1. Suppose we are given a set S of n line segments in the plane, each of which is either horizontal or vertical. Each horizontal segment $h \in S$ is specified by its left x-coordinate $h . l$, its right x-coordinate h.r, and its y-coordinate h.y. Each vertical segment $v \in S$ is specified by its x-coordinate $v . x$, its bottom y-coordinate $v . b$, and its top y-coordinate $v . t$. Assume that all x - and y-coordinates are distinct.

Describe and analyze an algorithm to compute the number of pairs of segments in S that intersect. (Because all coordinates are distinct, if two segments in S intersect, one must be horizontal and the other vertical.)
[Hint: You can do better than blindly applying Homework 9.]

The remaining problems are for you play with on your own. Discussion in office hours or on Discord is welcome, but don't submit solutions!
2. Suppose we are given a set S of n line segments in the plane, each of which is either horizontal or vertical. Each horizontal segment $h \in S$ is specified by its left x-coordinate $h . l$, its right x-coordinate h.r, and its y-coordinate h.y. Each vertical segment $v \in S$ is specified by its x-coordinate $v . x$, its bottom y-coordinate $v . b$, and its top y-coordinate $v . t$. Suppose we are also given two points s and t in the plane, each specified by their x - and y-coordinates. Assume that all x - and y-coordinates are distinct.
(a) Suppose neither s nor t lies on any segment in S. Describe and analyze an algorithm to decide whether there is a path from s to t in the plane that does not intersect any segment in S. (Think of the segments in S as walls.)
(b) Suppose both s and t lie on (different) segments in S. Describe and analyze an algorithm to decide whether there is a path from s to t in the plane that lies entirely in the union of segments in S. (Think of the segments in S as roads.)

* (c) Solve both of these problems in O (n polylog n) time.

3. Suppose you are given a set R of axis-aligned rectangles in the plane. Each rectangle $r \in R$ is specified by its left x-coordinate h. x, its right x-coordinate h.r. Assume all coordinates are distinct.
(a) Find a point p that lies in the largest number of rectangles in R.
(b) Find the largest nested sequence of rectangles in R.
