection38

numbers are invariant under isotopy.439

3In their second paper [66], Schaefer et al. claim to have an algorithm to list the isotopy classes of components of a given
normal curve in O(gn2 log2 X) time (in our notation); however, no such result appears in any of their papers [63,66,75]. In
particular, it is unclear how to determine whether two components of γ̂ are isotopic using Štefankovic’s techniques [75].

4In fact, the algebraic intersection number is an invariant of the integer homology classes of the two curves.

Tracing Compressed Curves 25

−

δ

γ+

δ

γ

Figure 6.1. Positive and negative crossings.

The signed edge coordinates of a directed normal curve γ+ are a list of the algebraic intersection1

numbers of γ+ with each (arbitrarily oriented) edge in the triangulation. Similarly, the signed corner2

coordinates of γ+ record, for each corner of the triangulation, the number of counterclockwise elementary3

segments in that corner, minus the number of clockwise segments. Reversing the direction of a normal4

curve negates all of its signed normal coordinates.5

Given the (unsigned) normal coordinates of an undirected normal arc or cycle γ, we can compute the6

signed normal coordinates of some orientation γ+ of γ as follows. We begin by tracing γ in the chosen7

direction. We give each street in the resulting street complex S(T,γ) an arbitrary reference direction.8

Then we untrace γ, maintaining signed street coordinates. Thus, in each untracing step, we either add or9

subtract the active street coordinates, depending on whether the directions of the active streets on either10

side of γ agree or disagree. The additional bookkeeping increases the running time of the untracing11

algorithm by only a small constant factor. When the untracing algorithm ends, we have the signed edge12

coordinates of γ+; computing the signed corner coordinates in O(n) additional time is straightforward.13

Corollary 6.11. Let T be a surface triangulation with n triangles, and let γ be a connected normal14

curve in T with total crossing length X , represented by its unsigned normal coordinates. We can compute15

the signed normal coordinates of some orientation of γ in O(n2 log X) time.16

Signed normal coordinates do not determine a unique curve up to normal isotopy; nevertheless, given17

the signed normal coordinates of γ+ and δ+, we can compute ı̂(γ+,δ+) in O(n) time by choosing an18

appropriate drawing of the two curves [63]. For each edge of the triangulation, we move all intersections19

with γ+ close to one of the endpoints, chosen arbitrarily, and all intersections with δ+ close to the20

other endpoint, and we then draw every elementary segment as a straight line segment, as shown in21

Figure 6.2. Then it is easy to compute the number of positive and negative crossings within each triangle22

in constant time, by multiplying at most six pairs of signed corner coordinates.23

Figure 6.2. Intersection patterns of two normal curves within a single triangle.

The algebraic intersection number of two undirected normal curves γ and δ is well-defined only if24

both curves are connected, and then only up to a sign change. Formally, we define ι̂(γ,δ) = |̂ι(γ+,δ+)|,25

where the directions of γ+ and δ+ are chosen arbitrarily.26

26 Jeff Erickson and Amir Nayyeri

Corollary 6.12. Let T be a surface triangulation with n triangles, and let γ and δ be connected normal1

curves in T with total crossing length X , represented by their normal coordinates. We can compute the2

algebraic intersection number ι̂(γ,δ) in O(n2 log X) time.3

Štefankovic described algorithms to compute signed normal coordinates and algebraic intersection4

numbers in O(n log X) time [75, Observation 3.6.1], which is a factor of O(n) faster than our algorithms.5

7 Tracing Geodesics6

Finally, we extend our tracing algorithm to simple geodesic paths on piecewise-linear triangulated7

surfaces. The input to our algorithm is a piecewise-linear surface Σ (specified by triangles and gluing8

rules), along with a starting point p and a direction vector v in the local coordinate system of some face9

of Σ that contains p. As an example application, we sketch an algorithm to trace the geodesic path γ10

that starts at p in direction v up to its first point of self-intersection. However, we can easily impose11

other stopping conditions, such as an upper bound on Euclidean length or the number of edge crossings.12

7.1 Background13

Before describing our tracing algorithm, we recall some standard definitions for piecewise-linear surfaces14

and geodesics.15

A piecewise-linear surface is a 2-manifold, possibly with boundary, constructed from a finite number16

of closed Euclidean polygons by identifying pairs of equal-length edges. The interiors of the constituent17

polygons are called faces of the surface; without loss of generality, we assume that all faces are triangles.18

The vertices and edges of the surface are the equivalence classes of vertices and edges of the polygons,19

respectively. One of the simplest examples of a piecewise-linear surface is the boundary of a convex20

polyhedron in R3; however, we do not assume that our input surfaces are embedded polyhedra. Indeed,21

most piecewise-linear surfaces cannot be embedded in any Euclidean space so that every face is flat;22

consider, for example, the flat torus obtained by identifying opposite sides of the unit square.5 Our23

algorithms assume only that the surface is orientable and that each face has its own local coordinate24

system; affine transformations between the local coordinate systems of neighboring faces can be derived25

from the gluing rules.26

A path γ: [0, 1]→ Σ is geodesic if it is locally as short as possible; for any real t ∈ [0, 1], and for any27

sufficiently small ε > 0, the restriction of γ to the interval [0,1]∩ [t − ε, t + ε] is a shortest path. If γ28

is a geodesic in a piecewise-linear surface Σ, any subpath of γ that lies entirely within a face of Σ is a29

straight line segment. Similarly, a subpath of γ that crosses an edge of Σ from one face A to another30

face B is a line segment in the polygon obtained by unfolding A and B into a common planar coordinate31

system [17,47]. A geodesic is simple if it does not self-intersect. We emphasize that a simple geodesic32

may cross each face of a piecewise-linear surface arbitrarily many times, or even infinitely many times;33

again, consider the flat torus. Every simple geodesic of finite length is also a normal path.34

5A delicate theorem of Burago and Zalgaller [8,9,62] states that any compact piecewise-linear surface has an isometric
piecewise-linear embedding in R3. However, because the given surface and its embedding generally have different cellular
structures, we regard them as distinct PL surfaces.

Tracing Compressed Curves 27

7.2 Brute-Force Tracing1

To simplify our exposition, we assume that both the surface Σ and the direction vector v are generic; thus,2

the geodesic γ does not intersect any vertex of Σ but does eventually intersect itself.6 We emphasize that3

even for generic inputs, the total crossing number of γ is not bounded a priori by any function of n.4

Any simple geodesic path γ that starts and ends on edges of the triangulation is a normal path. Thus,5

the street complex of γ is well-defined and has complexity O(n) by Lemma 2.3. Moreover, each of the6

O(n) faces of the street complex is isometric to a convex polygon with at most six sides; in particular,7

every street is either a triangle or a convex quadrilateral. (The street complex may have Ω(n) vertices on8

the boundary of a single street, but at most four are actually corners of the quadrilateral that corresponds9

to the street.)10

Although we do not know the normal coordinates of γ in advance, we can still easily decide in11

constant time at each step of our tracing algorithm whether a geodesic γ entering a junction leaves12

through its left exit, leaves through its right exit, or hits an earlier segment of γ. Geometrically, this13

decision is equivalent to a ray-shooting query in a convex polygon with at most six sides. Thus, we can14

easily adapt the brute force tracing algorithm described in Section 3.1 to the geodesic setting. However,15

to achieve a running time of O(n2 log X), we require a new algorithm to efficiently compute the depth of16

a geodesic spiral. We develop such an algorithm in the next two subsections.17

7.3 Annular Ray Shooting18

Computing spiral depth eventually reduces to the following annular ray shooting problem, which may19

be of independent interest: Given a ray ρ on a piecewise-linear annulus A, how many times does ρ20

wrap around A before hitting the boundary? More formally, suppose we are given a triangulated simple21

polygon P in the plane, with two edges e0 and e1 of equal length, and a ray ρ that starts on e0 and22

points into P. Identifying the edges e0 and e1 transforms P into the annulus A. Equivalently, e0 and e123

are portals; when the ray exits P at any point on e1, it immediately reenters P through the corresponding24

point on e0 at the same incidence angle [21,53,79,80,81]. An annular ray shooting query asks for the25

number of times that ρ crosses the portal(s) before hitting a non-portal edge of P.26

For the rest of this section, let n denote the number of vertices in P, and let t∗ denote the integer27

output of the annular ray-shooting query. We explicitly consider only generic polygons P; in particular,28

we assume that e0 and e1 are not parallel. (Adapting our algorithm to polygons with parallel portals is29

straightforward.) Without loss of generality, we assume that the edge e0 is vertical, the polygon P lies30

locally to the right of e0, and that the transformation τ is a counterclockwise rotation by some angle31

0< θ < π. This assumption immediately implies that t∗ ≤ dπ/θe; however, we emphasize that t∗ is not32

bounded a priori by any function of n.33

The naïve solution to this problem requires O(n+ t∗ log n) time: Preprocess P for standard ray-34

shooting queries in O(n) time, and then perform t∗+1 queries, each in O(log n) time [32]. Our algorithm35

improves this naïve bound exponentially.36

Lemma 7.1. The annular ray-shooting problem can be solved in O(n+ log t∗) time and space, where n37

is the number of edges in P and t∗ is the output value.38

Proof: Assume that t∗ ≥ 10, since otherwise, the naïve algorithm already satisfies the desired time39

bound. (In fact, we could safely assume that t∗ ≥ n/ log n.) This assumption implies that θ ≤ π/11.40

6In a piecewise-linear surface where the total angle around every vertex is an integer multiple of π, almost every geodesic
path can be extended infinitely without self-intersection. Examples of such surfaces include the boundary of a regular
tetrahedron, the flat torus defined by identifying opposite edges of any parallelogram, and the eierlegende Wollmilchsau [30].

28 Jeff Erickson and Amir Nayyeri

First we observe that we need only consider polygons P with a special geometric structure. Following1

Chazelle and Guibas [13], we define the hourglass H of P as the union of all shortest paths from2

points in e0 to points in e1. The hourglass is bounded by the shortest paths in P between corresponding3

endpoints of the two portals; we call these shortest paths A (“above”) and B (“below”). Our assumption4

that t∗ ≥ 1 implies that ρ reaches e1 without intersecting either A or B; thus, A and B are disjoint convex5

chains [3, 78]. In particular, H is contained in the convex hull of the portals e0 and e1. Because P is6

already triangulated, it is straightforward to construct its hourglass in O(n) time [12,42,78]. Any line7

segment from e0 to e1 intersects a non-portal edge of P if and only if it intersects a non-portal edge of H;8

it follows that annular ray-shooting queries in P and in H, with the same ray, yield exactly the same9

answer. Thus, it suffices to describe an algorithm to answer annular ray-shooting queries in H.10

Figure 7.1. The hourglass between the portals of a polygon.

Our algorithm considers, but does not actually construct, finite portions of the universal cover of11

the annulus determined by H. Let τ: R2 → R2 denote the unique rigid motion that maps e0 onto e1;12

our genericity assumption implies that τ is a rotation. For each integer i > 0, let τi = τ ◦ τi−1,13

and let ei = τ(ei−1) = τi(e0). Similarly, let H0 = H, and for any integer i > 0, let Hi = τ(Hi−1) =14

τi(H0); by construction, the segment ei is an edge of both Hi−1 and Hi. Finally, for any non-negative15

integer t, let H<t denote the topological disk obtained from the polygons H0, H1, . . . , Ht−1 by identifying16

corresponding edges e j in H j−1 and H j , for all j between 1 and t − 1. The disk H<k grows to the right17

and curves upward as the parameter k increases. (The disk H<k is actually a simple polygon for all18

k ≤ b2π/θc, but we never use this fact.)19

The output t∗ of the annular ray-shooting query is the maximum of all integers t such that ρ intersects20

edges e0 and et but no other edge of H<t . Our algorithm finds t∗ using a standard unbounded search21

strategy due to Bentley and Yao [4]. We emphasize that our algorithm does not actually construct H<t∗22

or any significant portion thereof, but instead computes on the fly only the vertices and edges required23

for the search.24

Let a0, a1, . . . , aα denote the vertices of A in order from left to right, and let b0, b1, . . . , bβ denote the25

vertices of B in order from left to right. Thus e0 = a0 b0 and e1 = aαbβ ; we also have α+ β ≤ n+ 2. For26

any indices i and j, let ai, j = τ j(ai) denote the vertex of H j corresponding to ai, and let bi, j = τ j(bi)27

denote the vertex of H j corresponding to bi. In particular, we have a0, j = aα, j−1 and b0, j = bβ , j−1 for28

every positive integer j.29

We define two families of segments that connect adjacent copies of A and B. For any index j, let c j30

(“the jth ceiling”) denote the lower common tangent of A j−1 and A j. By symmetry, there are indices l31

and r such that c j = al, j−1ar, j for every index j. Similarly, let f j (“the jth floor”) denote the upper32

common tangent of B j−1 and B j. By symmetry, there are indices p and q such that f j = bp, j−1 bq, j for33

every index j. Because τ is a counterclockwise rotation, we have r ≤ l and p ≤ q; thus, segments c j34

and c j+1 are interior-disjoint, but segments f j and f j+1 intersect inside H j . See Figure 7.2.35

Our algorithm applies a standard unbounded search strategy of Bentley and Yao [4] to find the36

smallest positive value of t that satisfies at least one of the following conditions:37

Tracing Compressed Curves 29

ar,1 ar,2 al,2
al,1 ar,3

a0,0 a0,5

b0,0 b0,5
bp,0

al,3

al,0 ar,4

b0,2 b0,3
b0,1 b0,4

a0,1
a0,2 a0,3

a0,4

bq,1bp,1 bq,2bp,2
bq,3bp,3

bq,4

H0
H1 H2

H3

H4c1
c2 c3

c4

f1
f2 f3

f4

Figure 7.2. Floors and ceilings in the universal cover of the annulus.

(A) Segment ct contains a point below ρ.1

(A′) The angle of ct (relative to the positive x-axis) is larger than the angle of ρ.2

(B) Segment ft contains a point above ρ.3

By definition of t∗, the ray ρ intersects either At∗ or Bt∗ . If ρ hits At∗ first, then either condition (A)4

or (A′) holds for all t such that t∗ < t ≤ t∗+ bπ/θc ≤ 2t∗− 1. In particular, condition (A′) is necessary5

to detect the situation where ρ crosses At∗ twice between the ceiling endpoints ar,t∗ and al,t∗ . On the6

other hand, if ρ hits Bt∗ first, then condition (B) holds for all t such that t∗ < t ≤ t∗ + bπ/θc ≤ 2t∗− 1.7

Finally, none of the conditions holds for any positive t < t∗.8

Starting with the estimate t = 1, our algorithm repeatedly doubles t until at least one of these four9

conditions is satisfied, and then performs a binary search for the critical value of t. To avoid messy10

boundary conditions when t∗ ≈ π/θ , we actually check the conditions for all t between 2k and 2k + 311

in the kth iteration of the doubling search. When the unbounded search ends, there are three cases to12

consider, depending on which conditions are satisfied.13

(A) Suppose ct contains a point below ρ but ct−1 does not. Then ρ must hit either At−1 or At ; that14

is, either t∗ = t − 1 or t∗ = t. We can distinguish between these two cases in O(n) time by brute15

force.16

(A′) Suppose ct−1 and ct both lie above ρ, and the angle of ρ lies between the angles of ct−1 and ct .17

Then either ρ hits At−1, or ρ does not intersect any upper chain A j. Again, we can distinguish18

between these two cases in O(n) time by brute force. If ρ hits At−1, we return t∗ = t − 1.19

Otherwise, we perform a second unbounded search to find the first chain Bt∗ hit by ρ.20

(B) Finally, if ft contains a point above ρ but ft−1 does not, then ρ must hit either Bt−1 or Bt . Again,21

we can distinguish between these two cases in O(n) time by brute force.22

If the critical value of t satisfies more than one termination condition, we perform the relevant23

computation for all satisfied conditions and return the smallest value found.24

An important subtlety in the algorithm is that computing the coordinates of ct or ft from scratch25

requires Θ(log t) time, because we do not assume a model of computation that supports exact constant-26

time trigonometric and inverse trigonometric functions. However, by computing an array of O(log t∗)27

rotations of the form τ2i
during the doubling phase of the unbounded search, we can compute the28

coordinates of the appropriate segments ct or ft in O(1) time in each iteration of the search.29

To summarize: Our algorithm spends O(n) time constructing the hourglass H and and the segments c130

and f1; performs an unbounded binary search to approximate t∗ up to a small additive constant, spending31

O(1) time per iteration; and then spends O(n) postprocessing time to find the precise value of t∗. �32

30 Jeff Erickson and Amir Nayyeri

7.4 Tracing Geodesic Spirals1

Now we describe our reduction from the problem of tracing a geodesic spiral to the annular ray-shooting2

problem. At a high level, the reduction is straightforward. If the growing geodesic γ enters the same3

street in the same direction during the same phase, we construct P by unfolding all the streets and4

junctions traversed so far in that phase, perform an annular ray-shooting query with γ as the ray, and5

then perform O(n) more steps by brute force to finish tracing the spiral. However, there are three6

important subtleties that must be taken into account.7

First, the topological disk P that we obtain by unfolding streets and junctions into a common plane8

may not be a simple polygon; some streets and junctions may overlap. However, because P contains9

a line segment between the two portals, the hourglass H of P is a simple polygon. Moreover, we can10

construct H by extending the shortest paths A and B through one street or junction at a time, as described11

by Hershberger and Snoeyink [31]. There is no need to construct the disk P explicitly.12

Second, we actually require the following minor modification: Given a polygon P with equal-length13

portal edges and a ray ρ, we need to determine how many times ρ crosses the portal before hitting14

either a non-portal edge of P or some earlier point in ρ. Assuming ρ always passes through each street in15

only one direction during the current phase, every self-intersection point along ρ has the form ρ∩τk(ρ)16

for some integer k; because τ is a simple rotation, the first such crossing (if any) occurs at the point17

ρ ∩τ(ρ). Thus, we need to compute the largest integer t such that ρ does not intersect A<t or B<t and18

does not cross the ray τ(ρ) inside the polygon H<t . To solve this modified problem, we add a fourth19

termination condition to the unbounded search:20

(C) The rays ρ and τ(ρ) intersect inside the convex quadrilateral conv{et−1, et}.21

Adding this condition increases the running time of the unbounded search algorithm by only a small22

constant factor.23

Finally, it is possible for a geodesic to traverse a single street in both directions during a single phase24

of the tracing algorithm; in this case, merely adding condition (C) to the unbounded search algorithm25

might fail to detect a self-intersection. To avoid this possibility, we partition each street that does not26

end at the boundary of Σ into two lanes with a geodesic segment we call the median. (If a street ends27

at the boundary of Σ, it obviously cannot be traversed more than once.) The endpoints of the median28

are vertices of the triangular faces (in the original surface triangulation T) incident to the ends of the29

street, as shown in Figure 7.3. Straightforward case analysis implies that γ crosses a median only in30

the last step of each phase. For example, if γ enters a street with a left turn, either it exits the street31

with another left turn and does not cross the median, or it crosses the median and then exits the street32

with a right turn, thereby ending the current phase. Informally, the geodesic “drives on the left” during33

left-turning phases and “drives on the right” during right-turning phases; see Figure 7.3.34

Similarly, each junction is partitioned into fragments by the medians of the three streets incident to35

that junction. Each fragment has constant only one direction during a phase (if it is traversed at all).36

Thus, to compute the depth of a spiral, we compute the m lanes and m junction fragments traversed37

by the spiral on the fly, in O(1) time each; unfold these lanes and fragments into a common plane in38

O(m) time; compute the hourglass of the resulting (possibly self-overlapping) polygon in O(m) time;39

and finally invoke our modified annular ray-shooting algorithm.40

Lemma 7.2. The depth d of a geodesic spiral through m distinct directed streets can be computed in41

O(m+ log d) time.42

Tracing Compressed Curves 31

Figure 7.3. Top: γ enters a street with a left turn, traverses the left lane, and exits the street with a left turn. Bottom: γ
enters a street with a right turn, crosses the median, and exits the street with a left turn.

7.5 Summary1

The proof of Theorem 4.8 now immediately implies that our geodesic tracing algorithm runs in2

O(n2 log X) time, where X is the number of times the geodesic crosses an edge of the input trian-3

gulation T . The output of our tracing algorithm is the final street complex S(T,γ), the face of S(T,γ)4

that contains the first self-intersection point x , and the local coordinates of x within that face.5

Finally, we can also locate x in the input triangulation in O(n2 log X) additional time as follows.6

Each street and junction in the street complex S(T,γ) has its own local coordinate system. Each junction7

inherits its local coordinate system from the triangle of Σ that contains it; similarly, each street inherits8

its local coordinate system from one of the triangles incident to the corresponding edge in the initial9

triangulation. During the tracing algorithm, for each edge e of the evolving street complex, we maintain10

the rigid motion τe : R2 → R2 that maps from the local coordinates on one side of e to the local11

coordinates on the other side. The matrices encoding these rigid motions can be updated in O(m+ log d)12

time in each phase of the tracing algorithm.13

After locating x in the street complex S(T,γ), we untrace γ, keeping track of which face of the14

devolving street complex contains x and the local coordinates of x within that face. There are three15

cases to consider in each phase of the untracing algorithm. If x lies inside a junction, we can stop16

untracing immediately. Otherwise, if x does not lie in the active street of the current phase, its local17

coordinates do not change during that phase. Finally, if x lies in the active street of the phase, we can18

determine its new local coordinates in O(m+ log d) time.19

We conclude:20

Theorem 7.3. Let Σ be a triangulated piecewise-linear surface with n triangles. Given the starting point21

and direction of a geodesic γ in Σ, we can compute the first self-intersection point in γ in O(n2 log X)22

time, where X is the number of edges γ crosses before it self-intersects.23

Acknowledgments. We are grateful to the anonymous referees for their careful reading and helpful24

suggestions for improving the paper.25

32 Jeff Erickson and Amir Nayyeri

References1

[1] Ian Agol, Joel Hass, and William P. Thurston. The computational complexity of knot genus and2

spanning area. Trans. Amer. Math. Soc. 358(9):3821–3850, 2006. ArXiv:math/0205057.3

[2] Alexandr D. Alexandrov. Existence of a convex polyhedron and of a convex surface with a given4

metric. Rec. Math. [Mat. Sbornik] 11(53)(1–2):15–65, 1942. In Russian, with English summary.5

[3] David Avis, Teren Gum, and Godfried T. Toussaint. Visiblity between two edges of a simple polygon.6

Vis. Comput. 2:342–357, 1986.7

[4] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded searching.8

Inform. Proc. Lett. 5:82–87, 1976.9

[5] Joan S. Birman and Caroline Series. Geodesics with bounded intersection number on surfaces are10

sparsely distributed. Topology 24(2):217–225, 1985.11

[6] Joan S. Birman and Caroline Series. Algebraic linearity for an automorphism of a surface group. J.12

Pure Appl. Algebra 52:227–275, 1988.13

[7] Prosenjot Bose, Anil Maheshwari, Chang Shu, and Stefanie Wuhrer. A survey of geodesic paths on14

3D surfaces. Comput. Geom. Theory Appl. 44:486–498, 2011.15

[8] Yuri D. Burago and Victor A. Zalgaller. Isometric piecewise-linear embeddings of two-dimensional16

manifolds with a polyhedral metric into R3. Algebra i Analiz 7(3):76–95, 1995. In Russian. English17

translation in [9].18

[9] Yuri D. Burago and Victor A. Zalgaller. Isometric piecewise-linear embeddings of two-dimensional19

manifolds with a polyhedral metric into R3. St. Petersburg Math. J. 7(3):369–385, 1996. English20

translation of [8].21

[10] Benjamin A. Burton. The complexity of the normal surface solution space. Proc. 26th Ann. Symp.22

Comput. Geom., 201–209, 2010.23

[11] Benjamin A. Burton and Melih Ozlen. Computing the crosscap number of a knot using integer pro-24

gramming and normal surfaces. ACM Trans. Math. Software (to appear), 2012. ArXiv:1107.2382.25

[12] Bernard Chazelle. A theorem on polygon cutting with applications. Proc. 23rd Ann. IEEE Symp.26

Found. Comput. Sci., 339–349, 1982.27

[13] Bernard Chazelle and Leonidas J. Guibas. Visibility and intersection problems in plane geometry.28

Discrete Comput. Geom. 4:551–581, 1989.29

[14] Jindong Chen and Yijie Han. Shortest paths on a polyhedron, part I: Computing shortest paths.30

Int. J. Comput. Geom. Appl. 6(2):127–144, 1996.31

[15] Max Dehn. Die Gruppe der Abbildungsklassen (Das arithmetische Feld auf Flächen). Acta32

Mathematica 69:135–206, 1938.33

[16] Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest. Ordering Braids. Mathematical34

Surveys and Monographs 148. Amer. Math. Soc., 2008.35

[17] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra.36

Cambridge Univ. Press, 2007.37

http://arxiv.org/abs/math/0205057
http://arxiv.org/abs/1107.2382

Tracing Compressed Curves 33

[18] Volker Diekert and Manfred Kufleitner. A remark about quadratic trace equations. Proc. 6th Int.1

Conf. Devel. Language Theory, 59–66, 2003. Lecture Notes Comput. Sci. 2450, Springer-Verlag.2

[19] Ivan Dynnikov and Bert Wiest. On the complexity of braids. J. Europ. Math. Soc. 9(4):801–840,3

2007. ArXiv:math/0403177v2.4

[20] Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction. Amer. Math.5

Soc., 2010.6

[21] Harlan Ellison. The city on the edge of forever. Star Trek, season 1, episode 28, April 6, 1967.7

[22] David B. A. Epstein. Curves on 2-manifolds and isotopies. Acta Mathematica 115:83–107, 1966.8

[23] Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete Comput. Geom.9

31(1):37–59, 2004.10

[24] Jeff Erickson and Amir Nayyeri. Tracing compressed curves in triangulated surfaces. Proc. 28th11

Ann. Symp. Comput. Geom., 131–140, 2012.12

[25] Albert Fathi, François Laudenbach, and Valentin Poénaru. Travaux de Thurston sur les surfaces.13

Astérisque 66-67. Soc. Math. de France, 1979. Séminaire Orsay. English translation in [26].14

[26] Albert Fathi, François Laudenbach, and Valentin Poénaru. Thurston’s Work on Surfaces. Mathe-15

matical Notes. Princeton Univ. Press, 2011. Translated by Djun Kim and Dan Margalit. English16

translation of [25].17

[27] Leszek Gąsieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech Rytter. Efficient algorithms18

for Lempel-Ziv encoding. Proc. 8th Scand. Workshop Algorithm Theory, 392–403, 1996. Lecture19

Notes Comput. Sci. 1097, Springer.20

[28] Wolfgang Haken. Theorie der Normalflächen: Ein Isotopiekriterium für den Kreisknoten. Acta21

Mathematica 105:245–375, 1961.22

[29] Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of knot and23

link problems. J. ACM 46(2):185–211, 1999.24

[30] Frank Herrlich and Gabriela Schmithüsen. An extraordinary origami curve. Math. Nachr.25

281(2):219–237, 2008.26

[31] John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homotopy27

class. Comput. Geom. Theory Appl. 4:63–98, 1994.28

[32] John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray, take a29

walk. J. Algorithms 18(3):403–431, 1995.30

[33] Morris W. Hirsch. Differential Topology. Graduate Texts in Mathematics 33. Springer-Verlag, 1997.31

Corrected 6th printing.32

[34] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,33

Languages, and Computation, 3rd edition. Addison-Wesley, 2006.34

[35] WIlliam Jaco, David Letscher, and J. Hyam Rubinstein. Algorithms for essential surfaces in35

3-manifolds. Topology and Geometry: Commemorating SISTAG, 107–124, 2002. Contemporary36

Mathematics 314, Amer. Math. Soc.37

http://arxiv.org/abs/math/0403177v2

34 Jeff Erickson and Amir Nayyeri

[36] William Jaco and J. Hyam Rubinstein. 0-efficient triangulations of 3-manifolds. J. Diff. Geom.1

65:61–168, 2003. ArXiv:math/0207158v1.2

[37] Marek Karpinski, Wojciech Rytter, and Ayumi Shinohara. An efficient pattern-matching algorithm3

for strings with short descriptions. Nordic J. Comput. 4:172–186, 1997.4

[38] John C. Kieffer and En-hui Yang. Grammar based codes: A new class of universal lossless source5

codes. IEEE Trans. Inform. Theory 46(3):737–754, 2000.6

[39] Philip N. Klein. Optimization Algorithms for Planar Graphs. Unpublished textbook draft, 2012.7

〈http://planarity.org/〉.8

[40] Helmuth Kneser. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahresbericht9

Deutschen Math.-Verein. 38:248–260, 1930.10

[41] Gabriel Lamé. Note sur la limite du monbre des divisions dans la recherche du plus grand commun11

diviseur entre deux nombres entiers. Compt. Rend. Acad. Sci., Paris 19:857–870, 1844.12

[42] Der-Tsai Lee and Franco P. Preparata. Euclidean shortest paths in the presence of rectilinear13

barriers. Networks 14:393–410, 1984.14

[43] Simon Antoine Jean l’Huillier. Démonstration immédiate d’un théorème fondamental d’Euler sur15

les polyhèdres, et exception dont ce théorème est susceptible. Mémoires de l’Académie Impériale des16

Sciences de Saint-Petersbourg 4:271–301, 1811.17

[44] Simon Antoine Jean l’Huillier. Mémoire sur la polyédrométrie contenant une démonstration18

directe du théorème d’Euler sur les polyédres, et un examen des diverses exceptions auxquelles19

ce théorème est assujetti. Annales de Mathématiques Pures et Appliquées [Annales de Gergonne]20

3:169–189, 1813. Summarized by Joseph Diaz Gergonne.21

[45] Yury Lifshits. Algorithms and Complexity Analysis for Processing Compressed Texts. Ph.D. thesis,22

Steklov Inst. Math., May 2007. In Russian.23

[46] Yury Lifshits. Processing compressed texts: A tractabiliity border. Proc. 18th Ann. Symp. Combin.24

Pattern Matching, 228–240, 2007. Lecture Notes Comput. Sci. 4850, Springer-Verlag.25

[47] Lazar Aronovich Lyusternik. Shortest Paths: Variational Problems. Popular Lectures Math. 13.26

Pergamon Press, 1964. Translated and adapted from the Russian by P. Collins and Robert B. Brown.27

[48] Joseph Mitchell. Geometric shortest paths and network optimization. The Handbook of Compu-28

tational Geometry, chapter 15, 633–701, 2000. Elsevier Science. 〈http://www.ams.sunysb.edu/29

~jsbm/papers/survey.ps.gz〉.30

[49] Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. An improved pattern matching31

algorithm for strings in terms of straight-line programs. J. Discrete Algorithms [Hermes] 1(1):187–32

204, 2000.33

[50] Richard Moeckel. Geodesics on modular surfaces and continued fractions. Ergodic Theory Dynam.34

Sys. 2:69–83, 1982.35

[51] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins Univ. Press, 2001.36

[52] David M. Mount. Storing the subdivision of a polyhedral surface. Discrete Comput. Geom. 2:153–37

174, 1987.38

http://arxiv.org/abs/math/0207158v1
http://planarity.org/
http://www.ams.sunysb.edu/~jsbm/papers/survey.ps.gz
http://www.ams.sunysb.edu/~jsbm/papers/survey.ps.gz
http://www.ams.sunysb.edu/~jsbm/papers/survey.ps.gz

Tracing Compressed Curves 35

[53] Nuclear Monkey Software. Narbacular Drop. Video game, 2005.1

[54] János Pach and Géza Tóth. Recognizing string graphs is decidable. Discrete Comput. Geom.2

28(4):593–606, 2001.3

[55] Robert C. Penner. The action of the mapping class group on curves in surfaces. L’Enseignment4

Mathématique 30:39–55, 1984.5

[56] Robert C. Penner and John L. Harer. Combinatorics of Train Tracks. Annals of Math. Studies 125.6

Princeton Univ. Press, 1992.7

[57] Wojciech Plandowski and Wojciech Rytter. Application of Lempel-Ziv encodings to the solution of8

word equations. Proc. 25th Int. Conf. Automata Lang. Prog., 731–742, 1998. Lecture Notes Comput.9

Sci. 1443, Springer-Verlag.10

[58] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction. Texts and11

Monographs in Computer Science. Springer-Verlag, 1985.12

[59] John M. Robson and Volker Diekert. On quadratic word equations. Proc. 16th Ann. Conf. Theoretical13

Aspects Comput. Sci., 217–226, 1999. Lecture Notes Comput. Sci. 1563, Springer-Verlag.14

[60] John M. Robson and Volker Diekert. Quadratic word equations. Jewels are Forever, Contributions15

on Theoretical Computer Science in Honor of Arto Salomaa, 314–326, 1999. Springer-Verlag.16

[61] Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based17

compression. Theoret. Comput. Sci. 302:211–222, 2003.18

[62] Emil Saucan. On a construction of Burago and Zalgaller. Preprint, September 2010.19

ArXiv:1009.5841.20

[63] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Algorithms for normal curves and21

surfaces. Proc. 8th Int. Conf. Comput. Combin., 370–380, 2002. Lecture Notes Comput. Sci. 2387,22

Springer-Verlag.23

[64] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing string graphs in NP. J.24

Comput. System Sci. 67(2):365–380, 2003.25

[65] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Spiraling and folding: The topological26

view. Proc. 19th Ann. Canadian Conf. Comput. Geom., 73–76, 2007.27

[66] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Computing Dehn twists and geometric28

intersection numbers in polynomial time. Proc. 20th Canadian Conf. Comput. Geom., 111–114,29

2008. Full version: Tech. Rep. 05–009, Comput. Sci. Dept., DePaul Univ., April 2005, 〈http:30

//facweb.cs.depaul.edu/research/techreports/abstract05009.htm〉.31

[67] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Spiraling and folding: The word view.32

Algorithmica 60(3):609–626, 2011.33

[68] Saul Schleimer. Sphere recognition lies in NP. Preprint, July 2004. ArXiv:math/0407047.34

[69] Yevgeny Schreiber. An optimal-time algorithm for shortest paths on realistic polyhedra. Discrete35

Comput. Geom. 43(1):21–53, 2010.36

http://arxiv.org/abs/1009.5841
http://facweb.cs.depaul.edu/research/techreports/abstract05009.htm
http://facweb.cs.depaul.edu/research/techreports/abstract05009.htm
http://facweb.cs.depaul.edu/research/techreports/abstract05009.htm
http://arxiv.org/abs/math/0407047

36 Jeff Erickson and Amir Nayyeri

[70] Yevgeny Schreiber and Micha Sharir. An optimal-time algorithm for shortest paths on a convex1

polytope in three dimensions. Discrete Comput. Geom. 39(1–3):500–579, 2008.2

[71] Caroline Series. The modular surface and continued fractions. J. London Math. Soc. 31:69–80,3

1985.4

[72] Caroline Series. Geometrical Markov coding of geodesics on surfaces of constant negative curvature.5

Ergodic Theory Dynam. Sys. 6(4):601–625, 1986.6

[73] Jeffrey Shallit. Origins of the analysis of the Euclidean algorithm. Hist. Math. 21:401–419, 1994.7

[74] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.8

[75] Daniel Štefankovič. Algorithms for simple curves on surfaces, string graphs, and crossing numbers.9

Ph.D. thesis, Dept. Comput. Sci., Univ. Chicago, June 2005.10

[76] John Stillwell. Classical Topology and Combinatorial Group Theory, 2nd edition. Graduate Texts in11

Mathematics 72. Springer-Verlag, 1993.12

[77] William P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer.13

Math. Soc. 19(2):417–431, 1988. Circulated as a preprint in 1976.14

[78] Godfried T. Toussaint. Shortest path solves edge-to-edge visibility in a polygon. Patt. Recog. Letters15

4(3):165–170, 1986.16

[79] Valve Corporation. Portal. Video game, 2007.17

[80] Valve Corporation. Portal 2. Video game, 2011.18

[81] Andy Wachowski and Larry Wachowski. Matrix Revolutions. Warner Bros., 2003. Motion picture.19

	Introduction
	New Results: Normal Curves
	New Results: Geodesics
	Computational Assumptions

	Background
	Surfaces, Curves, and Isotopy
	Triangulations and Euler Characteristics
	Normal Curves, Normal Isotopy, and Normal Coordinates
	Ports, Blocks, Junctions, and Streets

	Tracing Connected Normal Curves
	Steps
	Phases and Spirals
	History

	Analysis
	Abstract Tracing
	Tracing Reduced Curves
	Logarithmic Spiral Cost

	Untracing
	Untracing from History
	Untracing Without History
	Abstract Untracing

	Normal Coordinate Algorithms
	Connectedness
	One Component
	Forward and Reverse Indexing
	Normal Isotopy Classes
	Isotopy Classes
	Algebraic Intersection Numbers

	Tracing Geodesics
	Background
	Brute-Force Tracing
	Annular Ray Shooting
	Tracing Geodesic Spirals
	Summary

