
CS 225 Honors Homework 2 (due February 12) Spring 2024

There are five canonical species of sequence data types that support insertions and deletions only
at one or both ends; these are illustrated below.

Push

Pull

Push

Pop

Queue Stack

Push
Steque

Shove Push

Pop

Quack

Pull

Push

Pop

Deque

Pull

Shove

Pop

In Monday’s honors lecture, we discussed the following implementation of a queue using two
black-box stacks, which implements each queue operation using O(1) amortized stack operations.
Here “black-box” means that we know nothing about how the stacks are implemented; we only
know that they correctly support the standard stack operations Push, Pop, and IsEmpty.

Our queue data structure consists of a pair of black-box stacks In and Out and a counter num,
which stores the number of items in the queue. After each queue operation, each item in the
queue is stored in exactly one of the two component stacks.

InitQueue():
q← new queue
q.num← 0
q.In← InitStack()
q.Out← InitStack()
return q

QueueIsEmpty(q):
return StackIsEmpty(q.In)∧ StackIsEmpty(q.Out)

QueuePush(q, x):
StackPush(q.In, x)

QueuePull(q, x):
if IsEmpty(q.Out)
〈〈Transfer In to Out〉〉
while ¬IsEmpty(q.In)

StackPush(q.Out,StackPop(q.In))
return StackPop(q.Out)

The only interesting part of these algorithms is the highlighted transfer loop in QueuePull
Let n0 and n1 respectively denote the number of items in the queue just after a transfer and just
before the next transfer, respectively. Between these two transfers, we must perform exactly n0

QueuePulls (to empty Out) and exactly n1 QueuePushes (all into In). The second transfer
requires exactly 2n1 stack operations; we can charge these to the n1 intermediate QueuePushes.
Each QueuePush pays for 2 stack operations, and therefore uses 3 amortised stack operations.
Because all transfer operations are charged elsewhere, each QueuePull uses 1 amortized stack
operation.

Alternatively, we can compute amortized costs using summation. Each item that is ever
pushed into the queue participates in at most four stack operations: pushed onto In, popped
from In, pushed onto Out, and finally popped from Out. Thus, any sequence of NI pushes and NO

pulls induces at most 4NI stack operations. We conclude that each QueuePush uses 4 amortized
stack operations, and each QueuePull uses zero amortized stack operations.

1



CS 225 Honors Homework 2 (due February 12) Spring 2024

This week’s exercises ask you to generalize this reduction to other ended-sequence data types.
“Quack” and “steque” (or equivalently, “two” and “three”) were swapped in the original

release of this homework.1 (I forgot that ducks like peas.) Feel free to submit solutions for either
problem 1 or problem 2(a) for feedback.

1. Describe how to implement a quack with three black-box stacks, so that each quack
operation requires O(1) amortized stack operations. Your solution should include both a
description of the quack update algorithms and an amortized time analysis.

The remaining problems are for you play with on your own.
Discussion in office hours or on Discord is welcome, but don’t submit solutions!

2. (a) Describe how to implement a steque with two black-box stacks, so that each steque
operation requires O(1) amortized stack operations.

(b) Describe how to implement a deque with two black-box stacks and a black-box queue,
so that each quack operation requires O(1) amortized stack/queue operations.

(c) Describe how to implement a deque with one black-box stack and one black-box
steque, so that each deque operation requires O(1) amortized stack/steque operations.

⋆3. Describe how to implement a stack with two black-box queues, so that each stack operation
takes O(

p
n) amortized queue operations, where n is the current number of items in the

stack. [Hint: Why is O(1) amortized queue operations impossible?]

Æ4. Describe how to implement a queue with O(1) black-box stacks, so that each queue
operation takes O(1) stack operations in the worst case. [Hint: Build double- and half-size
array-lists incrementally instead of all at once. Your implementation can store more than
one copy of each item in the abstract queue.]

1Jeff holds up his right hand and says, “Sometimes I can swear this is my right hand.”

2


