





A simple puzzle

» Suppose you have two fuses (or shoelaces, or pieces of rope, or...).

» Each fuse wil

necessarily at

o8

'n from one end to the other in exactly one hour, but not

d

fixed rate.

» How do you accurately measure 45 minutes?






Cool.



But what if we did that more than once?












The Rules

» We can use any finite number of fuses.
» We can light any number of fuse ends at the start.

» We can light any number of fuse ends at the exact moment another
fuse burns out.

» The timer starts when the first fuse is lit.
» The timer ends when the last fuse burns out.

» No cheating! No other clocks, no cutting fuses, no lighting fuses in
the middle, no extinguishing fuses, no infinite regress



0 is a fusible number.

't x and y are fusible numbers such that |x—y|<T,
then (x+y+1)/2 is also a fusible number.

These are all the fusible numbers.



x~y = (x+y+1)/2

“x fuse y”






Lemma: The set of fusible numbers is infinite.

Proof: 1T — 27" is fusible for every integer n > 0.
1-29%=0

1—2" = 0~((1=27"D)y

I I N AT

0 1/2 3/4 7/8 15/16 ]



Lemma: The set of fusible numbers is countable.

Proof: Every assemblage of fuses can be described by a
(not necessarily unique) unordered binary tree.

5
7= O~0~0)~O~O~0) = O~0~({(0~0)~(0~0))

S/ 4 5/4

3/4 3/4 vaIue(T) _ l Z 2—depth(f)
D @ @ =T

0 0 0 0 0 0 0 0




Theorem: The fusible numbers are well-ordered. Thus, for
every real number x, there is a smallest fusible number > x.

So we can apply induction on fusible numbers!



Proof:

-or the sake of argument, suppose there is an infinite decreasing
sequence X; > X, > X5 > --- Of fusible numbers.

This sequence must tend to a limit x.

Without loss of generality, assume x is the smallest such limit.

-or each index k, we have x, =y, ~ z, forsomey, < z,.

Infinite Ramsey theorem = WLOG the infinite sequence yq, Yo, Y3, - .. IS
either decreasing, constant, or increasing.



Suppose yq, ¥, ¥3, ... is decreasing. Lety = lim y;

» Because y: < x; — 1/2 for all i, we have y < x, contradicting the
minimality of x.

Suppose Y1, Yo, Y3, --. IS NON-decreasing.
» Then z,,z,,2,, ... must be decreasing. Let z = lim z,
> V1, Yo, ... CONvergestoy = limy;, = lim(2x;, —z. — 1) =2x —z — 1
» Because z; < x; for all i, we have z < x and therefore z = x.

» Buty, >y, >x;—1>x—1foralli. Soy > x—1Tandthusz > x



Small examples

0~0=1/2
0~1/2=3/4
0~3/4=7/8

O~ (1_2—}’]) — 1_2—(n+1)

O 1/2 3/4 718 15116 5y ..

I IR

Limit point at 1



Small examples

1/2 ~1/2 =1

1/2~3/4=09/8
1/2 ~7/8 =19/16

1/2 ~ (1-2-1) = 5/4-2-(n+1)

1 9/8  19/16 955 ...

| L]

Limit at 5/4



Small examples

1/2 ~1/2 =1 1/2 ~1=5/4
1/2~3/4=9/8 1/2~9/8 =21/16
12 ~7/8 =19/16
1/2 ~ (5/4—2-") = 11/8—2-(n+1)
1/2 ~ (1-2-1) = 5/4-2-(n+1)

1 5/4 21/16 43/32 ...
9/8 19/16 39735 ...

1]

Limit at 5/4 Limit at 11/8



Small examples

1/2 ~1/2 =1 1/2 ~1=5/4
1/2~3/4=9/8 1/2~9/8 =21/16
1/2 ~7/8 =19/16

1/2 ~ (5/4—2-") = 11/8—2-(n+1)

1/2 ~ (1-2-1) = 5/4-2-(n+1)

1/2 ~ (3/2—2-m-2-n) = 3/2—2-m—2~(n+)

1 5/4 21116 43732 .. 23/16...
9/8 19/16 39/32 ... 11/8 4532 ...  47/32 ...

lelt at 5/4 Limit at11/Léi3mit N 23/1u6mitat47/32

Double limit point at 3/2



Small examples

O 1/2 3/4 718 15416 31/32 ...

I I

Limit point at 1

1 5/4 21/16 43732 ... 23/16...
9/8 19/16 3973 ... 11/8 45/32 ... 47/32 ...
Limit at 5/4 Limit at 11/Eismit at 23,/1%ni tttttttt

Double limit point at 3/2



Small examples

O 1/2 3/4 718 15416 31/32 ...

I I

Limit point at 1

1 5/4 21/16 433> ... 23/16...3/2 7/4
9/8 19/16 3932 ... 11/8 45/32 ...  47/32 ... 25/16 13/8 27/16

Limit at 5/4  tmitatm8 e Triple limit at 7/4
Double limit point at 3/2



Small examples

O 1/2 3/4 718 15416 31/32 ...

I I

Limit point at 1

1 5/4 21/16 433> ... 23/16...3/2 7/4
9/8 19/16 3932 ... 11/8 45/32 ...  47/32 ... 25/16 13/8 27/16

Limit at 5/4  tmitatm8 e Triple limit at 7/4
« . . Quadruple limit at 15/8
Double limit point at 3/2 R



Small examples

O 1/2 3/4 718 15416 31/32 ...

I I

Limit point at 1

1 5/4 2116 433> ... 23/16...3/2 7/4 15/8 31/16 63/32 ...
9/8 19/16 39/32 ... 11/8 45/32 ... 4732 ... 25/16 13/8 27/16

Limit at 5/4  Umitatn/8 s Triple limit at 7/4

« e . druple limit at 15/8
Double limit pOlnt at 3/2 Ruadrupie Imcguiitumselimitatm/%

Sextuple limit at 63/32

Limit of limits of limits of... at 2



Small examples

O 1 / 2 3/4 718 15016 s .

IR I N

Limit point at 1

1 5/4 2116 4y . 23/16...3/ 2 714 15/8 3116 6332 ...

9/8 19/16 39/32 ... 11/8 45/32 ...  47[32 ... 25/16 13/8 27/16

Limit at 5/4 ~ tmitatms e Triple limit at 7/4

« e . druple limit at 15/8
Double limit point at 3/2 e I ntapte it s

Sextuple limit at 63/32

Limit of limits of limits of... at 2

2




# tame successor of x =
# smallest tame fusible > x # tame margiln of x =

def TameSucc(x): # TameSucc(x) - X
1f x < 0: def M(x):
return -x 1f x < 0:
y = TameSucc(x-1) return -x
z = TameSucc(2x-y-1) return M(x-M(x-1))/2

return (y+z-1)/2



Tame fusible numbers := { TameSucc(x) | x e R }.

Conjecture [E 2010]: Every fusible number is tame.

Xu 2012: Nope! 8449/4096 = 33/16 + 2712 s fusible
but TameSucc(33/16) = 33/16 + 277



A .rzmplc(!)
yecurrernce




# tame successor of x =
# smallest tame fusible > x # tame margiln of x =

def TameSucc(x): # TameSucc(x) - X
1f x < 0: def M(x):
return -x 1f x < 0:
y = TameSucc(x-1) return -x
z = TameSucc(2x-y-1) return M(x-M(x-1))/2

return (y+z-1)/2



| et M(x) = margin of x
= distance from x to the smallest tame fusible > x

—X ifx <0
M(x) = {M(x — M(x —1))/2 otherwise



_y fx <O
M(x) = {M(x — M(x — 1))/2 otherwise

M(T) =

| M(Q) =
|| M(=1)
|| M(=1)
| M(@Q) = 1/2
| M(1/2) =
|| M(=1/2)
|

|

|

|

|
M

1

1/2

| M(0) =

|| M(=1) =1
|| M(-1) =1
| M(@) = 1/2
M(1/2) = 1/4
(1) = 1/8




| —x ifx <0
M(x) = M(x —M(x —1))/2 otherwise

M(3/2) = --- M(Q) = 1/2
(M(1>2) = .- M(1/2) = --- 49/32
M(=1/2) = 1/2 ME—;/Z) = 1/2 .
M(Q) = --- M(Q) = 49/32
M(-1) = M(-1) = @iﬂﬁ!i
0 217 M(g§ 1>1;2 ‘esﬂ!,
M(Q) = 1/2 978
M(1/2) = 1/4 (M)(1/23/g 1/4 U '
M(5/4) = M(1) =
M(1/4) = M(5/4) = 1/16 ﬂ] ]m
M(- 3/4) = 3/4 M(3/2) = 1/32 /7
M(-1/2) = 1/2 /0 )( o) 0](
M(1/4) = 1/4 'Hﬁg
M(1) = -+ |' 0
M(@) - ... n
M(=1) = 1
M(=1) =




M(2) = - --

M(1) = ---
M(Q) = ---

| M(-1) =

| M(-1) =
M(Q) = 1/2
M(1/2) = ---
M(=1/2)
M(Q) = ---
| M(-T)
| M(-1) =
M(Q) = 1/2

M(1/2) = 1/4

M(1) = 1/8

M(15/8) = ---

M(7/8) = ---
M(-1/8) = 1/8
M(3/4) = ---
M(-1/4) = 1/4
M(1/2) = ---
M(=1/2) = 1/2
M(Q) = - --

| M(-1) = 1

1/2

]

M(x) =

|| M(
| M(0)
M(1/2)
M(3/4) =

M(7/8) = 1
M(29/16) =

M(13/16)
M(-3/1
M(5/8)

M(-3

M(1/

| M(

| M(

M(1/
M(5/8)

M(13/16)

M(7/4) =
M(3/4)

M(-1

M(1/

M(

M(

|

—X

(15/1 6J\é

(2049/1024)

4

(961/512)

\

(465/256 )

\

(225/128)

\

(105/64)

e

A

fx <O
M(x —M(x —1))/2 otherwise

) = 1/2

-
|1l

= 1/2
- 1/4

) = - -

3/4) = 3/4

M(13/8)
M(7/4) = -
M(29/16) = -

M(15/8) = 1/5°

M(2) = 1/1024

M(=1/2) = 1/2

M(1/4) = 1/4
M(1) = - --

M(Q) = - --
| M(-1) =
| M(-1) =
M(Q) = 1/2
M(1/2) = - --
M(=1/2)
M(Q) = - --
| M(-1)
| M(-1) =
M(Q) = 1/2
M(1/2) = 1/4

1/2

M(1) = 1/8
M(5/4) = 1/16
M(3/2) = 1/32

= 1/64
/128
/256

2



| | M(5/4) = 1/16
| M(3/2) = 1/32
g 101378 16 ()
M(x) — M(7/4) = 1/128
M (xI- M(k = 193729 otfrerwise
|| M(1578) = 1/512

| M(2) = 1/1024
M(33/16) = 1/2048
M(17/8) = 1/4096
M(69/32) = 1/8192
M(35/16) = 1/16384
M(9/4) = 1/32768
M(73/32) = 1/65536
M(37/16) = 1/131072
M(149/64) = 1/262144
M(75/32) = 1/524288

M(19/8) = 1/1048576

M(153/64) = 1/2097152

M(77/32) = 1/4194304

M(309/128) = 1/8388608

M(155/64) = 1/16777216

M(39/16) = 1/33554432

M(313/128) = 1/67108864

M(157/64) = 1/134217728

M(629/256) = 1/268435456

M(315/128) = 1/536870912

M(79/32) = 1/1073741824

M(5/2) = 1/2147483648




—X ifx <0
M(x) = {M(x — M(x —1))/2 otherwise

Theorem: This recurrence halts for all real inputs.



—X ifx <0
M(x) = {M(x — M(x —1))/2 otherwise

Proof: Suppose M(x) does not halt but M(z) halts for all z < x-1.

Let Xo = x and x; = Xi-1 — M(xi-1—1). IH implies this call to M halts.
We have an infinite decreasing sequence Xp > X1 > X2 > ...

Letyi=%x—T=Xi-1—1T+ M(X-1—1). Thenyiis weak fusible for all i>0.

So we have an infinite decreasing sequence y1 > y»2 > y3 > ... of (weak)
fusible numbers, which contradicts well-ordering.






» A well-ordered set (X, <) is a set X with a total order < such that
every non-empty subset of X has a smallest element with respect to <.

» Two well-ordered sets are similar if there is an order-preserving bijection
between them. Equivalence classes are called order types or ordinals.

» Finite von Neumann ordinals, ordered by < =€ = .
»0=0
» 1=0u {0} ={0} = {0}
» 2=1u {1} =40, 1} ={{d}, {{D}} }
»3=20{2}=4{0,1,2} = {{9},{{9}}, {9}, {{9}}} }
»n=N-1)u{n-1}=4{0,1,2, ..,n-1}



» First transfinite ordinal: w ={0, 1,2, 3, ..} =N
» Thenw+ 1, W+2, W+3, .. w+w=Ww-2
» Then w2 +1, W2+2, wW2+3, .., w2+w=W0"3

» Then W3 +1T W3+2 .. w4 wid+1 Wa4+2 ... w5 ... wb ... wWw=Ww?2

» Then W2+ 1T, W2+2, ..., W2+ W, W2+wW+T,., W2+wW2, ..., W2+WwW3,...,wW22 ..., W22+ W, ..

W2 2+W?2 .. wW22+w3 ... w23 ... w24 .. w25 . w2w=Ww?3

» Then W3+ T, ... W3+wW, W3+wW+T,...,W3+wW?2, ..., W3+W?2 ..., wWs2, .., wWt.. 6 w>. .6 wWw

» Then WwW+ 71, .. WY+ W, ..., WY+ w22 ... ww ww2 . o . o . o . €0
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Ord(x) = order type of all fusibles < x

Ord'(x) = order type of all tame fusibles < x
» Ord(0) =1, Ord(1/2) = 2, Ord(3/4) = 3, Ord(7/8) = 4, .... Ord(1) = w,
» Ord(9/8) = w+1, Ord(19/16) = w+1, Ord(5/4) = w-2, Ord(3/2) = w2

» Ord(7/4) = w3. Ord(2) = ww



Ord(x) = order type of all fusibles < x

Ord'(x) = order type of all tame fusibles < x

Theorem: Ord(x) = Ord'(x) for all x.
Ord(x) = Ord'(x) for all x < 2.



Theorem: For every tame fusible x, we have Ord'(x+1) = wO0rd®).

...a)
@

Corollary: For every integer n = 0, we have Ord'(n) =w 11 n = w®

7

nNw's

Corollary: The order type of the tame fusible numbers is &,

Corollary: The order type of the fusible numbers is at least &,



Theorem: For every fusible x, we have Ord(x + 1) < 0"

.O.a)
@

Corollary: For every integer n = 0, we have Ord(n) < @ 11 2n = w?”

2Znw's

Corollary: The order type of the fusible numbers is at most g,

Corollary: The order type of the fusible numbers is exactly &,



Fast-growing
fanctions




—X ifx <0
M(x) = {M(x — M(x —1))/2 otherwise

et g(n) denote the largest gap between arbitrary fusibles > n

n —log, M(n) —log, g(n)
0 ] ]

] 3 3

2 10 10

:
4



—X ifx <0
M(x) = {M(x — M(x —1))/2 otherwise

et g(n) denote the largest gap between arbitrary fusibles > n

n —log, M(n) —log, g(n)
0 ] ]

] 3 3

2 10 10

3 | 1541023937/ > 21716
4 BIG REALLY BIG



Knuth arrow hierarchy

a-b ifn =20
at'b=<1 ifb=0andn > 0
a ™ 1(@?" (b-1)) otherwise

Ackermann hierarchy
AOn)=n+1
A(m + 1,0) = A(m.1)
Am+1n+1)=A0m,A(m+ 1,n))

This is a good start.



Ordinal B is a successor ordinal if B has a largest element, or equivalently,
it B =a+1 for some ordinal a. All other ordinals are limit ordinals

—very ordinal B < g can be writen in Cantor normal form
f=w%"+w®2+ - +w%forsomeordinalsB>ar»az>... =k = 0.

-very limit ordinal B is the limit of a canonical sequence B[1] < B|2] < B[3] < ...
y If f = o0+ 0"+ -+ + w% for some k>1, then f[n] = w%[n]
y If f = 0! = % - @, then f[n] = @ - n

» If B = ™ for some limit ordinal o, then B[n] = @*"

Intuitively, we get B|n] by replacing the last w in the CNF of B with n.



Ordinal B is a successor ordinal if B has a largest element, or equivalently,
it B =a+1 for some ordinal a. All other ordinals are limit ordinals

—very ordinal B < g can be writen in Cantor normal form
f=wo%"+w®2+ -+ ow%forsomeordinals B>a1» 2> ... 2 = 0.

—very limit ordinal B is the limit of a canonical sequence 3[1] < B[2) < B3] < ...
y If f = 0"+ 0"+ -+ + w% for some k>1, then f[n] = w%[n]
y If f = 0! = % - @, then f[n] = @%* - n

» If B = w® for some limit ordinal o, then B[n] = @*"

Intuitively, we get B[n] by replacing the last w in the CNF of B with n.



Wainer heirarchy

F, . .(n) = F"(n) for all &

F (n) = Fa[n](n) for all limits a < &,

Hardy heirarchy
Hy(n) =n
H, (n)=H,mn+1) for all
H (n) = Ha[n](n) for all limits a < &,

Theorem: F(n) = H,«(n) and F, (n) = H, (n)



Theorem: —log, g(n) > — log, M(n) > Fgo(n — ]) foralln=8.

n —log, M(n) —log, g(n)

0 ] ]

] 3 3

? 10 10

3 | 1541023937 > 21716
4 BIG REALLY BIG




arithmetic




First order arithmetic: all formulas over
{VQHQ\/?/\9_I9:9O9S9+9. }

Peano axioms:

» dx:x=0 Vx:SXx)#0 Vm,n:(S(m)=3Smn)) = (m=n)

» = IS reflexive, symmetric, and transitive.

» Recursive definitions of + and -

» Induction scheme: (@(0) A (Vx : ¢p(x) = P(S(x)))) = (Vx : ¢p(x))



Encoding:
‘x> y'canbeencodedas dz:x=y+z+ 1.

xmod y =7z canbeencodedasz<yAdg:x=qg-y+z

The ordered pair (x, y) can be encoded as (x;y) + X.

-ixed-length tuples can be encoded as nested pairs.

-inite sequences can be encoded using the Chinese Remainder Theorem [Godel]

Rational numbers, finite sets, trees, graphs
Transfinite ordinals less than €o

Turing machine behavior for finite time



Encoding:
"X is fusible”

"There exists a finite set S of rational numbers that
includes x, and such that for every w € S, either w = 0 or

there existy, ze Ssuchthat|z -yl <Tand 2w = y+z+1.




Encoding:

‘M(n) terminates for every natural number n’

‘For all n, there exist m and a finite set S of pairs that contains
(n,m) and such that for every (p,q) € S, if p <0 then g = —p, and

otherwise, there exists g such that (p—1, @), (p—q’, 2q) € S




Godel’'s Incompleteness Theorem:

Every formal system that models arithmetic is either
inconsistent (contains proofs of some false statements)
or incomplete (forbids proofs of some true statements).

Peano arithmetic is obviously consistent.*

Therefore it must be incomplete.

*equiconsistent with Skolem arithmetic [Gentzen] and several weak models of set theory



Unprovable statements in Peano Arithmetic

o is a well-ordering [Gentzen|]

Goodstein sequences |Kirby Paris]

The Hydra Game [Kirby Paris]

The Worm/Blackboard Game [Hamano and Okada, BeklemisheV]

Strengthened finite Ramsey theorem |[Paris Harrington|

Variants of Kruskal's tree theorem [Friedman]

Variants of the graph structure theorem |[Friedman Robertson Seymour]



Buchholz and Wainer's Theorem:

Let T be a Turing machine that computes a function g: N = N;

in particular, T halts on every input.

Suppose Peano Arithmetic can prove the statement T halts on every input’’

Then for some a < g9 and no € N we have g(n) < Fa(n) for every n > no.

The function g cannot grow too quickly.



Corollary:

The following true statements are expressible in first-order arithmetic,
but not provable in Peano Arithmetic:

(

-or every integer n, there is a smallest (tame) fusible number >n’”

“The function M(n) halts for every integer n”

(f

-or every (tame) fusible number x,
there is a maximum-height binary tree whose value is x.”









