
CS 225 Honors Homework 5 (due March 4) Spring 2024

1. Suppose we are given a set P of n points in the plane. A kd-tree1 for P recursively subdivides
the points as follows. First we split the box into two smaller boxes with a vertical line, then
we split each of those boxes with horizontal lines, and so on, always alternating between
horizontal and vertical splits. Each time we split a box, the splitting line partitions the rest
of the interior points as evenly as possible by passing through a median point in the interior
of the box (not on its boundary). If a box doesn’t contain any points, we don’t split it any
more; these final empty boxes are called cells.

Building a kd-tree for 15 points.

Formally, a kd-tree is a perfectly balanced binary tree in which each node v stores the
following information:

• v.x and v.y: The coordinates of the point defining the cut at v

• v.dir ∈ {vertical,horizontal}: The direction of the cut at v.
• v.left and v.right: The children of v if v.dir= vertical
• v.up and v.down: The children of v if v.dir= horizontal
• v.size: the number of nodes in the subtree rooted at v.

Describe and analyze an algorithm that answers the following query in O(
p

n) time,
assuming the points P are stored in a kd-tree.

CountAbove(b): Return the number of points in P that lie above the horizontal
line y = b.

To avoid some boundary cases, assume that n= 2k − 1 for some integer k, that all points
in P have distinct x- and y–coordinates, and that no point in P lies directly on the line
y = b. [Hint: How many boxes does the query line intersect?]

There are 9 points above the green line.

1The name “kd-tree” was originally an abbreviation for “k-dimensional tree”, which suggests that I really should
call this example a “2d-tree”. Over time this meaning has been mostly forgotten, so most modern users would refer to
this data structure as a “two-dimensional kd-tree”. See also: Sahara Desert, Mississippi River, Lake Tahoe, La Brea Tar
Pits, and DC Comics. Also, who in their right mind uses the letter k to stand for dimension?
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The remaining problems are for you play with on your own.
Discussion in office hours or on Discord is welcome, but don’t submit solutions!

2. Suppose we are given a set P of n= 2k − 1 points in the plane with distinct coordinates,
stored in a kd-tree. Describe how to answer each of the following queries in O(

p
n) time.

If necessary specify any additional information that must be stored at each node in the
kd-tree (like v.size for question 1).

(a) LowestAbove(b): Return the lowest point (x , y) ∈ P such that y > b.

(b) LeftmostBelow(t): Return the leftmost point (x , y) ∈ P such that y < t.

(c) LineRight(k): Return a real number a such that there are exactly k points (x , y) ∈ P
where x < a.

(d) CenterLeft(r): Return the center of mass or average of all points (x , y) ∈ P such
that x < r. (The center of mass of k points (x1, y1), (x2, y2), . . . , (xk, yk) is the point
(
∑k

i=1
x i
k ,
∑k

i=1
yi
k ).) [Hint: For each node v, separately maintain the number of points

in v’s subtree, the sum of their x-coordinates, and the sum of their y-coordinates.]

(e) AboveRight(ℓ, b): Return the number of points (x , y) ∈ P such that x > ℓ and
y > b.

(f) BoxCount(ℓ, r, b, t): Return the number of points (x , y) ∈ P such that ℓ < x < r and
b < y < t.

(g) BoxFar(ℓ, r, b, t): Return the farthest point (x , y) ∈ P from the origin (that is,
maximizing the function x2 + y2) such that ℓ < x < r and b < y < t.

(h) L1-Neighbor(a, b): Find the largest diamond (square rotated 45◦) centered at (a, b)
with no point in P in is interior, and return a point in P that lies on the boundary of
that diamond.

⋆(i) L∞-Neighbor(a, b): Find the smallest axis-aligned square □ centered at (a, b) with
no point in P in is interior, and return a point in P that lies on the boundary of □.
(This one might require O(

p
n log n) time.)
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⋆3. There are several ways to add support for insertions and deletions in kd-trees.

(a) Show that using the Bentley-Saxe logarithmic method (described in Homework 3
problem 4) to support insertions, and using tombstones and global rebuilding to
support deletion, we get the following amortized time bounds:

• Insert: O(log2 n) amortized time
• Delete: O(log n) amortized time
• Any of the queries for problem 1 or 2: O(

p
n) worst-case time.

(b) Suppose we allow the kd-tree to use approximate medians to define cuts, so if a node
has size m, its children each have size at most αn for some constant α > 1/2. Show
that if we support insertions using a local-rebuilding strategy similar to scapegoat
trees, and we implement deletion using tombstones, we can achieve the following
time bounds:

• Insert: O(log n) amortized time
• Delete: O(log n) amortized time
• Any of the queries for problem 1 or 2: O(nβ) worst-case time, where β > 1/2 is a

constant that depends on α.
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