

$$
\begin{aligned}
& \text { Tuo } \\
& \text { fuses }
\end{aligned}
$$

A simple puzzle

- Suppose you have two fuses (or shoelaces, or pieces of rope, or...).
- Each fuse will burn from one end to the other in exactly one hour, but not necessarily at a fixed rate.
- How do you accurately measure 45 minutes?

$$
\xlongequal{\overline{0}}
$$

Cool.

But what if we did that more than once?

The Rules

- We can use any finite number of fuses.
- We can light any number of fuse ends at the start.
- We can light any number of fuse ends at the exact moment another fuse burns out.
- The timer starts when the first fuse is lit.
- The timer ends when the last fuse burns out.
- No cheating! No other clocks, no cutting fuses, no lighting fuses in the middle, no extinguishing fuses, no infinite regress

0 is a fusible number.

If x and y are fusible numbers such that $|x-y|<1$, then $(x+y+1) / 2$ is also a fusible number.

These are all the fusible numbers.

$$
x \sim y=(x+y+1) / 2
$$

"x fuse y"

Lemma: The set of fusible numbers is infinite.
Proof: $1-2^{-n}$ is fusible for every integer $\mathrm{n} \geq 0$.

$$
\begin{gathered}
1-2^{-0}=0 \quad \checkmark \\
1-2^{-n}=0 \sim\left(1-2^{-(n-1)}\right)
\end{gathered}
$$

Lemma: The set of fusible numbers is countable.
Proof: Every assemblage of fuses can be described by a (not necessarily unique) unordered binary tree.

$$
\frac{5}{4}=(0 \sim(0 \sim 0)) \sim(0 \sim(0 \sim 0))=(0 \sim 0) \sim((0 \sim 0) \sim(0 \sim 0))
$$

$$
\operatorname{value}(\mathrm{T})=\frac{1}{2} \sum_{\text {leaf } \ell} 2^{-\operatorname{depth}(\ell)}
$$

Theorem: The fusible numbers are well-ordered. Thus, for every real number x, there is a smallest fusible number $>x$.

So we can apply induction on fusible numbers!

Proof:

For the sake of argument, suppose there is an infinite decreasing sequence $\mathrm{x}_{1}>\mathrm{x}_{2}>\mathrm{x}_{3}>\cdots$ of fusible numbers.

This sequence must tend to a limit x .
Without loss of generality, assume x is the smallest such limit.

For each index k, we have $x_{k}=y_{k} \sim z_{k}$ for some $y_{k} \leq z_{k}$.
Infinite Ramsey theorem \Rightarrow WLOG the infinite sequence $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots$ is either decreasing, constant, or increasing.

Suppose $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots$ is decreasing. Let $\mathrm{y}=\lim \mathrm{y}_{\mathrm{i}}$

- Because $y_{i} \leq x_{i}-1 / 2$ for all i, we have $y<x$, contradicting the minimality of x.

Suppose $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots$ is non-decreasing.

- Then $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathrm{z}_{3}, \ldots$ must be decreasing. Let $\mathbf{z}=\lim \mathrm{z}_{\mathrm{i}}$
- y_{1}, y_{2}, \ldots converges to $y=\lim y_{i}=\lim \left(2 x_{i}-z_{i}-1\right)=2 x-z-1$
- Because $\mathrm{z}_{\mathrm{i}} \leq \mathrm{x}_{\mathrm{i}}$ for all i , we have $\mathrm{z} \leq \mathrm{x}$ and therefore $\mathrm{z}=\mathrm{x}$.
- But $y_{i} \geq y_{1}>x_{1}-1>x-1$ for all i. So $y>x-1$ and thus $z>x$.

Small examples

$$
\begin{gathered}
0 \sim 0=1 / 2 \\
0 \sim 1 / 2=3 / 4 \\
0 \sim 3 / 4=7 / 8 \\
\vdots \\
0 \sim\left(1-2^{-n}\right)=1-2^{-(n+1)}
\end{gathered}
$$

Small examples

$$
\begin{gathered}
1 / 2 \sim 1 / 2=1 \\
1 / 2 \sim 3 / 4=9 / 8 \\
1 / 2 \sim 7 / 8=19 / 16 \\
\ldots \\
1 / 2 \sim\left(1-2^{-n}\right)=5 / 4-2^{-(n+1)} \\
1 \\
1
\end{gathered}
$$

Small examples

$$
\begin{array}{rlrl}
1 / 2 \sim 1 / 2 & =1 & 1 / 2 \sim 1 & =5 / 4 \\
1 / 2 \sim 3 / 4 & =9 / 8 & 1 / 2 \sim 9 / 8 & =21 / 16 \\
1 / 2 \sim 7 / 8 & =19 / 16 & \cdots \\
\cdots & 1 / 2 \sim\left(5 / 4-2^{-n}\right) & =11 / 8-2^{-(n+1)} \\
1 / 2 \sim\left(1-2^{-n}\right) & =5 / 4-2^{-(n+1)} &
\end{array}
$$

Small examples

$$
\begin{aligned}
& 1 / 2 \sim 1 / 2=1 \quad 1 / 2 \sim 1=5 / 4 \\
& 1 / 2 \sim 3 / 4=9 / 8 \\
& 1 / 2 \sim 9 / 8=21 / 16 \\
& 1 / 2 \sim 7 / 8=19 / 16 \\
& 1 / 2 \sim\left(5 / 4-2^{-n}\right)=11 / 8-2^{-(n+1)} \\
& 1 / 2 \sim\left(1-2^{-n}\right)=5 / 4-2^{-(n+1)} \\
& 1 / 2 \sim\left(3 / 2-2^{-m}-2^{-n}\right)=3 / 2-2^{-m}-2^{-(n+1)} \\
& \text { Double limit point at 3/2 }
\end{aligned}
$$

Small examples

Small examples

Small examples

Small examples

Small examples

\# tame successor of $x=$
\# smallest tame fusible $>x$ def TameSucc (x) :

$$
\begin{aligned}
& \text { if } x<0: \\
& \text { return }-x \\
& y= \operatorname{TameSucc}(x-1) \\
& z= \operatorname{TameSucc}(2 x-y-1)
\end{aligned}
$$

$$
\text { return }(y+z-1) / 2
$$

\# tame margin of $x=$ \# TameSucc $(x)-x$ def $M(x)$:

$$
\begin{aligned}
& \text { if } x<0: \\
& \quad \text { return }-x \\
& \text { return } M(x-M(x-1)) / 2
\end{aligned}
$$

Tame fusible numbers := $\{\operatorname{TameSucc}(\mathrm{x}) \mid \mathrm{x} \in \mathbb{R}\}$.

Conjecture [E 2010]: Every fusible number is tame.

Xu 2012: Nope! $8449 / 4096=33 / 16+2^{-12}$ is fusible but TameSucc(33/16) $=33 / 16+2^{-11}$

recwrremce
\# tame successor of $x=$
\# smallest tame fusible $>x$ def TameSucc (x) :

$$
\begin{aligned}
& \text { if } x<0: \\
& \text { return }-x \\
& y= \operatorname{TameSucc}(x-1) \\
& z= \operatorname{TameSucc}(2 x-y-1)
\end{aligned}
$$

$$
\text { return }(y+z-1) / 2
$$

\# tame margin of $x=$ \# TameSucc $(x)-x$ def $M(x)$:

$$
\begin{aligned}
& \text { if } x<0: \\
& \quad \text { return }-x \\
& \text { return } M(x-M(x-1)) / 2
\end{aligned}
$$

Let $M(x)=$ margin of x

$=$ distance from x to the smallest tame fusible $>x$

$$
M(x)= \begin{cases}-x & \text { if } x<0 \\ M(x-M(x-1)) / 2 & \text { otherwise }\end{cases}
$$

$$
M(x)= \begin{cases}-x & \text { if } x<0 \\ M(x-M(x-1)) / 2 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& M(1)=\cdots \\
& \mid M(0)=\cdots \\
& |\mid M(-1)=1 \\
& |\mid M(-1)=1 \\
& \mid M(0)=1 / 2 \\
& \mid M(1 / 2)=\cdots \\
& |\mid M(-1 / 2)=1 / 2 \\
& |\mid M(0)=\cdots \\
& ||\mid M(-1)=1 \\
& ||\mid M(-1)=1 \\
& |\mid M(0)=1 / 2 \\
& \mid M(1 / 2)=1 / 4 \\
& M(1)=1 / 8
\end{aligned}
$$

$$
M(x)= \begin{cases}-x & \text { if } x<0 \\ M(x-M(x-1)) / 2 & \text { otherwise }\end{cases}
$$

```
M(3/2) = ...
    M(1/2) = ...
    M(-1/2) = 1/2
    M(0) = ...
    | M(-1) = 1
    | | M(-1) = 1
    M(0) = 1/2
    M(1/2) = 1/4
    M(5/4) = ...
    M(1/4) = ...
    | M(-3/4) = 3/4
    | M(-1/2) = 1/2
    M(1/4) = 1/4
    M(1) =
    M(0) =
| | | | M(-1)=1
| | | | M(-1)=1
```

 | | | \(M(0)=1 / 2\)

$$
M(x)= \begin{cases}-x & \text { if } x<0 \\ M(x-M(x-1)) / 2 & \text { otherwise }\end{cases}
$$

```
M(2) = ...
| M(1) = ...
| | M(0) =
| | | M(-1) = 1
| | | M(-1) = 1
| | M(0) = 1/2
| | M(1/2) = ..
| | | M(-1/2) = 1/2
| | | M(0) = ...
| | | | M(-1) = 1
| | | | M(-1) = 1
| | | M(0) = 1/2
| | M(1/2) = 1/4
| M(1) = 1/8
| M(15/8) = ...
| | M(7/8) = ...
| | | M(-1/8) = 1/8
| | | M(3/4) = ..
| | | | M(-1/4) = 1/4
| | | | M(1/2) = ...
| | | | | M(-1/2) = 1/2
| | | | | M(0)
| | | | | | M(-1) = 1
```



```
| | | | | | | | | | | | | | | | | | | | | M(2) = 1/1024
| | | | | | | | | | | | | | | | | | | | M(33/16) = 1/2048
| | | | | | | | | | | | | | | | | | | M(17/8) = 1/4096
M(69/32) = 1/8192
    M(35/16) = 1/16384
M(9/4) = 1/32768
| | | M(73/32) = 1/65536
| | | | | | | | | | | | | | M(37/16) = 1/131072
| | | | | | | | | | | | | M(149/64) = 1/262144
| | | | | | | | | | | | M(75/32) = 1/524288
| | | | | | | | | | | M(19/8) = 1/1048576
| | | | | | | | | | M(153/64) = 1/2097152
| | | | | | | | | M(77/32) = 1/4194304
| | | | | | | | M(309/128) = 1/8388608
| | | | | | | M(155/64) = 1/16777216
| | | | | | M(39/16) = 1/33554432
    M(313/128) = 1/67108864
    M(157/64) = 1/134217728
    M(629/256) = 1/268435456
| | M(315/128) = 1/536870912
| M(79/32) = 1/1073741824
M(5/2) = 1/2147483648
```

$$
M(x)= \begin{cases}-x & \text { if } x<0 \\ M(x-M(x-1)) / 2 & \text { otherwise }\end{cases}
$$

Theorem: This recurrence halts for all real inputs.

$$
M(x)= \begin{cases}-x & \text { if } x<0 \\ M(x-M(x-1)) / 2 & \text { otherwise }\end{cases}
$$

Proof: Suppose $M(x)$ does not halt but $M(z)$ halts for all $z \leq x-1$.
Let $x_{0}=x$ and $x_{i}=x_{i-1}-M\left(x_{i-1}-1\right)$. IH implies this call to M halts.
We have an infinite decreasing sequence $x_{0}>x_{1}>x_{2}>\ldots$.
Let $y_{i}=x_{i}-1=x_{i-1}-1+M\left(x_{i-1}-1\right)$. Then y_{i} is weak fusible for all $i>0$.
So we have an infinite decreasing sequence $y_{1}>y_{2}>y_{3}>\ldots$ of (weak) fusible numbers, which contradicts well-ordering.

- A well-ordered set $(X,<)$ is a set X with a total order < such that every non-empty subset of X has a smallest element with respect to <.
- Two well-ordered sets are similar if there is an order-preserving bijection between them. Equivalence classes are called order types or ordinals.
-Finite von Neumann ordinals, ordered by $<=\epsilon=\subset$:
- $0=\varnothing$
- $1=0 \cup\{0\}=\{0\}=\{\varnothing\}$
- $2=1 \cup\{1\}=\{0,1\}=\{\{\varnothing\},\{\{\varnothing\}\}\}$
- $3=2 \cup\{2\}=\{0,1,2\}=\{\{\varnothing\},\{\{\varnothing\}\},\{\{\varnothing\},\{\{\varnothing\}\}\}\}$
- $n=(n-1) \cup\{n-1\}=\{0,1,2, \ldots, n-1\}$
- First transfinite ordinal: $\omega=\{0,1,2,3, \ldots\}=\mathbb{N}$
- Then $\omega+1, \omega+2, \omega+3, \ldots, \omega+\omega=\omega \cdot 2$
- Then $\omega \cdot 2+1, \omega \cdot 2+2, \omega \cdot 2+3, \ldots, \omega \cdot 2+\omega=\omega \cdot 3$
- Then $\omega \cdot 3+1, \omega \cdot 3+2, \ldots, \omega \cdot 4, \omega \cdot 4+1, \omega \cdot 4+2, \ldots, \omega \cdot 5, \ldots, \omega \cdot 6, \ldots, \omega \cdot \omega=\omega^{2}$
- Then $\omega^{2}+1, \omega^{2}+2, \ldots, \omega^{2}+\omega, \omega^{2}+\omega+1, . ., \omega^{2}+\omega \cdot 2, \ldots, \omega^{2}+\omega \cdot 3, \ldots, \omega^{2} \cdot 2, \ldots, \omega^{2} \cdot 2+\omega, \ldots$, $\omega^{2} \cdot 2+\omega \cdot 2, \ldots, \omega^{2} \cdot 2+\omega \cdot 3, \ldots, \omega^{2} \cdot 3, \ldots, \omega^{2} \cdot 4, \ldots, \omega^{2} \cdot 5, \ldots, \omega^{2} \cdot \omega=\omega^{3}$
- Then $\omega^{3}+1, \ldots \omega^{3}+\omega, \omega^{3}+\omega+1, \ldots, \omega^{3}+\omega \cdot 2, \ldots, \omega^{3}+\omega^{2}, \ldots, \omega^{3} \cdot 2, \ldots, \omega^{4}, \ldots, \omega^{5}, \ldots, \omega^{\omega}$
- Then $\omega^{\omega}+1, \ldots \omega^{\omega}+\omega, \ldots, \omega^{\omega}+\omega^{2} \cdot 2, \ldots, \omega^{\omega+1}, \ldots, \omega^{\omega \cdot 2}, \ldots, \omega^{\omega^{\omega}} . ., \omega^{\omega^{\omega^{\omega}}} ., \omega^{\omega^{\omega^{\omega^{\omega}}}} . ., \varepsilon_{0}$
- Ordinal addition is not commutative: $1+\omega=\omega<\omega+1$

- Ordinal multiplication is not commutative: $2 \cdot \omega=\omega<\omega \cdot 2$

									l	
				l						
				l						
$\operatorname{Ord}(x)=$ order type of all fusibles $\leq x$
$\operatorname{Ord}^{\prime}(x)=$ order type of all tame fusibles $\leq x$
$\rightarrow \operatorname{Ord}(0)=1, \operatorname{Ord}(1 / 2)=2, \operatorname{Ord}(3 / 4)=3, \operatorname{Ord}(7 / 8)=4, \ldots . \operatorname{Ord}(1)=\omega$,
$-\operatorname{Ord}(9 / 8)=\omega+1, \operatorname{Ord}(19 / 16)=\omega+1, \operatorname{Ord}(5 / 4)=\omega \cdot 2, \operatorname{Ord}(3 / 2)=\omega^{2}$
$-\operatorname{Ord}(7 / 4)=\omega^{3} . \operatorname{Ord}(2)=\omega^{\omega}$
$\operatorname{Ord}(x)=$ order type of all fusibles $\leq x$
$\operatorname{Ord}^{\prime}(x)=$ order type of all tame fusibles $\leq x$

Theorem: $\operatorname{Ord}(x) \geq \operatorname{Ord}^{\prime}(x)$ for all x. $\operatorname{Ord}(x)=\operatorname{Ord}^{\prime}(x)$ for all $x \leq 2$.

Theorem: For every tame fusible x, we have $\operatorname{Ord}^{\prime}(x+1)=\omega^{\text {Ord' }}(x)$.

Corollary: For every integer $n \geq 0$, we have $\operatorname{Ord}^{\prime}(n)=\omega \uparrow \uparrow n=\underbrace{\omega^{\omega^{\omega^{\prime \omega^{\omega}}}}}_{\mathrm{n} \omega^{\prime} \mathrm{s}}$

Corollary: The order type of the tame fusible numbers is ε_{0}

Corollary: The order type of the fusible numbers is at least ε_{0}

Theorem: For every fusible x, we have $\operatorname{Ord}(x+1) \leq \omega^{\omega^{\operatorname{Ord}(x)}}$

Corollary: For every integer $n \geq 0$, we have $\operatorname{Ord}(n) \leq \omega \uparrow 2 n=\underbrace{\omega^{\omega^{\omega^{\prime \omega}}}}_{2 n \omega^{\prime} s}$

Corollary: The order type of the fusible numbers is at most ε_{0}

Corollary: The order type of the fusible numbers is exactly ε_{0}

Mast 9 gognige F212CL20125

$$
M(x)= \begin{cases}-x & \text { if } x<0 \\ M(x-M(x-1)) / 2 & \text { otherwise }\end{cases}
$$

Let $g(n)$ denote the largest gap between arbitrary fusibles $\geq n$

n	$-\log _{2} M(n)$	$-\log _{2} g(n)$
0	1	1
1	3	3
2	10	10
3	Guess!	Guess!
4	Guess!	Guess!

$$
M(x)= \begin{cases}-x & \text { if } x<0 \\ M(x-M(x-1)) / 2 & \text { otherwise }\end{cases}
$$

Let $g(n)$ denote the largest gap between arbitrary fusibles $\geq n$

n	$-\log _{2} M(n)$	$-\log _{2} g(n)$
0	1	1
1	3	3
2	10	10
3	1541023937	$>2 \uparrow^{9} 16$
4	BIG	REALLY BIG

Knuth arrow hierarchy

$$
a \uparrow^{n} b= \begin{cases}a \cdot b & \text { if } n=0 \\ 1 & \text { if } b=0 \text { and } n>0 \\ a \uparrow^{n-1}\left(a \uparrow^{n}(b-1)\right) & \text { otherwise }\end{cases}
$$

Ackermann hierarchy

$$
\begin{aligned}
A(0, n) & =n+1 \\
A(m+1,0) & =A(m, 1) \\
A(m+1, n+1) & =A(m, A(m+1, n))
\end{aligned}
$$

This is a good start.

Ordinal β is a successor ordinal if β has a largest element, or equivalently, if $\beta=\alpha+1$ for some ordinal a. All other ordinals are limit ordinals

Every ordinal $\beta<\varepsilon_{0}$ can be writen in Cantor normal form
$\beta=\omega^{\alpha_{1}}+\omega^{\alpha_{2}}+\cdots+\omega^{\alpha_{k}}$ for some ordinals $\beta>a_{1} » a_{2}>\ldots \geq a_{k} \geq 0$.
Every limit ordinal β is the limit of a canonical sequence $\beta[1]<\beta[2]<\beta[3]<$...

- If $\beta=\omega^{\alpha_{1}}+\omega^{\alpha_{2}}+\cdots+\omega^{\alpha_{k}}$ for some $\mathrm{k}>1$, then $\beta[\mathrm{n}]=\omega^{\alpha_{k}}[\mathrm{n}]$
- If $\beta=\omega^{\alpha+1}=\omega^{\alpha} \cdot \omega$, then $\beta[\mathrm{n}]=\omega^{\alpha} \cdot \mathrm{n}$
- If $\beta=\omega^{\alpha}$ for some limit ordinal a , then $\beta[\mathrm{n}]=\omega^{\alpha[\mathrm{n}]}$.

Intuitively, we get $\beta[n]$ by replacing the last ω in the $C N F$ of β with n.

Ordinal β is a successor ordinal if β has a largest element, or equivalently, if $\beta=\alpha+1$ for some ordinal a. All other ordinals are limit ordinals

Every ordinal $\beta<\varepsilon_{0}$ can be writen in Cantor normal form $\beta=\omega^{\alpha_{1}}+\omega^{\alpha_{2}}+\cdots+\omega^{\alpha_{k}}$ for some ordinals $\beta>a_{1} » a_{2}>\ldots \geq a_{k} \geq 0$.

Every limit ordinal β is the limit of a canonical sequence $\beta[1]<\beta[2]<\beta[3]<$...

$$
\begin{aligned}
& \text { If } \beta=\omega^{\alpha_{1}}+\omega^{\alpha_{2}}+\cdots+\omega^{\alpha_{k}} \text { for some } \mathrm{k}>1 \text {, then } \beta[\mathrm{n}]=\omega^{\alpha_{k}}[\mathrm{n}] \\
& \text { If } \beta=\omega^{\alpha+1}=\omega^{\alpha} \cdot \omega \text {, then } \beta[\mathrm{n}]=\omega^{\alpha} \cdot \mathrm{n} \\
& \text { If } \beta=\omega^{\alpha} \text { for some limit ordinal a, then } \beta[\mathrm{n}]=\omega^{\alpha[\mathrm{n}]} \text {. }
\end{aligned}
$$

Intuitively, we get $\beta[n]$ by replacing the last ω in the CNF of β with n.

Wainer heirarchy

$$
\begin{aligned}
F_{0}(n) & =n+1 & & \\
F_{\alpha+1}(n) & =F_{\alpha}^{(n)}(n) & & \text { for all } \alpha \\
F_{\alpha}(n) & =F_{\alpha[n]}(n) & & \text { for all limits } \alpha \leq \varepsilon_{0}
\end{aligned}
$$

Hardy heirarchy

$$
\begin{aligned}
H_{0}(n) & =n & & \\
H_{\alpha+1}(n) & =H_{\alpha}(n+1) & & \text { for all } \alpha \\
H_{\alpha}(n) & =H_{\alpha[n]}(n) & & \text { for all limits } \alpha \leq \varepsilon_{0}
\end{aligned}
$$

Theorem: $F_{\alpha}(n)=H_{\omega^{\alpha}}(n)$ and $F_{\varepsilon_{0}}(n)=H_{\varepsilon_{0}}(n)$

Theorem: $-\log _{2} g(n) \geq-\log _{2} M(n) \geq F_{\varepsilon_{0}}(n-7)$ for all $n \geq 8$.

n	$-\log _{2} M(n)$	$-\log _{2} g(n)$
0	1	1
1	3	3
2	10	10
3	1541023937	$>2 \uparrow^{9} 16$
4	BIG	REALLY BIG

First order arithmetic: all formulas over

$$
\{\forall, \exists, \vee, \wedge, \neg,=, 0, S,+, \cdot\}
$$

Peano axioms:

- $\exists x: x=0 \quad \forall x: S(x) \neq 0 \quad \forall m, n:(S(m)=S(n)) \Rightarrow(m=n)$
- = is reflexive, symmetric, and transitive.
- Recursive definitions of + and -
- Induction scheme: $(\phi(0) \wedge(\forall x: \phi(x) \Rightarrow \phi(S(x)))) \Rightarrow(\forall x: \phi(x))$

Encoding:

" $x>y$ " can be encoded as $\exists z: x=y+z+1$.
" $x \bmod y=z$ " can be encoded as $z<y \wedge \exists q: x=q \cdot y+z$ The ordered pair (x, y) can be encoded as $\binom{x+y}{2}+x$.

Fixed-length tuples can be encoded as nested pairs.
Finite sequences can be encoded using the Chinese Remainder Theorem [Gödel]
Rational numbers, finite sets, trees, graphs
Transfinite ordinals less than ε_{0}
Turing machine behavior for finite time

Encoding:

"x is fusible"
$=$
"There exists a finite set S of rational numbers that includes x, and such that for every $w \in S$, either $w=0$ or there exist $y, z \in S$ such that $|z-y|<1$ and $2 w=y+z+1$."

Encoding:

" $M(n)$ terminates for every natural number n"
"For all n, there exist m and a finite set S of pairs that contains (n, m) and such that for every $(p, q) \in S$, if $p<0$ then $q=-p$, and otherwise, there exists q^{\prime} such that $\left(p-1, q^{\prime}\right),\left(p-q^{\prime}, 2 q\right) \in S^{\prime \prime}$

Gödel's Incompleteness Theorem:

Every formal system that models arithmetic is either inconsistent (contains proofs of some false statements) or incomplete (forbids proofs of some true statements).

Peano arithmetic is obviously consistent.*

Therefore it must be incomplete.

Unprovable statements in Peano Arithmetic

$$
\begin{gathered}
\text { Eo is a well-ordering [Gentzen] } \\
\text { Goodstein sequences [Kirby Paris] } \\
\text { The Hydra Game [Kirby Paris] } \\
\text { The Worm/Blackboard Game [Hamano and Okada, Beklemishev] } \\
\text { Strengthened finite Ramsey theorem [Paris Harrington] } \\
\text { Variants of Kruskal's tree theorem [Friedman] } \\
\text { Variants of the graph structure theorem [Friedman Robertson Seymour] }
\end{gathered}
$$

Buchholz and Wainer's Theorem:

Let T be a Turing machine that computes a function $\mathrm{g}: \mathbb{N} \rightarrow \mathbb{N}$; in particular, T halts on every input.

Suppose Peano Arithmetic can prove the statement " T halts on every input."
Then for some $a<\varepsilon_{0}$ and $n_{0} \in \mathbb{N}$ we have $g(n)<F_{a}(n)$ for every $\mathrm{n} \geq n_{0}$.
The function g cannot grow too quickly.

Corollary:

The following true statements are expressible in first-order arithmetic, but not provable in Peano Arithmetic:
"For every integer n, there is a smallest (tame) fusible number > n."
"The function $\mathrm{M}(\mathrm{n})$ halts for every integer n."
"For every (tame) fusible number x, there is a maximum-height binary tree whose value is x."

