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ABSTRACT
Let G be a directed graph embedded on a surface of genus g. We
describe an algorithm to compute the shortest non-separating
cycle in G in O(g2n log n) time, exactly matching the fastest
algorithm known for undirected graphs. We also describe an
algorithm to compute the shortest non-contractible cycle in G in
gO(g)n log n time, matching the fastest algorithm for undirected
graphs of constant genus.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Computations on discrete structures; G.2.2 [Discrete
Mathematics]: Graph Theory—Graph algorithms, Path and circuit
problems

General Terms: Algorithms, Performance, Theory

Keywords: topological graph theory, computational topology

1. INTRODUCTION
A key step in several algorithms for surface-embedded graphs
is cutting a surface along a topologically interesting cycle to re-
duce its topological complexity. Examples include algorithms
for probabilistically embedding high-genus graphs into planar
graphs [3, 30], drawing abstract graphs in the plane with few
crossings [37], testing isomorphism between graphs of fixed
genus [36], approximating optimal traveling salesman tours [18]
and Steiner trees [1], and removing topological noise from sur-
face models [27, 47]. In all these applications, cutting along
the shortest possible cycle is preferred or even required. These
and other applications have motivated a long series of results on
finding shortest non-trivial cycles in surface-embedded graphs.

Itai and Shiloach [31] observed that the minimum (s, t)-cut
in an undirected planar graph G∗ is dual to the shortest cycle
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in the dual graph that separates the dual faces s∗ and t∗. Thus,
computing minimum cuts in planar graphs is equivalent to finding
the shortest non-trivial cycle in a graph embedded on an annulus.
Itai and Shiloach described a simple algorithm to find this cycle
in O(n2 log n) time. Their algorithm has been improved several
times [42, 25], most recently by Italiano et al. [32, 33, 46], who
describe an algorithm that runs in O(n log log n) time.

Thomassen [44] developed the first efficient algorithm for
graphs on arbitrary surfaces, which runs in O(n3) time and ex-
ploits his so-called 3-path condition; see also Mohar and Thomassen
[40, Sect. 4.3]. Erickson and Har-Peled described a faster algo-
rithm that runs in O(n2 log n) time [21]. This is the best algo-
rithm known for arbitrary surface-embedded graphs, but faster
algorithms are known when the genus g of the underlying surface
is small [4, 6, 12, 39], the fastest of which runs in O(g2n log n)
time, where g is the genus of the underlying surface [7]. All of
these faster algorithms exploit the observation by Cabello and
Mohar [12] that the shortest non-trivial cycle crosses any shortest
path at most once. For related results and extensions, see [5, 9,
10, 11, 13, 15, 24].

Both Thomassen’s 3-path condition [44] and Cabello and Mo-
har’s crossing condition [12] are consequences of the following
easy observation: For any four vertices s, t, u, v in an undirected
surface graph, there is a shortest path from s to t and a shortest
path from u to v that cross at most once. In directed surface
graphs, however, shortest paths may cross an arbitrary number
of times, as long as the two paths visit the crossings in opposite
orders. As a result, the history of algorithms for finding shortest
non-trivial cycles in directed graphs is much shorter.

Figure 1. Undirected shortest paths cross at most once, but directed
shortest paths may cross arbitrarily many times.

The shortest non-trivial directed cycle in an annular graph
is dual to either the minimum (s, t)-cut or the minimum (t, s)-
cut in the directed planar dual graph, whichever has smaller
capacity, where s and t are the dual vertices corresponding to
the boundaries of the annulus. Janiga and Koubek [34] describe
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an adaptation of Reif’s algorithm that can find this cycle1 in
O(n log2 n/ log log n) time; the running time of their algorithm
can be improved to O(n log n) using more recent algorithms for
shortest paths [29, 38]. The same running time can also be
achieved by recent planar maximum flow algorithms [2, 20, 45].

The first results for directed graphs on surfaces of higher genus
were only recently obtained by Cabello, Colin de Verdière, and
Lazarus [8], who describe two algorithms. Their first algorithm,
which runs in O(n2 log n) time, relies on a subtle generalization
of both Thomassen’s 3-path condition to directed graphs. Their
second algorithm, which runs in O(g1/2n3/2 log n) time, uses a
divide-and-conquer strategy based on balanced separators. Even
more recently, Erickson and Nayyeri describe an algorithm to com-
pute the shortest non-separating cycle in 2O(g)n log n time [22].
However, their approach does not imply a faster algorithm for
computing shortest non-contractible cycles.

This paper describes faster algorithms for computing shortest
non-separating and non-contractible cycles in directed surface
graphs. Specifically, in Section 3, we describe an algorithm to
compute the shortest non-separating cycle in G in O(g2n log n)
time, exactly matching the fastest algorithm known for undi-
rected graphs. Like Cabello and Mohar [12], we reduce the
problem to finding the shortest cycle γ that crosses a given non-
separating cycle λ composed of two shortest paths an odd num-
ber of times. Following Janiga and Koubek [34], we solve this
subproblem by reducing it to a shortest-path problem in a certain
double cover of the surface.

In Section 4, we describe an algorithm to compute the shortest
non-contractible cycle in G in gO(g)n log n time, matching the
fastest algorithm for undirected graphs of constant genus. Our
algorithm follows the same high-level strategy as Kutz’s algorithm
for undirected graphs [39]. Specifically, our algorithm searches a
finite portion of the universal cover of the surface, by cutting the
surface into a disk along shortest paths and then pasting together
several copies of this disk along corresponding paths. Our key
observation is that although the shortest non-contractible cycle γ
may intersect each of these shortest paths arbitrarily many times,
at most one intersection with any shortest path is topologically
non-trivial.

2. BACKGROUND
We begin by recalling several standard definitions and results
related to surface-embedded graphs. For further background,
we refer the reader to Gross and Tucker [26] or Mohar and
Thomassen [40] for topological graph theory, and to Hatcher [28]
or Stillwell [43] for algebraic topology.

2.1 Surfaces and Curves
A surface (more formally, a 2-manifold) Σ is a compact Haus-
dorff space in which every point has an open neighborhood
homeomorphic to either the plane R2 or a closed halfplane
{(x , y) ∈ R2 | x ≥ 0}. The points with halfplane neighborhoods
make up the boundary of Σ; the complement of the boundary is
the interior of Σ. Every component of the boundary is homeomor-
phic to a circle. A surface is non-orientable if it contains a subset
homeomorphic to the Möbius band, and orientable otherwise.

1Janiga and Koubek actually claim an algorithm to compute the minimum
(s, t)-cut, but their algorithm has a subtle error [35], which may lead
to an incorrect result when the minimum (t, s)-cut is smaller than the
minimum (s, t)-cut.

A path in a surface Σ is a continuous function p : [0,1]→ Σ.
A loop is a path whose endpoints p(0) and p(1) coincide; we
refer to this common endpoint as the basepoint of the loop. An
arc is a path whose endpoints lie on the boundary of Σ. A cycle is
a continuous function γ: S1→ Σ, where S1 = R/Z is the circle;
the only difference between a cycle and a loop is that a loop has
a distinguished basepoint. We say that a loop ` and a cycle γ are
equivalent if, for some real number δ, we have `(t) = γ(t + δ)
for all t ∈ [0,1]. We collectively refer to paths, loops, arcs, and
cycles as curves. A curve is simple if it is injective, except for
the basepoint in the case of loops; we usually do not distinguish
between simple curves and their images in Σ.

The reversal rev(p) of a path p is defined by setting rev(p)(t) =
p(1 − t). The concatenation p · q of two paths p and q with
p(1) = q(0) is the path created by setting (p · q)(t) = p(2t) for
all t ≤ 1/2 and (p · q)(t) = q(2t − 1) for all t ≥ 1/2. Finally, let
p[x , y] denote the subpath of a path p from point x to point y .

The genus of a surface Σ is the maximum number of disjoint
simple cycles in Σ whose complement is connected. We will
consider only compact, connected, orientable surfaces. Unless
explicitly stated otherwise, all surfaces in this paper are compact,
connected, orientable, and without boundary. Up to homeomor-
phism, there is exactly one such surface with any genus g ≥ 0.
(We briefly consider surfaces with boundary in Section 4.3.)

2.2 Graphs and Embeddings
An embedding of an undirected graph G on a surface Σ maps
vertices to distinct points and edges to simple, interior-disjoint
paths. The faces of the embedding are maximal connected subsets
of Σ that are disjoint from the image of the graph. An embedding
is cellular if each of its faces is homeomorphic to the plane;
in particular, in any cellular embedding, each component of
the boundary of Σ must be covered by a cycle of edges in G.
Euler’s formula implies that any cellularly embedded graph with
n vertices, m edges, and f faces lies on a surface with Euler
characteristic χ = n−m+ f , which implies that m = O(n+ g)
and f = O(n + g). We consider only cellular embeddings of
genus g = O(n), so that the overall complexity of the embedding
is O(n).

Any undirected graph G embedded on a surface Σ has a dual
graph G∗, which has a vertex f ∗ for each face f of G, and an
edge e∗ for each edge e in G joining the vertices dual to the faces
of G that e separates. The dual graph G∗ has a natural cellular
embedding in Σ, whose faces corresponds to the vertices of G.
For any subgraph F = (U , D) of G = (V, E), we write G \ F to
denote the edge-complement (V, E \ D). We also abuse notation
by writing F ∗ to denote the subgraph of G∗ corresponding to any
subgraph F of G.

A tree-cotree decomposition (T, L, C) of an undirected surface-
embedded graph G is a partition of its edges into three disjoint
subsets: a spanning tree T of G, a spanning cotree C (the dual
of a spanning tree C∗ of G∗), and leftover edges L = G \ (T ∪ C).
Euler’s formula implies that in any tree-cotree decomposition,
the set L contains exactly 2g edges [19].

For the problems we consider, the input is actually a directed
edge-weighted graph G with a cellular embedding on some sur-
face. We use the notation u�v to denote the directed edge from
vertex u to vertex v. Without loss of generality, we consider only
symmetric directed graphs, in which the reversal v�u of any edge
u�v is another edge, possibly with infinite weight. We also as-
sume that in the cellular embedding, the images of any edge in G
and its reversal coincide (but with opposite orientations). Thus,



like Cabello et al.[8, Section 2.3], we implicitly model directed
graphs as undirected graphs with asymmetric edge weights. Duality
can be extended to directed graphs [14], but the results in this
paper do not require this extension.

To simplify our presentation and analysis, we assume that
any two vertices x and y in G are connected by a unique short-
est directed path, denoted σ(x , y). The Isolation Lemma [41]
implies that this assumption can be enforced (with high proba-
bility) by perturbing the edge weights with random infinitesimal
values [21].

Our algorithms rely the following seminal result of Klein [38]
for planar graphs, and its generalization to higher-genus graphs
by Cabello et al. [6, 7].

Lemma 2.1 (Klein [38]). Let G be a directed plane graph with
non-negative edge weights and let f be an arbitrary face of G.
We can preprocess G in O(n log n) time and O(n) space, so that
the length of the shortest path from any vertex incident to f to
any other vertex can be retrieved in O(log n) time.

Lemma 2.2 (Cabello et al. [6, 7]). Let G be a directed graph
with non-negative edge weights, cellularly embedded on a sur-
face Σ of genus g, and let f be an arbitrary face of G. We can
preprocess G in O(gn log n) time 2 and O(n) space, so that the
length of the shortest path from any vertex incident to f to any
other vertex can be retrieved in O(log n) time.

2.3 Homotopy and Homology
Two paths p and q in a surface Σ are homotopic if one can be
continuously deformed into the other without changing their end-
points. More formally, a homotopy between p and q is a continu-
ous map h: [0, 1]× [0,1]→ Σ such that h(0, ·) = p, h(1, ·) = q,
h(·, 0) = p(0) = q(0), and h(·, 1) = p(1) = q(1). Homotopy
defines an equivalence relation over the set of paths with any
fixed pair of endpoints. The set of homotopy classes of loops in Σ
with basepoint x0 defines a group πi(Σ, x0) under concatenation,
called the fundamental group of Σ. (For all basepoints x0 and x1,
the groups πi(Σ, x0) and πi(Σ, x1) are isomorphic.) A cycle is
contractible if it is homotopic to a constant map.

Homology is a coarser equivalence relation than homotopy,
with nicer algebraic properties; intuitively, two cycles are homol-
ogous if together they define the boundary of some subset of the
surface. Like several earlier papers [12, 15, 22], we consider
only one-dimensional cellular homology with coefficients in the
finite field Z2; this restriction allows us to radically simplify our
definitions.

Fix a cellular embedding of an undirected graph G on a sur-
face Σ with genus g boundaries. An even subgraph is a sub-
graph of G in which every node has even degree, or equivalently,
the union of edge-disjoint cycles. An even subgraph is null-
homologous if it is the boundary of the union of a subset of faces
of G. Two even subgraphs η and η′ are homologous, or in the
same homology class, if their symmetric difference η⊕η′ is null-
homologous. The set of all homology classes of even subgraphs
defines the first homology group of Σ, which is isomorphic to
the finite vector space (Z2)2g . A simple cycle γ is separating
if and only if it is null-homologous, or equivalently, if Σ \ γ is
disconnected.
2The published version of this algorithm [6] has a weaker time bound
of O(g2n log n). Using this version increases the running time of our
algorithm for computing the shortest non-separating cycle by a factor
of g.

2.4 Covering Spaces
A continuous map π: Σ′→ Σ between two surfaces is called a
covering map if each point x ∈ Σ lies in an open neighborhood U
such that (1) π−1(U) is a countable union of disjoint open sets
U1 ∪ U2 ∪ · · · and (2) for each i, the restriction π|Ui

: Ui → U is a
homeomorphism. If there is a covering map π from Σ′ to Σ, we
call Σ′ a covering space of Σ. The universal cover eΣ is the unique
simply-connected covering space of Σ (up to homeomorphism).
The universal cover is so named because it covers every path-
connected covering space of Σ.

For any path p : [0,1]→ Σ such that π(x ′) = p(0) for some
point x ′ ∈ Σ′, there is a unique path p′ in Σ′, called a lift of p,
such that p′(0) = x ′ and π ◦ p′ = p. We also say that p lifts
to p′. Conversely, for any path p′ in Σ′, the path π ◦ p′ is called a
projection of p′.

We define a lift of a cycle γ: S1 → Σ to be the infinite path
γ′ : R → Σ′ such that π(γ′(t)) = γ(t mod 1) for all real t. We
call the path obtained by restricting γ′ to any unit interval a
single-period lift of γ; equivalently, a single-period lift of γ is a lift
of any loop equivalent to γ. We informally say that a cycle is the
projection of any of its single-period lifts.

3. NON-SEPARATING CYCLES
Let G be a symmetric directed graph with non-negative edge
weights, cellularly embedded on an orientable surface Σ of
genus g. In this section, we develop our algorithm to compute
the shortest non-separating directed cycle in G. Without loss
of generality, we assume that Σ has no boundary, since pasting
a disk onto a boundary cycle of Σ does not change the set of
non-separating cycles.

3.1 The Cyclic Double Cover
Let λ be an arbitrary simple non-separating cycle in Σ. For any
other directed cycle γ, we define the crossing parity ελ(γ) to
be 1 if γ crosses λ an odd number of times, and 0 otherwise.
Equivalently, if λ and γ are both cycles in the graph G, we have

ελ(γ) =
⊕

u�v∈γ

ελ(u�v),

where for any directed edge u�v, we define ελ(u�v) to be 1 if
u�v either enters λ from the left or leaves λ to the left, but not
both, and 0 otherwise. Here ⊕ denotes addition modulo 2.

We define a covering space Σ2
λ
, called a cyclic double cover, as

follows. Cutting the surface Σ along λ gives us a new surface Σ′

with exactly two boundary cycles λ+ and λ−. Let (Σ′, 0) and
(Σ′, 1) denote two distinct copies of Σ′. For any point p ∈ Σ′, let
(p, 0) and (p, 1) denote the corresponding points in (Σ′, 0) and
(Σ′, 1), respectively. In particular, let (λ+, 0) and (λ−, 0) denote
the copies of λ+ and λ− in (Σ, 0). Finally, let Σ2

λ be the surface
obtained by identifying (λ+, 0) and (λ−, 1) to a single cycle,
denoted (λ, 0), and identifying (λ+, 1) and (λ−, 0) to a single
cycle, denoted (λ, 1). Any graph G that is cellularly embedded
in Σ lifts to a graph G2

λ, with twice as many vertices and edges,
that is cellularly embedded in Σ2

λ
. See Figure 2.

For combinatorial surfaces, we can equivalently define the
double cyclic cover using the following standard voltage construc-
tion [26, Chapter 4]. Let G2

λ
be the graph whose vertices are the

pairs (v, b), where v is a vertex of G and b is a bit, and whose
edges are the ordered pairs

(u�v, b) := (u, b)�(v, b⊕ ελ(u�v))



Figure 2. Left: A non-separating cycle λ on a surface Σ of genus 2. Middle: the cut surface Σ′. Right: the cyclic double cover Σ2
λ
.

for all edges u�v of G and both bits b. Let π: G2
λ
→ G denote

the obvious covering map π(v, b) = v. We declare that a cycle
in G2

λ
bounds a face of G2

λ
if and only if its projection to G bounds

a face of G. The resulting embedding of G2
λ defines the cyclic

double cover Σ2
λ.

The following lemmas are now immediate.

Lemma 3.1. Let λ be any simple non-separating cycle in Σ; let γ
be any cycle in Σ; and let s be any vertex of γ. Then γ is the
projection of a unique path in Σ2

λ from (s, 0) to (s,ελ(γ)).

Lemma 3.2. Let λ be any simple non-separating cycle in Σ. Ev-
ery lift of a shortest directed path in G is a shortest directed path
in G2

λ
.

Lemma 3.3. Let λ be any simple non-separating cycle in Σ; let γ
be the shortest cycle in Σ that crosses λ an odd number of times;
and let s be any vertex of γ. Then γ is the projection of a shortest
path in Σ2

λ
from (s, 0) to (s, 1).

For any simple non-separating cycles λ and λ′, the cyclic dou-
ble covers Σ2

λ
and Σ2

λ′
are homeomorphic surfaces; however, the

graphs G2
λ

and G2
λ′

are not necessarily isomorphic.

3.2 Algorithm
Our algorithm begins by constructing a greedy tree-cotree de-
composition (T, L, C) of G, where T is a shortest-path tree rooted
at some arbitrary vertex of G. Euler’s formula implies that L
contains exactly 2g edges; label these edges arbitrarily as u1v1,
u2v2, . . . , u2g v2g . For each index i, let λi denote the unique cycle
in the undirected graph T ∪ ui vi , oriented so that it contains the
directed edge ui�vi . The set of cycles Λ = {λ1,λ2, . . . ,λ2g} is a
basis for the first homology group of Σ [19], which implies that
every non-separating cycle in Σ crosses at least one cycle in λ
an odd number of times [12, Lemma 3]. The greedy tree-cotree
decomposition (T, L, C) can be constructed in O(n log n) time via
Dijkstra’s algorithm, after the greedy homology basis Λ can be
computed easily in O(gn) time.

Lemma 3.4. Let λ be any cycle in the greedy homology basis Λ.
The shortest cycle γ that crosses λ an odd number of times can
be computed in O(gn log n) time.

Proof: We can construct the covering space Σ2
λ

in O(n) time,
either by pasting together two copies of the cut surface Σ′, or by
constructing the voltage-induced graph G2

λ
.

Lemmas 3.3 implies that the target cycle γ is the projection of a
shortest path from (s, 0) to (s, 1), for some vertex s of λ. Thus, we
could compute γ by computing a shortest-path tree in Σ′ at every
vertex of (λ, 0); however, this approach would require O(n2 log n)
time in the worst case. We improve the running time using the
multiple-source shortest path algorithm of Cabello et al. [6, 7],
described in Lemma 2.2.

The cycle λ is obtained by adding an edge uv to a shortest
path tree T . Thus, we can write λ = σ · (u�v) · rev(τ), where
σ = σ(t, u) and τ = σ(t, v) and t is the lowest common ancestor
of u and v in T .

Suppose the target cycle γ contains a vertex of σ. Write
σ = s1�s2� · · ·�sk, where s1 = t and sk = u, and let si be
the minimum-index vertex of σ that also lies on γ. Then γ is the
projection of the shortest path in Σ2

λ
from (si , 0) to (s1, 1); call

this shortest path γ̂. If γ̂ passes through any other vertex (s j , 0),
then γ̂ contains the entire shortest path from (si , 0) to (s j , 0),
which is a subpath of (σ, 0). Thus, γ̂ begins with a subpath of
(σ, 0) and is otherwise completely disjoint from (σ, 0).

Now consider the surface Σ2
λ Q(σ, 0) obtained by cutting the

cyclic double cover along the path (σ, 0). Let (σ, 0)+ and (σ, 0)−

denote the two copies of (σ, 0) on this surface; these two paths
share endpoints s1 = t and sk = u but are otherwise disjoint. The
previous paragraph implies that if γ and σ intersect, then the
lifted path γ̂ is the shortest path in Σ2

λ Q(σ, 0) between some
vertex (si , 0)± and some vertex (si , 1). Lemma 2.2 implies that
we can compute all such shortest paths in O(gn log n) time.

A similar search of Σ2
λ Q(τ, 0) finds γ if it intersects τ but does

not intersect σ.

Running the previous algorithm once for each cycle λ ∈ Λ
gives us our main result.

Theorem 3.5. The shortest non-separating cycle in a directed
graph embedded on an orientable surface of genus g can be
computed in O(g2n log n) time.

4. NON-CONTRACTIBLE CYCLES
Our algorithm for computing shortest non-contractible cycles in
directed surface graphs directly generalizes of the earlier algo-
rithms of Cabello and Mohar [12] and Kutz [39] for undirected
surface graphs. Like these earlier algorithms, our algorithm con-
structs and searches a finite portion of the universal cover of
the surface. Cabello and Mohar’s observation that the shortest
non-contractible cycle crosses any shortest path at most once
no longer holds in the directed setting; we use a more subtle
crossing condition to limit the size of the universal cover we must
search.

As in the previous section, let G be a directed graph with non-
negative edge weights, cellularly embedded on an orientable
surface Σ of genus g and no boundary. We describe an straight-
forward extension of our algorithm to surfaces with boundary at
the end of this section.

4.1 Signed Crossing Sequences
Fix an arbitrary basepoint x0 in Σ. A system of loops based
at x0 is a set Λ = {λ1,λ2, . . . ,λ2g}, where each element λi is a
loop with basepoint x0, such that Σ QΛ is a topological disk.



Figure 3. Proof of Lemma 4.6. Left: A lift of an non-contractible loop γ that intersects more than two lifts of a shortest path in the universal cover.
Right: A lift of a non-contractible loop that is shorter than γ.

Euler’s formula implies that every system of loops has exactly 2g
elements. Any system of loops is also a basis for the fundamental
group π1(Σ, x0) [23]. We refer to the disk D = Σ QΛ as a
fundamental domain. Each loop λi appears as two directed paths
λ+i and λ−i on the boundary of D; in particular, the basepoint x
appears as 4g different vertices on the boundary of D.

Let Λ be an arbitrary system of loops, and let γ be a loop in Σ
with basepoint s.3 The signed crossing sequence XΛ(γ) records
the orientation of each crossing between γ and the loops in Λ,
in order along γ. We take the elements of the signed crossing
sequence to be the indices 1, 2, . . . , 2g and their negations; each
occurrence of an index i indicates γ crossing λi from left to right,
and each occurrence of −i indicates γ crossing λi from right to
left. For technical reasons, if the cycle equivalent to γ crosses
some loop in Λ at the basepoint s, we include this crossing at
the end of the crossing sequence. Thus, if two loops γ and γ′ are
equivalent to the same cycle, their crossing sequences differ only
by a cyclic shift.

We call two signed crossing sequences XΛ(γ) and XΛ(γ′) equiv-
alent if and only if they are generated by homotopic loops γ
and γ′. We say that a crossing sequence is trivial if it is equivalent
to the empty sequence ε and non-trivial otherwise. A loop is con-
tractible if and only if its signed crossing sequence is trivial. Thus,
equivalence classes of signed crossing sequences correspond bi-
jectively to elements of the fundamental group; in particular, the
equivalence class of trivial sequences corresponds to the identity
element.

Let x denote the signed reversal of a signed crossing sequence x ,
obtained by writing the symbols of x in reverse order and chang-
ing all their signs. Let x · y denote the concatenation of two
signed crossing sequences x and y. Finally, let [x] denote the
equivalence class of a signed crossing sequence x; in particular,
[ε] is the equivalence class of trivial sequences.

The universal cover eΣ is obtained by pasting together an in-
finite number of copies of the fundamental domain D along
corresponding boundary paths λ±i . Specifically, we have a copy
(D, [x]) of the fundamental domain for each equivalence class [x]
of signed crossing sequences. For each index i, let (λ+i , [x]) and
(λ−i , [x]) denote the copies of λ+i and λ−i in (D, [x]). The uni-
versal cover eΣ is defined by identifying the paths (λ+i , [x]) and
(λ−i , [x · i]), for every index i and equivalence class [x]. Any

3Formally, we must assume that γ does not intersect the basepoint of Λ.
However, this assumption can be guaranteed by a simple modification of
the graph G [39].

graph G cellularly embedded in Σ lifts to an infinite graph eG that
is cellularly embedded in eΣ.

The following lemmas follow immediately from our definitions.

Lemma 4.1. Let γ be any loop in Σ with basepoint s. Then γ is
the projection of a unique path in eΣ from (s, [ε]) to (s, [XΛ(γ)]).

Corollary 4.2. A loop in Σ is contractible if and only if it lifts to
a loop in eΣ.

Lemma 4.3. Every lift of a shortest directed path in G is a short-
est directed path in eG.

Lemma 4.4. Let x be any crossing sequence, let γ be the shortest
loop with basepoint s such that XΛ(γ) ∈ [x]. Then γ lifts to a
shortest path in eΣ from (s, [ε]) to (s, [x]).

Corollary 4.5. The shortest non-contractible cycle γ in Σ lifts to
the shortest path in eΣ from (s, [ε]) to (s, [x]), for some vertex s
of γ and some non-trivial crossing sequence x .

4.2 Algorithm
Following Cabello and Mohar [12] and Kutz [39], our algo-
rithm begins by constructing a greedy system of loops as follows.
Let (T, L, C) be a tree-cotree decomposition of G, where T is a
shortest-path tree rooted at an arbitrary vertex x0. Arbitrarily
label the edges in L as u1v1, u2v2, . . . , u2g v2g , and for each index i,
let λi denote the loop σ(x0, ui) · (ui�vi) · rev(σ(vi , x0)). Finally,
let Λ = {λ1,λ2, . . . ,λ2g}. It is straightforward to compute Λ in
O(n log n+ gn) time via Dijkstra’s algorithm.

If G is undirected, Thomassen’s 3-path condition implies that
the shortest non-separating cycle γ in G crosses any shortest path
at most once, which implies that γ crosses each cycle in Λ at most
twice [12, Lemma 4]. However, when G is directed, the shortest
non-separating cycle could cross any cycle in Λ arbitrarily many
times. Our main observation is all but a constant number of these
crossings are topologically trivial, in a sense made precise by the
following lemma. Again, recall that a single-period lift of a cycle γ
is any lift of a loop equivalent to γ.

Lemma 4.6. Let γ be the shortest non-contractible cycle in Σ,
and let σ be any shortest path in Σ. Any single-period lift of γ
to eΣ intersects at most two lifts of σ.



Proof: Assume σ and γ intersect, since otherwise the lemma
is trivial. Write σ = s1�s2� · · ·�sk, and let si be the minimum-
index vertex that also lies in γ. Consider γ to be a loop based
at si . Lemmas 4.1 and 4.4 imply that the shortest path γ̂ from
(si , [ε]) to (si , [XΛ(γ)]) is a lift of γ.

For the sake of argument, suppose γ̂ contains a vertex (s j , y)
such that [y] 6= [ε] and [y] 6= [XΛ(γ)]. Then we can create
a shorter non-contractible loop based at si , contradicting the
definition of γ, by replacing the subpath of γ from si to s j with
the shortest path σ(si , s j). Specifically, let ω denote the loop
σ(si , s j) · γ[s j , si]. Uniqueness of shortest paths in G implies
that σ(si , s j) is shorter than γ[si , s j], and therefore that ω is
shorter than γ. Uniqueness of shortest paths in G also implies
that σ(si , s j) is a subpath of σ. It follows by Lemma 4.1 that
[XΛ(ω)] = [y · XΛ(γ)] 6= [ε]. Thus, ω is non-contractible, and
we have a contradiction. See Figure 3.

If γ̂ passes through any other vertex (s j , [ε]), then γ̂ contains
the entire shortest path from (si , [ε]) to (s j , [ε]), which is a
subpath of (σ, [ε]). Thus, γ̂ begins with a subpath of (σ, [ε])
and is otherwise disjoint from (σ, [ε]).

It follows that γ can be decomposed into two paths α =
γ[s j , sk] and β = γ[sk, s j], where α is disjoint from σ except
at its endpoints s j and sk, every lift of α joins two different lifts
of σ, and every lift of β intersects exactly one lift of σ.

Finally, let u be any vertex of γ, and let (u, [x]) be any lift of u.
The single-period lift of γ that starts at (u, [x]) intersects exactly
two lifts of σ if u is a vertex of β , and intersects exactly one lift
of σ otherwise.

Corollary 4.7. Let Λ be a greedy system of loops in Σ, and let γ
be the shortest non-contractible cycle in Σ. Any single-period lift
of γ to eΣ intersects at most four lifts of any cycle in Λ.

Call a signed crossing sequence valid if it contains at most four
instances of any index i or its negation. Every valid crossing
sequence has length at most 8g; thus, there are trivially at most
4g8g = gO(g) valid crossing sequences.

Lemma 4.8. Let Λ be a greedy system of loops in Σ, and let λ
be any loop in Λ. The shortest non-contractible cycle in Σ that
intersects λ can be computed in gO(g)n log n time.

Proof: Let Σ′′ denote the finite portion of the universal cover eΣ
containing each fundamental domain (D, [x]) where x is a valid
signed crossing sequence, and let G′′ denote the corresponding
subgraph of eG. The surface Σ′′ is a topological disk; the graph G′′

is planar and has complexity n′′ = gO(g)n. We can construct Σ′′

and G′′ in O(n′′) = gO(g)n time, by enumerating all valid signed
crossing sequences and either pasting copies of the fundamental
domain D [12, 39] or using a voltage construction.

Recall that λ is defined by a leftover edge uv from the greedy
tree-cotree decomposition. Let σ = σ(x0, u) and τ = σ(v, x0), so
that λ= σ · (u�v) · rev(τ). Write σ = s1�s2� · · ·�sk, and let si
be the minimum-index vertex of σ that also lies on γ. Consider γ
to be a loop based at si , and let γ̂ be the lift of γ that starts at
(si , [ε]). As argued in the proof of Lemma 4.6, γ is the projection
of a shortest path γ̂ that begins with a subpath of (σ, [ε]) and is
otherwise disjoint from (σ, [ε]).

Now consider the annulus Σ′′ Q(σ, [ε]) obtained by cutting Σ′′

along (σ, 0). Let (σ, [ε])+ and (σ, [ε])− denote the two copies of
(σ, 0) on this annulus. The previous paragraph implies that γ̂ is
also the shortest path in Σ′′ Q(σ, [ε]) from (si , [ε])± to (si , [x]),

for some vertex si of σ. We can compute all such shortest paths
in O(n′′ log n′′) = gO(g)n log n time using Klein’s multiple-source
shortest path algorithm [38]; see Lemma 2.1.

A similar search of Σ′ Q(τ, [ε]) finds γ if it intersects τ but
does not intersect σ.

Running the previous algorithm for each loop λ in Λ gives us
our final result.

Theorem 4.9. The shortest non-contractible cycle in a directed
graph embedded on an orientable surface of genus g without
boundary can be computed in gO(g)n log n time.

4.3 Surfaces with Boundary
Finally, we observe that the previous algorithm generalizes easily
to surfaces with boundary. The only significant difference is that
instead of a system of loops, we define crossing sequences with
respect to a system of arcs: a set of boundary-to-boundary paths
that cut the surface Σ into a disk. For a surface of genus g with b
boundaries, any system of arcs contains exactly 2g + b− 1 arcs.
A simple variant of the greedy tree-cotree algorithm described
in this paper constructs a greedy system of arcs in O(n log n+
(g + b)n) time [13, 16, 17, 22]; each arc in this system is the
concatenation of a directed shortest path, a directed edge, and a
reversed shortest path. The rest of the algorithm and its analysis
is essentially unchanged.

Theorem 4.10. The shortest non-contractible cycle in a directed
graph embedded on an orientable surface of genus g with b
boundaries can be computed in (g + b)O(g+b)n log n time.
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