
CS 225 Honors Homework 1 (due February 5) Spring 2024

In both the regular lecture and the honors lecture, we discussed an implementation of array-lists
whose Insert method doubles the size of the underlying data array if it is already full. In
particular, we sketched a proof that each insertion into this array-list takes O(1) amortized time.

Suppose we modify the Delete method to shrink the underlying array when it becomes too
empty, to avoid wasting memory. Here is pseudocode for one implementation of this idea:

New():
AL.num← 0
AL.cap← 2
AL.data← new array[2]
return AL

Insert(AL, x):
if AL.num= AL.cap

Resize(AL) 〈〈Double!〉〉
〈〈—— Next phase starts here ——〉〉
AL.data[AL.num]← x
AL.num← AL.num+ 1

Delete(AL):
if AL.num= AL.cap/4

Resize(AL) 〈〈Halve!〉〉
〈〈—— Next phase starts here ——〉〉
AL.num← AL.num− 1
return AL.data[AL.num]

Index(AL, i):
return AL.data[AL.num− i − 1]

〈〈Resize the data array to size 2 · AL.num〉〉
Resize(AL):
newdata← new array[2 · AL.num]
for i← 0 to AL.num− 1

newdata[i]← AL.data[i]
delete AL.data
AL.data← newdata
AL.cap← 2 · AL.num

Here AL.num is the actual number of items stored in the list (or what theoreticians would call n),
AL.cap is the size of the data array, and AL.data is the actual data array. List items are stored in
a prefix of the data array in the order they were Inserted. Except when n= 0, all operations
maintain the invariant n≤ AL.cap≤ 4n, so the size of our data structure is always Θ(n).

1. I claim that in any intermixed sequence of Inserts and Deletes, starting with a New
array-list, each Insert and each Delete takes O(1) amortized time. What this claim means
is that the total time required to execute any intermixed sequence of Ni Inserts and Nd

Deletes is at most O(Ni + Nd).
One way to prove this claim is partition the overall running time of the data structure

into phases immediately after each Resize, as indicated in the pseudocode above, and
analyze each phase separately.

There are two cases to consider, depending on whether the phase ends by doubling or
halving the data array. Let n0 denote the value of AL.num at the start of an phase; to avoid
trivial boundary cases, assume n0 ≥ 4.

(a) Suppose the phase ends by doubling the data array. What is the exact minimum
number of Insert and Delete operations that phase can contain? Your answer
should be a function of n0.

(b) Suppose the phase ends by halving the data array. What is the exactminimum number
of Insert and Delete operations that phase can contain? Your answer should be a
function of n0.

(c) Complete the amortized analysis: Prove that the total time to execute any phase
containing Ni Inserts and Nd Deletes is at most O(Ni + Nd).

1



CS 225 Honors Homework 1 (due February 5) Spring 2024

2. Think about this one on your own; do not submit solutions.

A valid criticism of this implementation of array-lists is that in the worst case (just
before an expensive Delete) the data structure is using about four times as much space
as necessary. Suppose we are allowed to maintain a tighter invariant AL.cap ≤ (1+ ϵ)n,
for some fixed constant ϵ > 0. We still want to keep the amortized time for each Insert
and Delete as small as possible. For example, if ϵ = 0.01, we are allowed to use 1% more
space than absolutely necessary; our reference implementation uses ϵ = 3.

(a) How would you change the Insert, Delete, and Resize algorithms?
(b) What is the amortized time for each Insert and Delete, as a function of ϵ? (You

should see a tradeoff between space and time; the amortized time for each operation
should increase as ϵ approaches zero.)

3. Think about this one on your own; do not submit solutions.

Small amortized time bounds are sufficient if we’re using data structures as part of a
large batch computation, but in more interactive contexts—for example, video games, or
self-driving cars—we really do need every operation to be fast in the worst case.1

We can deamortize this version of array-lists by incrementally building larger and smaller
versions of the current data array during Insert and Delete operations. The new data
structure contains three data arrays:

• AL.bigdata[0 .. 2 · AL.cap− 1]

• AL.curdata[0 .. AL.cap− 1]— the actual data array
• AL.weedata[0 .. AL.cap/2− 1]

We maintain these arrays as follows:

• Each Insert spends Θ(1) additional time building or maintaining AL.bigdata.
• To “double” the data array, we delete AL.weedata, set AL.weedata← AL.curdata, set

AL.curdata← AL.bigdata, and allocate a new bigdata array.2
• Each Delete spends Θ(1) time building or maintaining AL.weedata.
• To “halve” the data array, we delete AL.bigdata, set AL.bigdata ← AL.curdata, set

AL.curdata← AL.weedata, and allocate a new weedata array.

Work out the remaining details of this real-time implementation. What is the total worst-
case size of the three arrays, as a function of n= AL.num? Exactly which operations are
performed in each Θ(1)-time increment? How do we guarantee that bigdata/weedata
contain exactly the right data when we “resize” the array?

1“I’m sorry Dave, I can’t do that; Windows is updating.”
2I am assuming here that allocating an arbitrary block of memory takes O(1) time in the worst case. That’s not

entirely realistic, but unpacking the details will have to wait until CS 340 or CS 341 or ECE 391.

2


