CS 225 Honors Homework 3 (due February 18) Spring 2024

1. Recall that a standard (FIFO) queue maintains a sequence of items subject to the following
operations.
* PusH(x): Add item x to the end (“back”) of the sequence.
* PurL(): Remove and return the item at the beginning (“front”) of the sequence.
We've already seen how to implement a queue using either a doubly-linked list or an

array-list, so that the data structure uses O(n) space (where n is the number of items in
the queue) and each operation takes O(1) amortized time.

(a) Now suppose we want to support the following operation instead of PULL:

* PurLMany(k): Remove the first k items from the front of the queue, and return
the kth item removed.

Suppose we use the obvious algorithm to implement PULLMANY:

PurLLManvy(k):
fori < 1tok
x « PuLL()
return x

Prove that in any intermixed sequence of PusH and PuLLMANY operations, each
operation runs in O(1) amortized time.

(b) Now suppose we also want to support the following operation instead of PUSH:
* PusHCLONES(x, k): Insert k copies of item x into the back of the queue.

Suppose we use the obvious algorithm to implement PUSHCLONES:

PusHCLONES(x, k):
fori«—1tok
PusH(x)

Prove that for any integers £ and n, there is a sequence of { PusHCLONES and
PULLMANY operations that requires Q(n{) time, where n is the maximum number of
items in the queue at any time. Such a sequence implies that the amortized time for
each operation is Q(n).

(c) Describe a data structure that supports arbitrary intermixed sequences of PUSHCLONES
and PULLMANY operations in O(1) amortized time per operation. Like a standard
queue, your data structure should use only O(1) space per item. [Hint: At least one
of the algorithms PusHCLONES and PULLMANY must be different!]

The remaining problems are for you play with on your own.
Discussion in office hours or on Discord is welcome, but don’t submit solutions!

CS 225 Honors Homework 3 (due February 18) Spring 2024

2. Suppose we have a standard queue with one additional operation Sizg(), which returns
the current number of items in the queue. We've already seen how to implement a queue
using either a doubly-linked list or an array-list, so that the data structure uses O(n) space
(where n is the number of items in the queue) and each operation takes O(1) amortized
time.

Consider the following new operation, which removes every tenth element from the
queue, starting at the beginning, in ©(n) worst-case time.

DECIMATE():
n « Size()
fori—0ton—1
ifimod 10=0
Purr() ((result discarded))
else

PusH(PuLL())

Prove that in any intermixed sequence of PusH, PuLL, and DECIMATE operations, the
amortized time for each operation is O(1).

3. Suppose you are maintaining a circular array X[0..n — 1] of counters, each taking a value
from the set {0,1,2}. The following algorithm increments one of the counters; if the
counter overflows, the algorithm resets it 0 and recursively increments its two neighbors.

INCREMENT(7):
X[i]—X[i]+1
if X[i]=3
X[i]«<0
INCREMENT((i — 1) mod n)
INCREMENT((i + 1) mod n)

(@) Supposen=5andX =[2,2,2,2,2]. What does X contain after we call INCREMENT(2)?

(b) Suppose n > 3 and all counters are initially 0. Prove that INCREMENT runs in O(1)
amortized time.

4. The simplest form of the dictionary or map data type maintains a set S of items, all of the
same arbitrary type, subject to the following operations:

» Finp(): If x € S, return a pointer directly to x’s record in the data structure; otherwise,
return NONE.

e INSERT(x): Add item x to the set S.

* DELETE(x): Remove item x from the set S.

If the data set is static, meaning that we will never call INSERT or DELETE, one of the
simplest dictionary data structures is a sorted array. Then we can implement FIND using
binary search in O(logn) worst-case time.

In the honors lecture on Monday, we showed that if we mark DELETEd items with
tombstones and rebuild the array when most of its items are marked, DELETE can be
implemented with one call to FIND plus O(1) amortized time.

CS 225 Honors Homework 3 (due February 18) Spring 2024

But what about INSERT? After all, we can’t just “pretend to insert” new items into the
array! One simple idea proposed by Jon Bentley and James Saxe in 1980, is to insert new
items in a second recursively-defined data structure. When the new data structure stores
the same number of items as the main sorted array, we merge them together into a new
larger sorted array.

Expanding the recursion, we can describe the Bentley-Saxe data structure as follows.
Conceptually, data structure consists of an infinite sequence Ay, A;,A, ... of sorted arrays;
for each index i, the array A; stores exactly 2! items. Each array 4; is active if and only
if the ith bit of the binary representation of n is equal to 1, and inactive otherwise. The
n items in the dictionary are stored in the active arrays; any data stored in the inactive
arrays is meaningless. (In practice, inactive arrays are not stored at all.) Each active array
is sorted, but items in different active arrays can be in either order.

For example, the 26 letters of the English alphabet would be stored in three sorted
arrays A,, As, and A;, because 26 = 11010, = 2! + 23 + 2% possibly as follows:

|JQ|/[AETORUWY|[BCDFGHKLMNPSTVXZ

(@) Describe an implementation of FIND(x) and analyze its worst-case running time.

(b) Bentley and Saxe’s algorithm for INSERT mirrors the standard algorithm for increment-
ing a binary counter. Their algorithm uses the MERGE subroutine from mergesort,
which merges two sorted arrays into a single sorted array in linear time.

INSERT(x):

NewA < new array of size 1 containing x

i<0

while A; is active
NewA < MERGE(NewA,A;) ((0(2") time))
mark A; inactive
ie—i+1

A; < NewA

mark A; active

INSERT runs in ©(n) time in the worst case (for example, when n becomes a power
of 2). Prove that in any sequence of INSERTSs starting with an empty data structure,
each Insert runs in O(logn) amortized time.

(c) Finally, Bentley and Saxe support DELETE(x) by tombstoning. (The INSERT algorithm
keeps all items in the data structure, even if they are “dead”.)
Prove that in any intermixed sequence of INSERTS and DELETES, starting with
an empty data structure, each INSERT runs in O(logn) amortized time, and each
DELETE uses one call to FIND plus O(1) amortized time.

*(d) Modify this data structure so that FIND runs in O(logn) time, and other amortized
time bounds are the same (up to constant factors). [Hint: Your modified data
structure should still consist of O(logn) sorted arrays whose sizes grow roughly
exponentially. Sure, you could use a balanced binary search tree instead, but that
would be too easy.]

