
SPACE-TIME TRADEOFFS FOR EMPTINESS QUERIES�

JEFF ERICKSONy

Abstract. We develop the �rst nontrivial lower bounds on the complexity of online hyperplane

and halfspace emptiness queries. Our lower bounds apply to a general class of geometric range

query data structures called partition graphs. Informally, a partition graph is a directed acyclic

graph that describes a recursive decomposition of space. We show that any partition graph that

supports hyperplane emptiness queries implicitly de�nes a halfspace range query data structure in the

Fredman/Yao semigroup arithmetic model, with the same asymptotic space and time bounds. Thus,

results of Br�onnimann, Chazelle, and Pach imply that any partition graph of size s that supports

hyperplane emptiness queries in time t satis�es the inequality st
d = 
((n= logn)d�(d�1)=(d+1)).

Using di�erent techniques, we improve previous lower bounds for Hopcroft's problem|Given a set

of points and hyperplanes, does any hyperplane contain a point?|in dimensions four and higher.

Using this o�ine result, we show that for online hyperplane emptiness queries, 
(nd=polylog n) space

is required to achieve polylogarithmic query time, and 
(n(d�1)=d
=polylogn) query time is required

if only O(npolylog n) space is available. These two lower bounds are optimal up to polylogarithmic

factors. For two-dimensional queries, we obtain an optimal continuous tradeo� st
2 = 
(n2) between

these two extremes. Finally, using a lifting argument, we show that the same lower bounds hold for

both o�ine and online halfspace emptiness queries in Rd(d+3)=2 .
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1. Introduction. A geometric range searching data structure stores a �nite
set of points so that we can quickly compute some function of the points inside an
arbitrary region of space, or query range. For example, a reporting query asks for
the list of points in the query range, and a counting query asks for their number.
Perhaps the simplest type of query is an emptiness query (also called an existential

query [6, 45]), which asks whether the query range contains any points in the set.
Emptiness query data structures have been used to solve several geometric problems,
including point location [20], ray shooting [2, 20, 41, 44], nearest and farthest neighbor
queries [2], linear programming queries [40, 11], depth ordering [25], collision detection
[19], and output-sensitive convex hull construction [40, 12].

This paper presents the �rst nontrivial lower bounds on the complexity of data
structures that support online emptiness queries, where the query ranges are either
arbitrary hyperplanes or arbitrary halfspaces. Most of our results take the form of
tradeo�s between space and query time; that is, we prove lower bounds on the size of
the data structure as a function of its worst-case query time, or vice versa. We also
prove tradeo�s between preprocessing time and query time. These are the �rst such
lower bounds for any range searching problem in any model of computation; earlier
models do not even de�ne preprocessing time.

1.1. Previous Results. Most geometric range searching lower bounds are pre-
sented in the Fredman/Yao semigroup arithmetic model [33, 56]. In this model, the
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points are given weights from a semigroup, and the goal of a range query is to deter-
mine the total weight of the points in a query region. A data structure in this model
can be informally regarded as a set of precomputed partial sums in the underlying
semigroup. The size of such a data structure is the number of partial sums, and the
query time is the minimum number of semigroup additions performed on these partial
sums to obtain the required answer. (We de�ne the model more formally in Section 2.)
Lower bounds have been established in this model for several types of query ranges
[10, 14, 16, 56], in many cases matching the complexities of the corresponding data
structures, at least up to polylogarithmic factors.

Unfortunately, emptiness queries are completely trivial in the semigroup arith-
metic model. If the query range is empty, we perform no additions; conversely, if we
perform even a single addition, the query range must not be empty. Similar argu-
ments apply to Tarjan's pointer machine model [54], which has been used to derive
output-sensitive lower bounds for several types of reporting queries [15, 22]. In fact,
the only lower bounds previously known for hyperplane emptiness queries are essen-
tially trivial. The size of any range searching data structure must be 
(n), since it
must store each of the points. The time to answer any range query must be at least

(logn), even for a �xed one-dimensional point set, in any reasonable model of com-
putation such as algebraic decision trees [50], algebraic computation trees [8], pointer
machines [54], or real RAMs [49].1 Since there are both linear-size data structures
(with large query times) [38] and data structures with logarithmic query time (with
large space requirements) [17, 42], any better lower bound must take the form of a
tradeo� between space and time.

The only nontrivial lower bound previously known for any class of online empti-
ness queries, in any model of computation, is due to Anderson and Swanson [6].
They show that 
(n logn= log t) space is required to answer axis-aligned rectangular
emptiness queries in time t, in the so-called layered partition model. In particular,

(n logn= log logn) space is required to achieve polylogarithmic query time in this
model (but see [13] for better upper bounds in the integer RAM model).

Very recently, Borodin et al. [9] derived lower bounds for hyperplane and halfspace
emptiness, nearest-neighbor, point-location, and related queries in high-dimensional
spaces, in Yao's extremely general cell probe model [57]. (See also [46].) In the cell
probe model, a data structure is an array of s cells, each containing b bits. A query is
answered by probing t of these cells in sequence; the address of each probe may depend
arbitrarily on the query and the results of previous probes. Borodin et al. show that
for hyperplane queries among n points in the d-dimensional Hamming cube f0; 1gd,
either t log s = 
(logn log d) or tb = 
(n1�") for any �xed " > 0. Unfortunately, this
lower bound is trivial for any �xed dimension d, since it requires n� 2d. Even when
the dimension is allowed to vary, the bound is extremely weak unless the number of
probes t is nearly constant.

1.2. New Results. We derive our new lower bounds with respect to a general
class of geometric range query data structures called partition graphs. Informally, a
partition graph is a directed acyclic graph that describes a recursive decomposition of
space into connected regions. This recursive decomposition provides a natural search

1Sublogarithmic or even constant query times can be obtained for axis-aligned rectangular queries

in models of computation that allow bit manipulation and require integer inputs within a known

bounded universe; see, for example, [4, 5, 13, 46, 47, 55]. No such result is known for non-orthogonal

ranges, however. We will take the traditional computational-geometric view that geometric objects

are represented by arbitrary real coordinates, for which bit manipulation is impossible.
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Table 1

Best known upper bounds for online hyperplane emptiness queries.

Space Preprocessing Query Time Source

O(nd= logd n) O(nd= logd�" n) O(logn) [17, 42]

O(n) O(n1+") O(n1�1=d) [42]

O(n) O(n logn) O(n1�1=d polylog n) [38]

n � s � n
d
= logd n O(n1+" + s log" n) O(n=s1=d) [17, 42]

structure that is used both to preprocess points and to answer queries. (A formal
de�nition is provided in Section 3.) Our model is powerful enough to describe most,
if not all, known hyperplane range searching data structures.2 Partition graphs were
originally introduced to study the complexity of Hopcroft's problem|Given a set of
points and hyperplanes, does any hyperplane contain a point?|and similar o�ine
geometric searching problems [31].

We summarize our results below. In each of these results and throughout the
paper, s denotes space, p denotes preprocessing time, and t denotes worst-case query
time. For comparison, the best known upper bounds are listed in Table 1. For a
thorough overview of range searching techniques, results, and applications, see the
surveys by Matou�sek [43] and by Agarwal and Erickson [1].

� Any partition graph that supports hyperplane queries requires 
(n) space,

(n logn) preprocessing time, and 
(logn) query time.
� Any partition graph that supports hyperplane emptiness queries implicitly
de�nes a halfspace range query data structure in the Fredman/Yao semi-
group arithmetic model, with the same time and space bounds. Thus, re-
sults of Br�onnimann, Chazelle, and Pach [10] immediately imply that std =

((n= logn)d�(d�1)=(d+1)). This lower bound applies with high probability to
a randomly generated set of points. This is the �rst nontrivial lower bound
for hyperplane emptiness queries in any model of computation.
� We generalize earlier lower bounds on the complexity of Hopcroft's prob-
lem [31] for the special case of polyhedral partition graphs. Speci�cally, we
prove that in the worst case, the time to preprocess n points in R

d and per-
form k hyperplane emptiness queries is


(n log k + n
1�2=d(d+1)

k
2=(d+1) + n

2=(d+1)
k
1�2=d(d+1) + k logn);

even if the query hyperplanes are speci�ed in advance. This lower bound was
previously known in dimensions less than four, and in arbitrary dimensions
for o�ine counting and reporting queries, for arbitrary partition graphs [31].

� The previous result implies the worst-case tradeo�s pt(d+2)(d�1)=2 = 
(nd)
and pt2=(d�1) = 
(n(d+2)=d). These lower bounds match known upper bounds
up to polylogarithmic factors when d = 2, p = O(n polylogn), or t =
O(polylogn) [38, 42]. These results apply to polyhedral partition graphs
when d � 4 and to all partition graphs when d � 3. Under a mild assumption
about the partition graphs, these bounds imply similar tradeo�s between
space and query time, improving the earlier space-time tradeo�s whenever
s = 
(nd�1) or s = O(n1+2=(d

2+d)) and giving us the optimal lower bound
st
2 = 
(n2) in two dimensions.

2DiÆculties in directly modeling existing range searching data structures as partition graphs are

discussed in [31, Section 3.5].
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� Finally, using a lifting argument, we show that all of these lower bounds
also apply to online and o�ine halfspace emptiness queries in R

d(d+3)=2 , at
least for semialgebraic partition graphs. The lower bounds we obtain match
existing upper bounds up to polylogarithmic factors in dimensions 2, 3, and 5.
In most other cases, our bounds are extremely weak; nevertheless, they are an
improvement over all previous (trivial) lower bounds for halfspace emptiness
searching.

All our lower bounds for hyperplane emptiness queries in R d also apply to hyper-
plane and halfspace counting, reporting, or semigroup queries in R

d .

We also show that lower bounds in the semigroup arithmetic model imply lower
bounds for the corresponding counting or reporting queries in the partition graph
model. Thus, any partition graph supporting halfspace counting or reporting queries
satis�es std = 
((n= logn)d�(d�1)=(d+1)), even in the average case. We also derive the
worst-case lower bound st

d(d+1)=2 = 
(nd) for hyperplane queries in the semigroup
model (no lower bound was previously known in this model), and thus for hyperplane
counting or reporting in the partition graph model as well. Surprisingly, in two
dimensions, the lower bound st

3 = 
(n2) is tight in the semigroup model.

From a practical standpoint, our results are quite strong. Even for very simple
query ranges, and even if we only want to know whether the range is empty, range
searching algorithms based on geometric divide-and-conquer techniques cannot be
signi�cantly faster than the na��ve linear-time algorithm that simply checks each point
individually, unless the dimension is very small or we have almost unlimited storage.3

For example, answering 10-dimensional hyperplane emptiness queries in, say,
p
n

time|quite far from the desired O(logn) time bound|requires 
(n4) space, which
is simply impossible for large data sets. In practice, we can only a�ord to use linear
space, and this drives the worst-case query time up to roughly n

9=10. This behavior
is unfortunately not a feature of some pathological input; most of our space-time
tradeo�s hold in the average case, so in fact, most point sets are this diÆcult to
search. The lower bounds that do not (as far as we know) hold in the average case
apply to extremely simple point sets, such as regular lattices.

1.3. Outline. The rest of the paper is organized as follows. In Section 2, we re-
view the de�nition of the semigroup arithmetic model, state a few useful results, and
derive new bounds on the complexity of hyperplane queries in this model. Section 3
de�nes partition graphs, describes how they are used to answer hyperplane and halfs-
pace queries, and states a few of their basic properties. We prove our new space-time
tradeo� lower bounds for hyperplane emptiness queries in Section 4. In Section 5, we
de�ne polyhedral covers and develop bounds on their worst-case complexity. Using
these combinatorial bounds, in Section 6, we (slightly) improve earlier lower bounds
on the complexity of Hopcroft's o�ine point-hyperplane incidence problem in dimen-
sions four and higher. From these o�ine results, we derive new tradeo�s between
preprocessing and query time for online hyperplane queries in Section 7. Section 8
describes a reduction argument that implies lower bounds for halfspace emptiness
queries in both the online and o�ine settings. Finally, in Section 9, we o�er our
conclusions.

2. Semigroup Arithmetic.

3This \curse of dimensionality" can sometimes be avoided by requiring only an approximation

of the correct output; see, for example, [7, 24, 37].
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2.1. De�nitions. We begin by reviewing the de�nition of the semigroup arith-
metic model, originally introduced by Fredman to study dynamic range searching
problems [33], and later re�ned for the static setting by Yao [56].

A semigroup (S;+) is a set S equipped with an associative addition operator
+ : S � S ! S. A semigroup is commutative if the equation x+ y = y + x is true
for all x; y 2 S. A linear form is a sum of variables over the semigroup, where each
variable can occur multiple times, or equivalently, a homogeneous linear polynomial
with positive integer coeÆcients. A commutative semigroup is faithful if any two
identically equal linear forms have the same set of variables, although not necessarily
with the same set of coeÆcients.4 For example, (Z;+) and (ftrue; falseg;_) are faithful
semigroups, but (f0; 1g;+ mod 2) is not faithful.

A semigroup is idempotent if x+x = x for all semigroup elements x, and integral

if x 6= �x for all semigroup elements x and all integers � > 1. For example, the semi-
groups (ftrue; falseg;_) and (Z;max) are idempotent, (Z;+) and (R ;�) are integral,
and (C ;�) is neither. (All these semigroups are faithful.)

Let P be a set of n points in R
d , let (S;+) be a faithful commutative semigroup,

and let w : P ! S be a function that assigns a weight w(p) to each point p 2 P .
For any subset P 0 � P , let w(P 0) =

P
p2P 0 w(P ), where addition is taken over the

semigroup.5 The range searching problem considered in the semigroup model is to
preprocess P so that w(P \ q) can be calculated quickly for any query range q.

Let x1; x2; : : : ; xn be a set of n variables over S. A generator g(x1; : : : ; xn) is a
linear form

Pn
i=1 �ixi, where the �i's are non-negative integers, not all zero. Given a

class Q of query ranges (subsets of R d), a storage scheme for (P;Q; S) is a collection
of generators fg1; g2; : : : ; gsg with the following property: For any query range q 2 Q,
there is an set of indices Iq � f1; 2; : : : ; sg and an indexed set of non-negative integers
f�i j i 2 Iqg such that

w(P \ q) =
X
i2Iq

�igi(w(p1); w(p2); : : : ; w(pn))

holds for any weight function w : P ! S. The size of the smallest such set Iq is the
query time for q.

We emphasize that although a storage scheme can take advantage of special prop-
erties of the semigroup S or the point set P , it must work for any assignment of
weights to P . In particular, this implies that lower bounds in the semigroup model
do not apply to the problem of counting the number of points in the query range,
even though (Z;+) is a faithful semigroup, since a storage scheme for that problem
only needs to work for the particular weight function w(p) = 1 for all p 2 P [14].
For the same reason, even though the semigroups (ftrue; falseg;_) and (2P ;[) are
faithful, the semigroup model cannot be used to prove lower bounds for emptiness
or reporting queries. Emptiness queries can also be formulated as queries over the
one-element semigroup (f�g; �+ � = �), but this semigroup is not faithful.

4More formally, (S;+) is faithful if for each n > 0, for any sets of indices I; J � f1; : : : ; ng where

I 6= J , and for all indexed sets of positive integers f�i j i 2 Ig and f�j j j 2 Jg, there are semigroup

elements s1; s2; : : : ; sn 2 S such that

X

i2I

�isi 6=
X

j2J

�jsj :

5Since S need not have an identity element, we may need to assign a special value nil to the

empty sum w(?).
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For any linear form
Pn

1=1 �ixi, we call the set of points fpi j �i 6= 0g its cluster.
The faithfulness of the semigroup S implies that the union of the clusters of the
generators used to determine w(P \ q) is precisely P \ q (since each �i > 0):[

i2Iq

cluster(gi) = P \ q:

Thus, we can think of a storage scheme as a collection of clusters, such that any set
of the form P \ q can be expressed as the (not necessarily disjoint) union of several of
these clusters. The size of a storage scheme is the number of clusters, and the query
time for a range q is the minimum number of clusters whose union is P \ q. This
is the formulation actually used to prove lower bounds in the semigroup arithmetic
model6 [10, 14, 16, 56].

Whether or not the clusters used to answer a query must be disjoint depends
on the semigroup. If the semigroup is integral, the clusters must be disjoint for
every query; on the other hand, if the semigroup is idempotent, clusters can overlap
arbitrarily. Thus, upper bounds developed for integral semigroups and lower bounds
developed for idempotent semigroups apply to all other semigroups as well.

Some of our lower bounds derive from the following result.
Theorem 2.1 (Br�onnimann, Chazelle, Pach [10]). Let P be a uniformly dis-

tributed set of points in the d-dimensional unit hypercube [0; 1]d. With high probability,

any storage scheme of size s that supports halfspace queries over P in time t satis�es

the inequality st
d = 
((n= logn)d�(d�1)=(d+1)).

2.2. Unreasonably Good Bounds for Hyperplane Queries. Although
lower bounds are known for o�ine hyperplane searching in the semigroup model
[18, 31], we are unaware of any previous results for online hyperplane queries. In par-
ticular, Chazelle's lower bound st

d = 
(nd= logd n) for simplex range searching [14],
which holds when the query ranges are slabs bounded by two parallel hyperplanes,
does not apply when the ranges are hyperplanes; Chazelle's proof requires a positive
lower bound on the width of the slabs.

We easily observe that for any set of points in general position, the smallest
possible storage scheme, consisting of n singleton sets, allows hyperplane queries to
be answered correctly in constant \time". We can obtain better lower bounds by
considering degenerate point sets, as follows.

First consider the two-dimensional case. Let C be (the set of clusters associated
with) an optimal storage scheme of size s that supports line queries for some n-point
set P in the plane. The storage scheme Cmust contain n singleton sets, one containing
each point in P . Without loss of generality, each of the other s� n clusters in C is a
maximal colinear subset of P ; that is, each has the form P \ ` for some line `. (If a
cluster contains three non-colinear points, it can be discarded. If a cluster contains at
least two points on a line `, but not every point on `, then adding the missing points
decreases the query time for ` without changing the number of clusters or the query
time for any other line.) Thus, the query time for any line ` is 1 if P \ ` 2 C, and
jP \ `j otherwise. It follows that an optimal storage scheme of size s consists of n
singleton sets plus the s�n largest maximal colinear subsets of P , and the worst-case
query time is the size of the (s� n+ 1)th largest maximal colinear subset of P .

Theorem 2.2. A storage scheme of size s � 2n that supports line queries in

time t satis�es the inequality st
3 = 
(n2) in the worst case.

6despite the complete absence of both semigroups and arithmetic!
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Proof. Let P be a
p
n�pn integer lattice of points. Erd}os showed that for any

integer k, there is a set of k lines L such that the number of point-line incidences
between P and L is 
(n2=3k2=3); see [33] or [48, p. 177]. In particular, we can
take L to be the lines containing the k largest colinear subsets of P . Erd}os's lower
bound implies that the kth largest maximal colinear subset of P contains at least

(n2=3=k1=3) points. Thus, the worst-case query time for any storage scheme of size
s is 
(n2=3=(s� n+ 1)1=3) = 
(n2=3=s1=3).

Surprisingly, this lower bound is optimal for most values of s.

Theorem 2.3. For any set P of n points in the plane and any integer s with

2n � s � n
2
, there is a storage scheme of size s that supports line queries for P in

time t, where st
3 = O(n2).

Proof. Szemer�edi and Trotter [53] proved that there are at mostO(n+n2=3k2=3+k)
incidences between any set of n points and any set of k lines. (See also [19, 52].)
Thus, for any k in both 
(

p
n) and O(n2), the kth largest maximal collinear subset

of any n-point set has at most O(n2=3=k1=3) elements. The theorem follows by setting
k = s� n+ 1.

In order to derive bounds in higher dimensions, we focus our attention on re-

stricted point sets [35], in which any d points lie on a unique hyperplane. The optimal
storage scheme for a restricted point set again consists of n singleton sets plus the
s � n largest subsets of the form P \ h for some hyperplane h, and the worst-case
query time is the size of the (s�n+1)th largest subset of the form P \h. Of course,
lower bounds for restricted point sets also apply to the general case, but the upper
bounds do not similarly generalize.

Given a set P of points and a set H of hyperplanes, let I(P;H) denote the number
of incidences between P and H, that is, point-hyperplane pairs (p; h) 2 P �H such
that p 2 h. Our higher-dimensional lower bounds, both here and later in the paper,
use the following generalization of the Erd}os point-line construction.

Lemma 2.4 (Erickson [31]). For any integers n and k with n > bk1=dc, there

is a restricted set P of n points and a set H of k hyperplanes in R
d
, such that

I(P;H) = 
(n2=(d+1)k1�2=d(d+1)).

Theorem 2.5. A storage scheme of size s that supports d-dimensional hyperplane

queries in time t satis�es the inequality st
d(d+1)=2 = 
(nd) in the worst case.

Using probabilistic counting techniques of Clarkson et al. [23], Guibas, Overmars,
and Robert [35] prove that for any restricted set P of n points and any set H of k
hyperplanes, I(P;H) = O(n+nd=(2d�1)k(2d�2)=(2d�1)+k). The following upper bound
follows immediately from their result.

Theorem 2.6. For any restricted set P of n points in R
d
and any integer s such

that 2n � s � n
d
, there is a storage scheme of size s that supports hyperplane queries

for P in time t, where st
2d�1 = O(nd).

The general case is unfortunately not so straightforward. Optimal storage schemes
could have clusters contained in lower-dimensional 
ats, in which case the query time
for a hyperplane h is no longer necessarily either 1 or jP \ hj. If the semigroup is
idempotent, every cluster in an optimal storage scheme still has the form P \ h for
some hyperplane h, but this may not be true for all semigroups. We leave further
generalization of our upper bounds as an open problem.

Except when s is near nd, our upper bounds in the semigroup model are signi�-
cantly better than the best known upper bounds in more realistic models of computa-
tion. The most eÆcient data structure known satis�es the upper bound st

d = O(nd)
[17, 42], and this is believed to be optimal, especially in light of Chazelle's simplex



8 JEFF ERICKSON

range searching lower bounds. We are not suggesting that this data structure can be
signi�cantly improved, but rather that the semigroup model is too powerful to permit
tight lower bounds for this range searching problem. This raises the frustrating possi-
bility that closing the existing gaps between upper and lower bounds for other types of
ranges, such as halfspaces [10], will be impossible unless more realistic computational
models are considered.

In the remainder of this paper, we derive tighter lower bounds by considering
a model that more accurately describes the behavior of geometric range searching
algorithms.

3. Partition Graphs.

3.1. De�nitions. A partition graph is a directed acyclic (multi-)graph, with one
source, called the root, and several sinks, called leaves. Associated with each non-leaf
node v is a set Rv of query regions, satisfying three conditions.

1. Rv contains at most � query regions, for some constant � � 2.
2. Every query region is a connected subset of R d .
3. The union of the query regions in Rv is R

d .
We associate an outgoing edge of v with each query region in Rv. Thus, the outdegree
of the graph is at most �. The indegree can be arbitrarily large. In addition, every
internal node v is labeled either a primal node or a dual node, depending on whether
its query regions Rv are interpreted as a partition of primal or dual space. The query
regions associated with primal (resp. dual) nodes are called primal (resp. dual) query
regions.

We do not require the query regions to be disjoint. In the general case, we do not
require the query regions to be convex, semialgebraic, simply connected, of constant
complexity, or even computable in any sense. However, a few of our results only hold
for partition graphs with particular types of query regions. If all the query regions in
a partition graph are constant-complexity polyhedra, we call it a polyhedral partition
graph. If all the query regions are constant-complexity semialgebraic sets (also called
Tarski cells), we call it a semialgebraic partition graph.

Given a partition graph, we preprocess a set P of points for hyperplane queries
as follows. We preprocess each point p 2 P individually by performing a depth-�rst
search of the partition graph, using the query regions to determine which edges to
traverse. Whenever we reach a primal node v, we traverse the edges corresponding
to the query regions in Rv that contain p. Whenever we reach a dual node v, we
traverse the edges corresponding to the query regions in Rv that intersect the dual
hyperplane p�. The same point may enter or leave a node along several di�erent edges,
but we only test the query regions at a node once for each point. Thus, each point
traverses a given edge at most once. For each leaf `, we maintain a leaf subset P`

containing the points that reach `. See Figure 1(a).
To answer a hyperplane query, we use almost exactly the same algorithm as to

preprocess a point: a depth-�rst search of the partition graph, using the query regions
to determine which edges to traverse. The only di�erence is that the behavior at the
primal and dual nodes is reversed. See Figure 1(b).

Whenever the query algorithm reaches a leaf `, it examines the corresponding leaf
subset P`. The output of the query algorithm is computed from the examined subsets,
by assuming that the query hyperplane contains each examined subset. For example,
the output of an emptiness query is \yes" if and only if all the examined subsets are
empty. (In fact, we can assume that if the algorithm ever examines a nonempty leaf
subset, it immediately halts and answers \no".) The output of a counting query is
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Preprocess(p):

at each primal node v:
for each query region R 2 Rv :

if R contains p:
traverse the edge corresponding to R

at each dual node v:
for each query region R 2 Rv :

if R intersects p�:
traverse the edge corresponding to R

at each leaf `:
add p to P`

Query(h):

at each dual node v:
for each query region R 2 Rv :

if R contains h�:
traverse the edge corresponding to R

at each primal node v:
for each query region R 2 Rv :

if R intersects h:
traverse the edge corresponding to R

at each leaf `:
examine P`

(a) (b)

Fig. 1. Preprocessing and query algorithms for hyperplane searching.

the sum of the sizes of the examined subsets; here, examining a leaf subset means
adding its size to a running counter. The output of a reporting query is the union
of the examined subsets; here, \examine" simply means \output". More generally, if
the points are given weights from a (not necessarily faithful) semigroup (S;+), the
output is the semigroup sum over all examined subsets P` of the total weight of the
points in P`. (We will not explicitly consider semigroup queries in the rest of the
paper.)

By modifying the preprocessing algorithm slightly, we can also use partition
graphs to answer halfspace queries. For any hyperplane h, let h+ denote its closed
upper halfspace and h

� its closed lower halfspace.7 Recall that the standard duality
transformation (a1; a2; : : : ; ad) ! xd + ad = a1x1 + a2x2+ � � �+ ad�1xd�1 preserves
incidences and relative orientation between points and hyperplanes: If a point p is
above (on, below) a hyperplane h, then the dual point h� is above (on, below) the
dual hyperplane p�.

To support halfspace queries, we associate one or two subsets of P with every
query region, called internal subsets. With each primal region R 2 Rv, we associate
a single internal subset PR, which contains the points that reach v and lie inside R.
With each dual region R 2 Rv, we associate two internal subsets P+

R and P
�

R , which
contain the points that reach v and whose dual hyperplanes lie below and above R,
respectively. Our modi�ed preprocessing and halfspace query algorithms are shown
in Figure 2. Note that the modi�ed preprocessing algorithm can still be used for
hyperplane searching.

For purposes of proving lower bounds, the size of a partition graph is the number
of edges in the graph, the query time for a particular hyperplane is the number of
edges traversed by the query algorithm, and the preprocessing time is the total number
of edge traversals during the preprocessing phase. We ignore, for example, the time
required in practice to construct the graph, the complexity of the query regions, the
time required to determine which query regions intersect a hyperplane or contain a
point, the sizes of the subsets PR, P

+
R , P

�

R , and P`, the time required to maintain and
test these subsets, and the size of the output (in the case of reporting queries).

We emphasize that since we never charge for the construction of the partition
graph itself, the graph and its query regions can depend arbitrarily on the input point

7We assume throughout the paper that query halfspaces are closed and that no query halfspace

is bounded by a vertical hyperplane. Handling open halfspaces involves only trivial modi�cations

to our query algorithm, which have almost no e�ect on our analysis. Vertical halfspace queries can

be handled either through standard perturbation techniques or by using a lower-dimensional data

structure.
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Preprocess(p):

at each primal node v:
for each query region R 2 Rv :

if R contains p:
add p to PR
traverse the edge corresponding to R

at each dual node v:
for each query region R 2 Rv :

if R intersects p�:
traverse the edge corresponding to R

else if R is above p�:

add p to P+

R

else if R is below p�:

add p to P�
R

at each leaf `:
add p to P`

Query(h�):

at each dual node v:
for each query region R 2 Rv :

if R contains h�:

examine P�
R

traverse the edge corresponding to R

at each primal node v:
for each query region R 2 Rv :

if h intersects R:
traverse the edge corresponding to R

else if h� contains R:
examine PR

at each leaf `:
examine P`

(a) (b)

Fig. 2. Modi�ed preprocessing algorithm and query algorithm for halfspace searching.

set P and on the types of queries we expect to receive. Our preprocessing algorithm
has \time" to construct the optimal partition graph for any given input, and even
very similar inputs may result in radically di�erent partition graphs.

We will also consider o�ine range searching problems, where we are given both
a set P of points and a set H of ranges (either hyperplanes or halfspaces), and are
asked, for example, whether any range contains a point. A partitioning algorithm

constructs a partition graph, which can depend arbitrarily on the input, preprocesses
each point in P , and performs a query for each range in H. The running time of
the partitioning algorithm is the sum of the preprocessing and query times. In the
original de�nition [31], the preprocessing and queries were performed concurrently,
but this has no e�ect on the overall running time.8 Again, since we ignore the time
required in practice to construct the partition graph, partitioning algorithms have the
full power of nondeterminism.

3.2. Basic Properties. Partition graphs have several properties that are very
useful in proving lower bounds.

Lemma 3.1. In any partition graph, if a point lies in a query range, it also lies

in at least one of the subsets PR, P
+
R , P

�

R , or P` examined during a query.

Proof. First suppose some point p lies on some hyperplane h. Clearly, any primal
query region that contains p also intersects h, and any dual query region that con-
tains h� also intersects p�. Thus, there is at least one path from the root to a leaf `
that is traversed both while preprocessing p (so p 2 P`) and while querying h (so P`
is examined).

Now suppose some point p lies in some upper halfspace h+. (The argument for
lower halfspaces is symmetric.) Let v be a node farthest from the root that is reached
both while preprocessing p and while querying h+. If v is a leaf, we are done. If v is
a primal node, then some query region R 2 Rv contains p but does not intersect h.
Since p 2 R, the subset PR contains p, and since p 2 h

+, R must lie above h, so PR
is examined. Finally, if v is a dual node, some query region R 2 Rv contains the dual

8However, if we perform all the searches concurrently using the streaming technique of Edels-

brunner and Overmars [28], we only need to maintain a single root-to-leaf path in the graph at any

time. Thus, the space used by an o�ine partitioning algorithm is more reasonably modeled by the

depth of its partition graph. We will not pursue this idea further in this paper.
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point h� but does not intersect the dual hyperplane p�. Since h� 2 R, the subset P+
R

is examined. Since p 2 h+, the dual point h�, and thus the query region R, lies above
the dual hyperplane p�, so p 2 P+

R .

Lemma 3.2. In any partition graph, if an internal subset PR, P
+
R , or P

�

R is

examined during a halfspace query, then the query halfspace contains every point in

that set.

Proof. Suppose we are performing a query for the upper halfspace h+. (Again, the
argument for lower halfspaces is symmetric.) If the primal subset PR is examined, then
PR � R � h

+. If the dual subset P+
R is examined, then every point p 2 P+

R is above
the hyperplane h, since the dual point h� 2 R is above each dual hyperplane p�.

Lemma 3.1 implies that partition graphs are \conservative"|the output of a
reporting query contains every point in the query range, the output of a counting
query is never smaller than the actual number of points in the query range, and an
emptiness query never reports that a nonempty query range is empty. Lemma 3.2
further implies that the output of a query can be incorrect only if the query algorithm
examines a leaf subset that contains a point outside the query range.

The following lemma follows immediately from a close examination of the query
algorithm.

Lemma 3.3. A counting query is correct if and only if the points in the query range

are the disjoint union of the subsets examined by the query algorithm. A reporting

query is correct if and only if the points in the query range are the (not necessarily

disjoint) union of the subsets examined by the query algorithm.

We say that a partition graph supports a particular class of online range queries
for a given set of points if, after the points are preprocessed, any query in the class is
answered correctly. Even though we have a single preprocessing algorithm, a single
partition graph need not support all query types. However, in several cases, support
for one type of query automatically implies support for another type of query, with the
same (or possibly smaller) worst-case query time. These implications are summarized
in the following lemma.

Lemma 3.4. The following hold for any partition graph.

(a) If a counting query is answered correctly, then a reporting query for the same

range is also answered correctly.

(b) If a reporting query is answered correctly, then an emptiness query for the

same range is also answered correctly.

(c) For any hyperplane h, if counting (resp. reporting) queries for the halfspaces

h
+
and h

�
are answered correctly, then a counting (resp. reporting) query for

h is also answered correctly.

(d) For any hyperplane h, if a reporting query for h is answered correctly, then

reporting queries for the halfspaces h
+

and h
�

are also answered correctly.

Proof. Parts (a) and (b) follow immediately from Lemma 3.3.

Fix a hyperplane h, and let P+ = P \h+, P� = P \h�, and P Æ = P \h. Suppose
reporting queries for the halfspaces h+ and h

� are answered correctly. The reporting
query algorithms for h+, h�, and h traverse precisely the same set of edges and reach
precisely the same set of nodes. Let L be the set of leaves reached by any of these
three queries, and let PL =

S
`2L P`. By Lemma 3.3, both P

+ and P
� are reported

as the union of several internal subsets and PL. It follows that PL � P
+ \ P� = P

Æ.
Lemma 3.1 implies that every point in P

Æ lies in some leaf subset P` where ` 2 L,
so P Æ � PL. Thus, a reporting query for h is also answered correctly. The argument
for counting queries is identical, except that the examined subsets are disjoint. This
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proves part (c).

To prove part (d), suppose a reporting query for h is answered correctly. A report-
ing query for the halfspace h+ traverses exactly the same edges and visits exactly the
same nodes as the reporting query for h. In particular, the leaf subsets P` examined
by the halfspace query algorithm contain only points on the hyperplane h. Lemma
3.2 implies that every internal subset examined by the reporting query algorithm lies
in h

+, and Lemma 3.1 implies that every point in P
+ lies in some examined subset.

It follows that precisely the points in P
+ are reported.

3.3. \Trivial" Lower Bounds. We conclude this section by proving \trivial"
lower bounds on the size, preprocessing time, and query time of any partition graph,
for points in any dimension.

Theorem 3.5. Any partition graph that supports hyperplane emptiness queries

has size 
(n), preprocessing time 
(n logn), and worst-case query time 
(logn).

Proof. Let P be an arbitrary set of n points in R
d . Without loss of generality, all

the points in P have distinct xd coordinates; otherwise, rotate the coordinate system
slightly. Let H be a set of n hyperplanes normal to the xd-axis, with each hyperplane
just above (farther in the xd-direction than) one of the points in P . Thus, for all
1 � i � n, there is a hyperplane in H with i points below it and n� i points above it.
Any partition graph that correctly answers hyperplanes queries for P must at least
detect that every hyperplane in H is empty.

For each point in P , call the hyperplane in H just above it its partner. We say
that a point is active at a node v of the partition graph if both the point and its
partner reach v. We say that a node v deactivates a point p if both p and its partner
h reach v but no edge out of v is traversed by both p and h. Every point in P must be
deactivated by some node in the partition graph, since otherwise some active point p
and its partner h would reach a common leaf, so a query for h would be answered
incorrectly.

Any primal query region R contains at most one active point whose partner does
not intersect R. Similarly, for any dual query region R, there is at most one active
point whose dual hyperplane misses R and whose partner's dual point lies in R. Thus,
any node deactivates at most � points. Moreover, since every point in P must be
deactivated, the partition graph must have at least n query regions and thus at least
n edges.

The level of a node is its distance from the root. There are at most �k nodes
at level k. At least n �Pk�1

i=0 �
k+1 � n � �k+2 points are active at some node at

level k. In particular, at least n(1 � 1=�) points are active at level blog� n � 3c. It
follows that at least n(1� 1=�) points in P each traverse at least blog� n� 2c edges,
so the total preprocessing time is at least

n(1� 1=�)blog� n� 2c = 
(n logn):

Similarly, at least n(1 � 1=�) hyperplanes in H each traverse at least blog� n � 2c
edges, so the worst-case query time is 
(logn).

Lemma 3.4 implies that the same lower bounds also apply to counting and report-
ing queries, both for hyperplanes and for halfspaces. Theorem 3.5 also implies that
any partitioning algorithm, given n points and k hyperplanes (or halfspaces, if we are
not performing emptiness queries), requires at least 
(n log k + k logn) time in the
worst case; this was previously proved in [31], using essentially the same argument.
We will prove similar lower bounds for halfspace emptiness queries in Section 8.
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4. Space-Time Tradeo�s. We now present our space-time tradeo� lower bounds
for hyperplane emptiness and related queries in the partition graph model. All of
these bounds are derived from results in the semigroup arithmetic model, which we
described in Section 2, using the following theorem.

Theorem 4.1. Let P be a set of points. Given a partition graph of size s that

supports hyperplane (resp. halfspace) counting or reporting queries for P in time t, we

can construct a storage scheme of size O(s) that supports hyperplane (resp. halfspace)

queries for P , over any idempotent faithful semigroup, in time O(t).

Proof. For each query region R and leaf `, de�ne the subsets PR, P
�

R , P
+
R , and

P` by the preprocessing algorithm in Figure 2. We claim that these subsets of P form
the clusters of the required storage scheme. There are at most 3s of these clusters: at
most two for each of the s query regions, plus one for each of the � s leaves. To prove
the theorem, it suÆces to show that the points in any query range can be expressed
as the union of O(t) clusters.

Suppose the partition graph supports hyperplane reporting queries. By Lemma
3.3, the points on any hyperplane h are reported as the union of several leaf subsets P`.
Since the query algorithm reaches at most t leaves, the set P \ h is the union of at
most t clusters.

Similarly, if the partition graph supports halfspace reporting queries, then the
points in any halfspace h� are reported as the union of at most t subsets PR, at most
�t subsets P�

R , and at most t subsets P`. Thus, the set P \ h� is the union of at
most (2 + �)t = O(t) clusters.

The argument for counting queries is identical, except that the O(t) clusters used
to answer any query are disjoint. (In fact, the resulting storage scheme works for any
faithful semigroup.)

This theorem implies that lower bounds for range queries in the semigroup arith-
metic model are also lower bounds for the corresponding counting and reporting
queries in the partition graph model. The following results now immediately follow
from Theorems 2.1 and 2.5.

Corollary 4.2. Let P be a uniformly generated set of n points in [0; 1]d. With

high probability, any partition graph of size s that supports halfspace counting or re-

porting queries for P in time t satis�es the inequality st
d = 
((n= logn)d�(d�1)=(d+1)).

Corollary 4.3. Any partition graph of size s that supports d-dimensional hyper-

plane counting or reporting queries in time t satis�es the inequality st
d(d+1)=2 = 
(nd)

in the worst case.

One way to determine if a hyperplane is empty is by counting or reporting the
points in its two halfspaces|the hyperplane is empty if any only if every point in the
original point set is counted or reported exactly once. Thus, any halfspace counting or
reporting data structure also supports hyperplane emptiness queries. The following
result implies that the reverse is almost true in our model of computation.

Theorem 4.4. Let P be a set of points. Given a partition graph of size s that

supports hyperplane emptiness queries for P in time t, we can construct a storage

scheme of size O(s) that supports halfspace queries for P , over any idempotent faithful

semigroup, in time O(t).

Proof. Suppose a partition graph G supports hyperplane emptiness queries for the
set P in time t. Clearly, G also supports reporting queries for any empty hyperplane in
time t, since all the examined subsets are empty. Then by Lemma 3.4 (d), G correctly
answers any halfspace reporting query in time at most t, provided the boundary of the
query halfspace is empty. However, for any halfspace, there is another halfspace with
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empty boundary that contains precisely the same points. It follows that every set of
the form P \ h+ or P \ h� can be expressed as the union of at most (2 +�)t = O(t)
internal subsets.

The following lower bound now follows immediately from Theorem 2.1.

Corollary 4.5. Let P be a uniformly generated set of n points in [0; 1]d. With

high probability, any partition graph of size s that supports hyperplane emptiness

queries for P in time t satis�es the inequality st
d = 
((n= logn)d�(d�1)=(d+1)).

Lemma 3.4 implies that the same lower bound applies to hyperplane counting
or reporting queries. This improves the lower bound in Corollary 4.3 whenever s =
O(nd�1) or t = 
(n2=d(d+1)). Similarly, this lower bound also applies to halfspace
counting or reporting queries, giving us a rather roundabout proof of Corollary 4.2.
However, none of these results applies immediately to halfspace emptiness queries; we
will derive lower bounds for these queries in Section 8.

5. Polyhedral Covers.

5.1. De�nitions. In order to derive our improved o�ine lower bounds and
preprocessing-query time tradeo�s, we �rst need to de�ne a combinatorial object
called a polyhedral cover. The formal de�nition is fairly technical, but intuitively, one
can think of a polyhedral cover of a set P of points and a set H of hyperplanes as a
collection of constant-complexity convex polytopes such that for every point p 2 P

and hyperplane h 2 H, some polytope in the collection contains p and does not in-
tersect h. A polyhedral cover of P and H provides a compact representation of the
relative orientation of every point in P and every hyperplane in H.

Our combinatorial bounds rely heavily on certain properties of convex polytopes
and polyhedra. Many of these properties are more easily proved, and have fewer spe-
cial cases, if we state and prove them in projective space rather than aÆne Euclidean
space. In particular, developing these properties in projective space allows us to more
easily deal with unbounded polyhedra, degenerate polyhedra, and duality transfor-
mations. Everything we de�ne in this subsection can be formalized algebraically in
the language of polyhedral cones and linear subspaces one dimension higher; we will
give a less formal, purely geometric treatment. For more technical details, we refer
the reader to the �rst two chapters of Ziegler's lecture notes [58], or the survey by
Henk et al.[36].

The d-dimensional real projective space RP
d can be de�ned as the set of lines

through the origin in the (d + 1)-dimensional real vector space R
d+1 . Every k-

dimensional linear subspace of R d+1 induces a (k � 1)-dimensional 
at f in RP
d,

and its orthogonal complement induces the (d� k� 1)-dimensional dual 
at f�. Hy-
perplanes are (d� 1)-dimensional 
ats, points are 0-dimensional 
ats, and the empty
set is the unique (�1)-
at.

Any �nite setH of (at least two) hyperplanes in RP d de�nes a regular cell complex
called an arrangement, each of whose cells is the closure of a maximal connected subset
of RP d contained in the intersection of a �xed subset of H and not intersecting any
other hyperplane in H. The largest cells in the arrangement are the closures of the
connected components of RP d nSH; the intersection of any pair of cells is another
cell of lower dimension.

A projective polyhedron is a single cell, not necessarily of full dimension, in an
arrangement of hyperplanes in RP d. A projective polytope is a simply-connected poly-
hedron, or equivalently, a polyhedron that is disjoint from some hyperplane (not
necessarily in the polyhedron's de�ning arrangement). Every projective polyhedron
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is (the closure of) the image of a convex polyhedron under some projective transfor-
mation, and every projective polytope is the projective image of a convex polytope.
Every 
at is also a projective polyhedron.

The (projective) span of a polyhedron � � RP
d, denoted span(�), is the 
at of

minimal dimension that contains it. The dimension of a polyhedron is the dimension
of its span. The relative interior (resp. relative boundary) of a polyhedron is its
interior (resp. boundary) in the subspace topology of its span. A hyperplane supports
a polyhedron if it intersects the polyhedron but not its relative interior. In particular,
a 
at has no supporting hyperplanes.

A proper face of a polyhedron is the intersection of the polyhedron and one or more
supporting hyperplanes. Every proper face of a polyhedron is a lower-dimensional
polyhedron. A face of a polyhedron is either a proper face or the entire polyhedron.
We write j�j to denote the number of faces of a polyhedron �, and � � � to denote
that � is a face of �. The faces of a polyhedron form a graded lattice under inclusion.
Every projective polyhedron has a face lattice isomorphic to that of a convex polytope,
possibly of lower dimension.

The dual of a polyhedron �, denoted ��, is the set of points whose dual hyper-
planes intersect � in one of its faces:

�� 4

= fp j (p� \�) � �g:

In other words, p 2 �� if and only if p� either contains �, supports �, or completely
misses �. This de�nition generalizes both the polar of a convex polytope containing
the origin and the projective dual of a 
at. We easily verify that �� is a projective
polyhedron whose face lattice is the inverse of the face lattice of �. In particular,
� and �� have the same number of faces. See [58, pp. 59{64] and [51, pp. 143{150]
for similar de�nitions.

We say that a polyhedron � separates a set P of points and a set H of hyper-
planes if � contains P and the dual polyhedron �� contains the dual points H�, or
equivalently, if any hyperplane in H either contains � or is disjoint from its relative
interior. In particular, if � is of full dimension, then the hyperplanes in H avoid the
interior of �. Both P and H may intersect the relative boundary of �, and points
in P may lie on hyperplanes in H. See Figure 3. Note that � separates P and H if
and only if �� separates H� and P

�. We say that P and H are r-separable, denoted
P ./r H, if there is a projective polyhedron with at most r faces that separates them.
We write P 6./r H if P and H are not r-separable.

Finally, an r-polyhedral cover of a set P of points and a set H of hyperplanes is
an indexed set of subset pairs f(Pi; Hi)g with the following properties.

� Pi � P and Hi � H for all i.
� If p 2 P and h 2 H, then p 2 Pi and h 2 Hi for some i.
� Pi ./r Hi for all i.

We emphasize that the subsets Pi are not necessarily disjoint, nor are the subsets Hi.
We refer to each subset pair (Pi; Hi) in a polyhedral cover as a r-polyhedral minor.
The size of a cover is the sum of the sizes of the subsets Pi and Hi.

Let �r(P;H) denote the size of the smallest r-polyhedral cover of P and H. Let
�
Æ

d;r(n; k) denote the maximum of �r(P;H) over all sets P of n points and H of k

hyperplanes in RP d, such that no point lies on any hyperplane. In all our terminology
and notation, whenever the parameter r is omitted, we take it to be a �xed constant.
In the remainder of this section, we derive asymptotic lower bounds for �Æd(n; k).
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Fig. 3. A polygon separating a set of points and a set of lines in RP
2.

5.2. Topological Properties. The lower bound proofs in [31] relied on the
following trivial observation: If we perturb a set of points and hyperplanes just enough
to remove any point-hyperplane incidences, and every point is above every hyperplane
in the perturbed set, then no point was below a hyperplane in the original set. In this
section, we establish the corresponding, but no longer trivial, property of separable
sets and polyhedral covers. Informally, if a set of points and hyperplanes is not
separable, then arbitrarily small perturbations cannot make it separable. Similarly,
arbitrarily small perturbations of a set of points and hyperplane cannot decrease its
minimum polyhedral cover size.

We start by proving a more obvious property of convex polytopes, namely, that
in�nitesimally perturbing a set of points can only increase the complexity of its convex
hull.

Lemma 5.1. For any integers n and r, the set of n-point con�gurations in R
d

whose convex hulls have at most r faces is topologically closed.

Proof. Let A = fa1; a2; : : : ; ang and B = fb1; b2; : : : ; bng be two n-point con�g-
urations (i.e., indexed sets of n points) in R

d . We say that A is simpler than B,
written A v B, if for any subset of B contained in a facet of conv(B), the correspond-
ing subset of A is contained in a facet of conv(A).9 Equivalently, A v B if and only if
for any subset of d+ 1 points in B, d of whose vertices lie on a facet of conv(B), the
corresponding simplex in A either has the same orientation or is degenerate. Simpler
point sets have less complex convex hulls: if A v B, then jconv(A)j � jconv(B)j.
If both A v B and B v A, then the convex hulls of A and B are combinatorially
equivalent.

If B is �xed, then the relation A v B can be encoded as the conjunction of a
�nite number of algebraic inequalities of the form���������

1 ai01 ai02 � � � ai0d

1 ai11 ai12 � � � ai1d

...
...

...
. . .

...
1 aid1 aid2 � � � aidd

���������
� 0;

where � is either �, =, or �, and aij denotes the jth coordinate of ai 2 A. In every
such inequality, the corresponding points bi1 ; bi2 ; : : : ; bid 2 B lie on a single facet of

9Every set of points is simpler than itself. It would be more correct, but also more awkward, to

say \A is at least as simple as B".
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Fig. 4. Suspension (double wedge) and projection (line segment) of a polygon by a point in RP
2.

conv(B). For every d-tuple of points in B contained in a facet of conv(B), there are
n � d such inequalities, one for every other point in B. (If we replaced the loose
inequalities �;� with strict inequalities <;>, the resulting expression would encode
the combinatorial equivalence of conv(A) and conv(B).) Thus, for any �xed n-point
set B, the set fA 2 (R d)n j A v Bg is the intersection of a �nite number of closed
algebraic halfspaces, and is thus a closed semialgebraic set.

There are only �nitely many equivalence classes of convex polytopes with a given
number of faces or vertices [34]. Thus, there is a �nite set B = fB1

; B
2
; : : :g of n-point

con�gurations, one of each possible combinatorial type, such that if conv(A) has at
most r faces, then A v B

i for some con�guration B
i 2 B. It follows that the set of

n-point con�gurations whose convex hulls have at most r faces is the union of a �nite
number of closed sets, and is therefore closed.

Before continuing, we need to introduce one more important concept. For any
subset X � RP

d and any 
at f , the suspension of X by f , denoted suspf (X), is
formed by replacing each point in X by the smallest 
at containing that point and f :

suspf (X)
4

=
[
p2X

span(p [ f):

The suspension of a subset of projective space roughly corresponds to an in�nite
cylinder over a subset of an aÆne space, at least when the suspending 
at f is on the
hyperplane at in�nity. The projection of X by f , denoted projf (X), is the intersection
of the suspension and the dual 
at f�:

projf (X)
4

= suspf (X) \ f�:
In particular, suspf (X) is the set of all points in RP

d whose projection by f is in
projf (X). The projection of a subset of projective space corresponds to the orthog-
onal projection or shadow of a subset of aÆne space onto a lower-dimensional 
at.
See Figure 4. For any polyhedron � and any 
at f , suspf (�) and projf (�) are
also polyhedra. These two polyhedra have the same number of faces (in fact, they
have isomorphic face lattices), although in general they have fewer faces than �. In
particular, suspf (f) = f and projf (f) = ?.

Lemma 5.2. Let H be a set of hyperplanes in RP
d
. For any integers r and n,

the set Sepr(H;n) of n-point con�gurations P 2 (RP d)n such that P and H are r-

separable is topologically closed.
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Proof. There are two cases to consider: Either the hyperplanes in H do not have
a common intersection, or they intersect in a common 
at. The proof of second case
relies on the �rst.

Case 1 (
T
H = ?): Any polyhedron that separates P and H must be completely

contained in a closed d-dimensional cell of the arrangement of H. Since there are
only �nitely many such cells, it suÆces to show, for each closed d-cell C, that the
set Sepr(H;n) \ Cn of n-point con�gurations contained in C and r-separable from H

is topologically closed. We will actually show that Sepr(H;n) \ Cn is a compact
semialgebraic set.

Fix a cell C. Since the hyperplanes in H do not have a common intersection,
both C and any polyhedra it contains must be polytopes. By choosing an appropriate
hyperplane \at in�nity" that misses C, we can treat C and any polytopes it contains as
convex polytopes in R d . Any separating polytope with r or fewer faces is the (closed)
convex hull of some set of r points, all contained in C. Thus, we can write

Sepr(H;n) \ Cn =
�
P 2 Cn �� 9A 2 Cr : P � conv(A) ^ jconv(A)j � r

	
:

Lemma 5.1 implies that the set�
(P;A) 2 Cn+r �� jconv(A)j � r

	
=
�
A 2 Cr �� jconv(A)j � r

	� Cn
is compact (closed and bounded). The set�

(P;A) 2 Cn+r �� P � conv(A)
	

can be rewritten as(
(P;A) 2 Cn+r

�����
n̂

i=1

 
9�i 2 [0; 1]r :

rX
j=1

�ijaj = pi ^
rX

j=1

�ij = 1

!)
:

(Here pi is the ith point in P , aj is the jth point in A, �i is the vector of barycentric
coordinates for the point pi, and �ij is its jth component.) This set is an orthogonal
projection of the compact semialgebraic set(

(P;A;�) 2 Cn+r � [0; 1]r�n

�����
n̂

i=1

 
rX

j=1

�ijaj = pi ^
rX

j=1

�ij = 1

!)

and is thus also compact. (Here � is the n� r matrix of barycentric coordinates �ij .)
It follows that Sepr(H;n) \ Cn is an orthogonal projection of the intersection of two
compact sets and so must be compact.

Case 2 (
T
H 6= ?): The previous argument does not work in this case, because the

cells in the arrangement of H are not simply connected, and thus are not polytopes.
However, they are combinatorially equivalent to polytopes of lower dimension. To
prove that Sepr(H;n) is closed, we essentially project everything down to a lower-
dimensional subspace in which the hyperplanes do not have a common intersection
and apply our earlier argument.

We will actually prove that the complement of Sepr(H;n) is open. Let P be an
arbitrary set of n points in RP d such that P and H are not r-separable. To prove the
lemma, it suÆces to show that there is an open set U � (RP d)n with P 2 U, such
that Q 6./ H for all Q 2 U.
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Let f =
T
H, and let f� be the 
at dual to f . Without loss of generality, suppose

that P nf = fp1; p2; : : : ; pmg and P \f = fpm+1; : : : ; png for some integer m. (Either
of these two subsets may be empty.) The lower-dimensional hyperplanes H \ f� do
not have a common intersection, so by our earlier argument, Sepr(H\f�;m) is closed.

If some polyhedron � separated P and H, then its projection projf (�) � f
�

would separate the projected points projf (P ) and the lower-dimensional hyperplanes
H \ f�. Conversely, if any polyhedron � � f

� separated projf (P ) and H \ f� then
its suspension suspf (�) would separate P and H. Thus, P ./ H if and only if
projf (P ) ./ (H\f�). Moreover, since projf (P ) = projf (P nf), it follows that P ./ H

if and only if (P n f) ./ H. (Note that this argument is not valid for arbitrary 
ats f ,
but only for f =

T
H.)

Since by assumption P 6./ H, it follows that projf (P ) 6./ (H \ f�). Thus, by
Case 1, there is an open set U0 � (f�)m, with projf (P ) 2 U

0, such that S 6./ H

for any S 2 U0. Let U00 � (RP d n f)m be the set of m-point con�gurations R with
projf (R) 2 U0. Since RP d n f �= f

� � R
dim f , we have U00 �= U

0 � (Rdim f )m, so U00

is an open neighborhood of P n f . For any R 2 U00, since projf (R) 6./ (H \ f�), we
have R 6./ H. Finally, let U = U

00 � (RP d)n�m; clearly, U is an open neighborhood
of P . For every con�guration Q 2 U, there is a subset R � Q such that R 6./ H, so
Q 6./ H.

Lemma 5.3. Let P be a set of n points and H a set of k hyperplanes in RP
d
.

For all Q 2 (RP d)n in an open neighborhood of P , �r(Q;H) � �r(P;H).
Proof. For any indexed set of objects (points or hyperplanes) X = fx1; x2; : : :g

and any set of indices I � f1; 2; : : : ; jXjg, let XI denote the subset fxi j i 2 Ig.
Fix two sets of indices I � f1; 2; : : : ; ng and J � f1; 2; : : : ; kg, and consider

the corresponding subsets PI � P and HJ � H. If PI ./ HJ , de�ne UI;J = (RP d)n.

Otherwise, de�ne UI;J � (RP d)n to be an open neighborhood of P such that QI 6./ HJ

for all Q 2 UI;J . Lemma 5.2 implies the existence of such an open neighborhood.
Let U be the intersection of the 2n2k open sets UI;J . Since each UI;J is an open

neighborhood of P , U is also an open neighborhood of P . For all Q 2 U and for all
index sets I and J , if QI ./ HJ , then PI ./ HJ . In other words, every r-polyhedral
minor of Q and H corresponds to a r-polyhedral minor of P and H. Thus, for any r-
polyhedral cover of Q and H, there is a corresponding r-polyhedral cover of P and H

with exactly the same size.

5.3. Lower Bounds. We are �nally in a position to prove our combinatorial
lower bounds. As in Section 2, let I(P;H) denote the number of point-hyperplane
incidences between P and H.

Lemma 5.4. Let P be a set of n points and H a set of k hyperplanes, such

that no subset of a hyperplanes contains b points in its intersection. If P and H are

r-separable, then I(P;H) � r(a+ b)(n+ k).

Proof. Let � be a polyhedron with r faces that separates P and H. For any point
p 2 P and hyperplane h 2 H such that p lies on h, there is some face � of � that
contains p and is contained in h. For each face � � �, let P� denote the points in
P that are contained in �, and let H� denote the hyperplanes in H that contain �.
Every point in P� lies on every hyperplane in H�.

Since no set of a hyperplanes can all contain the same b points, it follows that for
all �, either jP�j < b or jH�j < a. Thus, we can bound I(P;H) as follows.

I(P;H) �
X
���

I(P�; H�) =
X
���

�jP�j � jH�j
� � (a+ b)

X
���

�jP�j+ jH�j
�
:
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Since � has r faces, the last sum counts each point in P and each hyperplane in H

at most r times.

Theorem 5.5. �Æd(n; k) = 

�
n
1�2=d(d+1)

k
2=(d+1) + n

2=(d+1)
k
1�2=d(d+1)

�
.

Proof. Let P be a restricted set of n points and H a set of k hyperplanes in R
d ,

such that I(P;H) = 
(n2=(d+1)k1�2=d(d+1)) as described by Lemma 2.4. Consider
any subsets Pi � P and Hi � H such that Pi ./r Hi. Applying Lemma 5.4 with s = 2
and t = d, we have I(Pi; Hi) � (2 + d)r(jPij+ jHij). It follows that any collection of
r-polyhedral minors that includes every incidence between P and H must have size at
least I(P;H)=(2+d)r. Thus, �r(P;H) = 
(n2=(d+1)k1�2=d(d+1)). Finally, Lemma 5.3
implies that we can perturb P slightly, removing all the incidences, without decreasing
the polyhedral cover size.

The symmetric lower bound 
(n1�2=d(d+1)k2=(d+1)) follows by considering the
dual points H� and the dual hyperplanes P �.

When d � 3, this result follows from earlier bounds on the complexity of mono-
chromatic covers derived in [31]. (In a monochromatic minor, either every point lies
above every hyperplane, or every point lies below every hyperplane.)

Our d-dimensional lower bound only improves our (d�1)-dimensional lower bound
when k = O(n2=(d�1)) or k = 
(n(d�1)=2). We can combine the lower bounds from
all dimensions 1 � i � d into a single expression, as in [31, 30]:

�
Æ

d(n; k) = 


 
dX

i=0

�
n
1�2=i(i+1)

k
2=(i+1) + n

2=(i+1)
k
1�2=i(i+1)

�!
:

If the relative growth rates of n and k are �xed, this entire sum reduces to a single term.
In particular, when k = n, the best lower bound we can prove is �Æd(n; n) � �

Æ
2(n; n) =


(n4=3), the proof of which requires only the original point-line con�guration of Erd}os.
(See Theorem 2.2.)

We conjecture that �Æd(n; n) = �(n2d=(d+1)). The lower bound would follow from
a construction of n points and n hyperplanes with 
(n2d=(d+1)) incident pairs, such
that no d points lie on the intersection of d hyperplanes, or in other words, such that
the bipartite incidence graph of P and H does not have Kd;d as a subgraph. (The
results of Clarkson et al. [19] and of Guibas, Overmars, and Robert [35] imply that
this is the smallest forbidden subgraph for which the desired lower bound is possible.)
An upper bound of �Æd(n; n) = O(n2d=(d+1)2O(log

� n)) follows from the running time
of Matou�sek's algorithm for Hopcroft's problem [42], using the results in the next
section.

6. Better O�ine Lower Bounds. Recall that a partitioning algorithm, given
a set of points and hyperplanes, constructs a partition graph (which may depend
arbitrarily on the input, at no cost), preprocesses the points, and queries the hyper-
planes, using the algorithms in Figure 1. For a polyhedral partitioning algorithm, the
partition graph's query regions are all convex (or projective) polyhedra, each with at
most r faces, where r is some �xed constant.10

In [31], it was shown that the worst-case running time of any partitioning algo-
rithm that solves Hopcroft's point-hyperplane incidence problem, given n points and
k hyperplanes as input, requires time 
(n log k + n

2=3
k
2=3 + k logn) when d = 2, or

10In most actual partitioning algorithms, every query region is either a simplex (r = 2d+1) or a

combinatorial cube (r = 3d + 1).
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(n log k+n
5=6

k
1=2+n

1=2
k
5=6+k log n) for any d � 3. Here, by restricting our atten-

tion to polyhedral partitioning algorithms, we derive (slightly) better lower bounds
in arbitrarily high dimensions.

Theorem 6.1. Let P be a set of points and H a set of hyperplanes, such that no

point lies on any hyperplane. The running time of any polyhedral partitioning algo-

rithm that solves Hopcroft's problem, given P and H as input, is at least 
(�(P;H)).
Proof. For any partitioning algorithm A, let TA(P;H) denote its running time

given the points P and hyperplanes H as input. Recall that TA(P;H) is de�ned as
follows:

TA(P;H)
4

=
X
p2P

#edges traversed by p+
X
h2H

#edges traversed by h

=
X
edge e

�
#points traversing e+#hyperplanes traversing e

�
:

We say that a point or hyperplane misses an edge from v to w if it reaches v but does
not traverse the edge. (It might still reach w by traversing some other edge.) Recall
that each node in the partition graph has at most � outgoing edges, for some �xed
constant �. Thus, for every edge that a point or hyperplane traverses, there are at
most �� 1 edges that it misses.

� � TA(P;H) �
X
edge e

�
#points traversing e+#points missing e+

#hyperplanes traversing e+#hyperplanes missing e
�
:

Call any edge that leaves a primal node a primal edge, and any edge that leaves a
dual node a dual edge.

� � TA(P;H) �
X
primal

edge e

�
#points traversing e+#hyperplanes missing e

�
+

X
dual

edge e

�
#hyperplanes traversing e+#points missing e

�

For each primal edge e, let Pe be the set of points that traverse e, and let He be
the set of hyperplanes that miss e. The edge e is associated with a query region �, a
polyhedron with at most r faces. The polyhedron � separates Pe and He, since every
point in Pe is contained in �, and every hyperplane in He is disjoint from �.

Similarly, for each dual edge e, let He be the set of hyperplanes that traverse it,
and Pe the points that miss it. The associated polyhedral query region � separates
the dual points H�

e and the dual hyperplanes P �
e . By the de�nitions of separation

and dual polyhedra, �� separates Pe and He.
Now our argument is similar to the proof of Theorem 3.5. Say that a node v

splits a point p and a hyperplane h if both p and h reach v but no edge out of v is
traversed by both p and h. For every point p 2 P and hyperplane h 2 H, some node
must split p and h, since otherwise p and h would both reach a leaf, and the output
of the algorithm would be incorrect. Thus, for some outgoing edge e of this node, we
have p 2 Pe and h 2 He.

It follows that the collection of subset pairs f(Pe; He)g is an r-polyhedral cover
of P and H. The size of this cover is at least � �TA(P;H) and, by de�nition, at most
�r(P;H).
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We emphasize that in order for this lower bound to hold, no point can lie on a
hyperplane. If some point lies on a hyperplane, then the trivial partitioning algorithm,
whose partition graph consists of a single leaf, correctly \detects" the incident pair
at no cost. This is consistent with the intuition that it is trivial to prove that some
point lies on some hyperplane, but proving that no point lies on any hyperplane is
more diÆcult.

Corollary 6.2. The worst-case running time of any polyhedral partitioning

algorithm that solves Hopcroft's problem, given n points and k hyperplanes in R
d
, is



�
n
1�2=d(d+1)

k
2=(d+1) + n

2=(d+1)
k
1�2=d(d+1)

�
:

Again, our d-dimensional bound improves our (d�1)-dimensional bound only for
certain values of n and k. We can combine the lower bounds for di�erent dimensions
into the following single expression:




 
n log k +

dX
i=0

�
n
1�2=i(i+1)

k
2=(i+1) + n

2=(i+1)
k
1�2=i(i+1)

�
+ k logn

!
:

This lower bound was previously known for arbitrary partitioning algorithms for
counting or reporting versions of Hopcroft's problem|Given a set of points and lines,
return the number of point-hyperplane incidences, or a list of incident pairs|as well
as for o�ine halfspace counting and reporting problems [31].

7. Preprocessing-Query Time Tradeo�s. Based on the o�ine results in the
previous section, we now establish tradeo� lower bounds between preprocessing and
query time for online hyperplane emptiness and related queries. These are the �rst
such lower bounds for any range searching problem in any model of computation;
preprocessing time is not even de�ned in earlier models such as semigroup arithmetic
and pointer machines. In some instances, our bounds allow us to improve the space-
time tradeo� bounds established in Section 4.

Theorem 7.1. Any partition graph that supports line emptiness queries in time

t after preprocessing time p satis�es the inequality pt
2 = 
(n2) in the worst case.

Proof. Suppose p < n
2, since otherwise there is nothing to prove. Let k =

cp
3=2

=n, where c is a constant to be speci�ed later. Note that k = O(n2), and since

p = 
(n logn) by Theorem 3.5, we also have k = 
(n1=2 log1=2 n). Thus, there
is a set of n points and k lines such that for any partition graph, the total time
required to preprocess the n points and correctly answer the k line queries is at least
�n

2=3
k
2=3 = �c

2=3
p for some positive constant � [31]. If we choose c = (2=�)3=2,

the total query time is at least p. Thus, at least one query requires time at least
p=k = 
(n=p1=2).

This lower bound almost matches the best known upper bound pt2 = O(n2 log" n),
due to Matou�sek [42].

The following higher-dimensional bound follows from Corollary 6.2 using precisely
the same argument.

Theorem 7.2. Any polyhedral partition graph that supports d-dimensional hyper-

plane emptiness queries in time t after preprocessing time p satis�es the inequalities

pt
(d+2)(d�1)=2 = 
(nd) and pt

2=(d�1) = 
(n(d+2)=d) in the worst case. When d � 3,
these bounds apply to arbitrary partition graphs.

Although in general these bounds are far from optimal, there are two interesting
special cases that match known upper bounds [17, 38, 42] up to polylogarithmic
factors.
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Corollary 7.3. Any polyhedral partition graph that supports hyperplane empti-

ness queries after O(n polylogn) preprocessing time requires query time 
(n(d�1)=d=
polylogn) in the worst case. When d � 3, this bound applies to arbitrary partition

graphs.

Corollary 7.4. Any polyhedral partition graph that supports hyperplane empti-

ness queries in O(polylogn) time requires preprocessing time 
(nd= polylogn) in the

worst case. When d � 3, this bound applies to arbitrary partition graphs.

In any realistic model of computation, the size of a data structure is a lower
bound on its preprocessing time. However, partition graphs can have large subgraphs
of that are never visited during the preprocessing phase or that cannot be visited
by any query. In principle, since we do not charge for the actual construction of a
partition graph, its size can be arbitrarily larger than its preprocessing time.

We say that a partition graph is trim if every edge that does not point to a leaf is
traversed both while preprocessing some point and while answering some query. Given
any partition graph, we can easily make it trim (trim it?) without increasing any of
its resource bounds. Since s � � � p for any trim partition graph, any asymptotic
lower bound on the preprocessing time for a trim partition graph is also a lower bound
on its size.

Corollary 7.5. Any trim partition graph of size s that supports line emptiness

queries in time t satis�es the inequality st
2 = 
(n2) in the worst case.

This lower bound is optimal, up to constant factors. Chazelle [17] and Matou�sek
[42] describe a family of line query data structures satisfying the matching upper
bound st

2 = O(n2) .

Corollary 7.6. Any trim polyhedral partition graph of size s that supports d-

dimensional hyperplane emptiness queries in time t satis�es the inequality

st
(d+2)(d�1)=2 = 
(nd) in the worst case. In particular, if t = O(polylogn), then

s = 
(nd= polylogn). When d � 3, these bounds apply to arbitrary trim partition

graphs.

Corollary 7.7. Any trim polyhedral partition graph of size s that supports d-

dimensional hyperplane emptiness queries in time t satis�es the inequality st
2=(d�1) =


(n(d+2)=d) in the worst case. In particular, if s = O(n polylogn), then

t = 
(n(d�1)=d= polylogn). When d � 3, these bounds apply to arbitrary trim parti-

tion graphs.

Corollary 7.6 is an improvement over Theorem 4.5 for all s = 
(nd�1) or t =

O(n2(d�1)=d
3

); and Corollary 7.7 is an improvement whenever s = O(n1+2=(d
2+d)) or

t = 
(n1�2=d). (These bounds are conservative; the actual breakpoints are much
messier.) The lower bounds for near-linear space and polylogarithmic query time are
optimal up to polylogarithmic factors.

All of these lower bounds apply to hyperplane and halfspace counting and report-
ing queries as well, by Lemma 3.4. In fact, the results in [31] imply that for counting
and reporting queries, the preprocessing-query tradeo�s apply to arbitrary partition
graphs, and the space-time tradeo�s to arbitrary trim partition graphs, in all dimen-
sions. Corollary 7.6 is always an improvement (although a small one) over the lower
bound in Corollary 4.3.

8. Halfspace Emptiness Queries. The space and time bounds for the best
hyperplane (or simplex) emptiness query data structures are only a polylogarithmic
factor smaller than the bounds for hyperplane (or simplex) counting queries. The
situation is entirely di�erent for halfspace queries. The best halfspace counting data
structure known requires roughly 
(nd) space to achieve logarithmic query time [17,
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Table 2

Best known upper bounds for halfspace emptiness queries.

Space Preprocessing Query Time Source

d � 3 O(n) O(n logn) O(logn) [21, 3, 26]

O(nbd=2c= logbd=2c n) O(nbd=2c= logbd=2c�" n) O(logn) [44]

O(n) O(n1+") O(n1�1=bd=2c2O(log� n)) [39]
d � 4

O(n) O(n logn) O(n1�1=bd=2c polylogn) [44]

n � s � n
bd=2c

O(s polylogn) O((npolylog n)=s1=bd=2c) [44]

42]; whereas, the same query time can be achieved with o(nbd=2c) space if we only
want to know whether the halfspace is empty [44].

Table 2 lists the resource bounds for the best known online halfspace emptiness
data structures. The fastest o�ine algorithm, given n points and k halfspaces, requires

O

�
n log k + (nk)bd=2c=(bd=2c+1) polylog(n+ k) + k logn

�
time to decide if any point lies in any halfspace [44]. In contrast, the only lower
bounds previously known for halfspace emptiness queries are trivial. Linear space
and logarithmic query time are required to answer online queries. A simple reduction
from the set intersection problem shows that 
(n log k + k logn) time is required
for the o�ine problem in the algebraic decision tree and algebraic computation tree
models [8, 50].

In this section, we derive the �rst nontrivial lower bounds on the complexity of
halfspace emptiness queries. To prove our results, we use a simple reduction argument
to transform hyperplane queries into halfspace queries in a higher-dimensional space
[31, 29]. A similar transformation is described by Dwyer and Eddy [27].

De�ne the function �d : R
d+1 ! R

(d+22 ) as follows:

�d(x0; x1; : : : ; xd) =
�
x
2
0; x

2
1; : : : ; x

2
d;

p
2x0x1;

p
2x0x2; : : : ;

p
2xd�1xd

�
:

This map has the property that h�d(p); �d(h)i = hp; hi2 for any vectors p; h 2 R
d+1 ,

where h�; �i denotes the usual inner product. In a more geometric setting, �d maps
points and hyperplanes in R

d , represented as homogeneous coordinate vectors, to
points and hyperplane in R d(d+3)=2 , also represented in homogeneous coordinates. For
any point p and hyperplane h in R

d , the point �d(p) is contained in the hyperplane
�d(h) if and only if p is contained in h; otherwise, �d(p) is strictly above �d(h). Thus,
a hyperplane h intersects a point set P if and only if the closed lower halfspace �d(h)

�

intersects the lifted point set �d(P ). In other words, any (lower) halfspace emptiness
data structure for �d(P ) is also a hyperplane emptiness data structure for P .

Unfortunately, this is not quite enough to give us our lower bounds, since the
reduction does not preserve the model of computation. Speci�cally, the query regions
in a partition graph used to answer d-dimensional queries must be subsets of R d . To
complete the reduction, we need to show that the d(d + 3)=2-dimensional partition
graph can be \pulled back" to a d-dimensional partition graph.

In order for such a transformation to be possible, we need to restrict the query
regions allowed in our partition graphs. A Tarski cell is a semialgebraic set de�ned by
a constant number of polynomial equalities and inequalities, each of constant degree.
Every Tarski cell has a constant number of connected components, and the intersection
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Fig. 5. Each Tarski cell induces a constant number of lower-dimensional query regions.

of any two Tarski cells is another Tarski cell (with larger constants). A semialgebraic

partition graph is a partition graph whose query regions are all Tarski cells.

Theorem 8.1. Let P be a set of points in R
d
, and let P̂ = �d(P ). Given a

semialgebraic partition graph Ĝ that supports d(d+3)=2-dimensional halfspace empti-

ness queries over P̂ , we can construct a semialgebraic partition graph G that supports

d-dimensional hyperplane emptiness queries over P , with the same asymptotic space,

preprocessing time, and query time bounds.

Proof. We actually prove a stronger theorem, by assuming only that Ĝ supports
emptiness queries for hyperplanes of the form �d(h). Since no point in P̂ is ever
below such a hyperplane, any partition graph that supports lower halfspace emptiness
queries also supports our restricted class of hyperplane emptiness queries. As we noted
earlier, these queries are equivalent to hyperplane emptiness queries over the original
point set P .

Given Ĝ, we construct G as follows. G has the same set of nodes as Ĝ, but with
di�erent query regions. Since each query region R̂ in the original partition graph Ĝ

is a Tarski cell, it intersects the algebraic surface �d(R
d) in a constant number of

connected components R̂1; R̂2; : : : ; R̂Æ, where the constant Æ depends on the number
and degree of the inequalities that de�ne R̂. The query regions in G are the preimages
Ri = �

�1
d (R̂i) of these components. See Figure 5.

The edge associated with each d-dimensional query region Ri has the same end-
points as the edge associated with the original query region R̂. Thus, there may be
several edges in G with the same source and target. (Recall that partition graphs are
directed acyclic multigraphs.) If a query region R̂ does not intersect �d(R

d), then the
corresponding edge in Ĝ is not represented in G at all, so G may not be a connected
graph. Nodes in G that are not connected to the root can be safely discarded. The
size, preprocessing time, and query time for G are clearly at most a constant factor
more than the corresponding resources for Ĝ.

The leaf subsets P` in G cannot be larger than the corresponding subsets P̂` in Ĝ.
(They might be smaller, but that only helps us.) Similarly, a hyperplane query cannot
reach more leaves in G than the corresponding query reaches in Ĝ. It follows that G
supports hyperplane emptiness queries: For any hyperplane h, if Ĝ reports that �d(h)
is empty, G (correctly) reports that h is empty.

We emphasize that some restriction on the query regions is necessary to prove any
nontrivial lower bounds for halfspace emptiness queries. There is a partition graph of
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constant size, requiring only linear preprocessing, that supports halfspace emptiness
queries in constant time. The graph consists of a single primal node with two query
regions|the convex hull of the points and its complement|and two leaves. On the
other hand, our restriction to Tarski cells is stronger than necessary. It suÆces that
every query region intersects (some projective transformation of) the surface �d(R

d)
in a constant number of connected components.

The following corollaries are now immediate consequences of our earlier results.

Corollary 8.2. For any d � 2, any semialgebraic partition graph that sup-

ports d-dimensional halfspace emptiness queries has size 
(n), preprocessing time


(n logn), and worst-case query time 
(logn).

Corollary 8.3. Any semialgebraic partition graph of size s that supports

d(d + 3)=2-dimensional halfspace emptiness queries in time t satis�es the inequality

st
d = 
((n= logn)d�(d�1)=(d+1)) in the worst case.

Corollary 8.4. The worst-case running time of any semialgebraic partitioning

algorithm which, given n points and k halfspaces in R
d
, decides if any halfspace con-

tains a point, is 
(n log k + k logn) for all 2 � d � 4, 
(n log k + n
2=3

k
2=3 + k logn)

for all 5 � d � 8, and 
(n log k + n
5=6

k
1=2 + n

1=2
k
5=6 + k logn) for all d � 9.

Corollary 8.5. Any semialgebraic partition graph that supports 5-dimensional

halfspace emptiness queries in time t after preprocessing time p satis�es the inequality

pt
2 = 
(n2) in the worst case. Any trim semialgebraic partition graph of size s that

supports 5-dimensional halfspace emptiness queries in time t satis�es the inequality

st
2 = 
(n2) in the worst case.

Corollary 8.6. Any semialgebraic partition graph that supports 9-dimensional

halfspace emptiness queries in time t after preprocessing time p satis�es the inequali-

ties pt
5 = 
(n3) and pt = 
(n5=3) in the worst case. Any trim semialgebraic partition

graph of size s that supports 9-dimensional halfspace emptiness queries in time t sat-

is�es the inequalities st
5 = 
(n3) and st = 
(n5=3) in the worst case.

Corollaries 8.2 and 8.4 are optimal when d � 3; Corollary 8.4 is also optimal up to
polylogarithmic factors when d = 5; and Corollary 8.5 is optimal up to polylogarithmic
factors.

Theorem 8.1 does not imply better o�ine lower bounds or preprocessing/query
tradeo�s for halfspace emptiness queries in dimensions higher than 9, since the cor-
responding hyperplane results require polyhedral query regions. Marginally better
lower bounds can be obtained directly in dimensions 14 and higher(!) in the polyhe-

dral partition graph model by generalizing the arguments in Sections 5 and 6 (as in
[30]). However, since these lower bounds are far from optimal, we omit further details.

9. Conclusions. We have presented the �rst nontrivial lower bounds on the
complexity of hyperplane and halfspace emptiness queries. Our lower bounds apply
to a broad class of range query data structures based on recursive decomposition of
primal and/or dual space.

The lower bounds we developed for counting and reporting queries actually apply
to any type of query where the points in the query range are required as the union
of several subsets. For example, simplex range searching data structures are typically
constructed by composing several levels of halfspace \counting" data structures [42].
To answer a query for the intersection of k halfspaces, the points in the �rst halfspace
are (implicitly) extracted as the disjoint union of several subsets, and a (k � 1)-
halfspace query is recursively performed on each subset.

With a few notable exceptions, our lower bounds are far from the best known
upper bounds, and a natural open problem is to close the gap. In particular, we
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have only \trivial" lower bounds for four-dimensional halfspace emptiness queries.
We conjecture that the correct space-time tradeo�s are std = �(nd) for hyperplanes
and st

bd=2c = �(nbd=2c) for halfspaces. Since these bounds are achieved by current
algorithms|exactly for hyperplanes [42], within polylogarithmic factors for halfspaces
[44]|the only way to prove our conjecture is to improve the lower bounds.

Our space-time tradeo�s derive from lower bounds for halfspace queries in the
semigroup arithmetic model [10], and our preprocessing-query tradeo�s follow from
lower bounds on the combinatorial complexity of polyhedral covers. Any improve-
ments to these lower bounds would improve our results as well. Both of these results
ultimately reduce to bounds on the minimum size of a decomposition of the (weighted)
incidence graph of a set of points and a set of halfspaces into complete bipartite sub-
graphs.

The best known data structures for d-dimensional hyperplane emptiness queries
and 2d- or (2d + 1)-dimensional halfspace emptiness queries have the same resource
bounds. We conjecture that this is also true of optimal data structures for these
problems. Is there a reduction from hyperplane queries to halfspace queries that only
increases the dimension by a constant factor (preferably two)?

Finally, can our techniques be applied to other closely related problems, such as
nearest neighbor queries [2], linear programming queries [40, 11] and ray shooting
queries [2, 20, 41, 44]?

Acknowledgments. I thank Pankaj Agarwal for suggesting studying the com-
plexity of online emptiness problems.
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