
CS 225 Honors Homework 5 (due March 4) Spring 2024

1. Suppose we are given a set P of n points in the plane. A kd-tree1 for P recursively subdivides
the points as follows. First we split the box into two smaller boxes with a vertical line, then
we split each of those boxes with horizontal lines, and so on, always alternating between
horizontal and vertical splits. Each time we split a box, the splitting line partitions the rest
of the interior points as evenly as possible by passing through a median point in the interior
of the box (not on its boundary). If a box doesn’t contain any points, we don’t split it any
more; these final empty boxes are called cells.

Building a kd-tree for 15 points.

Formally, a kd-tree is a perfectly balanced binary tree in which each node v stores the
following information:

• v.x and v.y: The coordinates of the point defining the cut at v

• v.dir ∈ {vertical,horizontal}: The direction of the cut at v.
• v.left and v.right: The children of v if v.dir= vertical
• v.up and v.down: The children of v if v.dir= horizontal
• v.size: the number of nodes in the subtree rooted at v.

Describe and analyze an algorithm that answers the following query in O(
p

n) time,
assuming the points P are stored in a kd-tree.

CountAbove(b): Return the number of points in P that lie above the horizontal
line y = b.

To avoid some boundary cases, assume that n= 2k − 1 for some integer k, that all points
in P have distinct x- and y–coordinates, and that no point in P lies directly on the line
y = b. [Hint: How many boxes does the query line intersect?]

There are 9 points above the green line.

1The name “kd-tree” was originally an abbreviation for “k-dimensional tree”, which suggests that I really should
call this example a “2d-tree”. Over time this meaning has been mostly forgotten, so most modern users would refer to
this data structure as a “two-dimensional kd-tree”. See also: Sahara Desert, Mississippi River, Lake Tahoe, La Brea Tar
Pits, and DC Comics. Also, who in their right mind uses the letter k to stand for dimension?

1



CS 225 Honors Homework 5 (due March 4) Spring 2024

The remaining problems are for you play with on your own.
Discussion in office hours or on Discord is welcome, but don’t submit solutions!

2. Suppose we are given a set P of n= 2k − 1 points in the plane with distinct coordinates,
stored in a kd-tree. Describe how to answer each of the following queries in O(

p
n) time.

If necessary specify any additional information that must be stored at each node in the
kd-tree (like v.size for question 1).

(a) LowestAbove(b): Return the lowest point (x , y) ∈ P such that y > b.

(b) LeftmostBelow(t): Return the leftmost point (x , y) ∈ P such that y < t.

(c) LineRight(k): Return a real number a such that there are exactly k points (x , y) ∈ P
where x < a.

(d) CenterLeft(r): Return the center of mass or average of all points (x , y) ∈ P such
that x < r. (The center of mass of k points (x1, y1), (x2, y2), . . . , (xk, yk) is the point
(
∑k

i=1
x i
k ,
∑k

i=1
yi
k ).) [Hint: For each node v, separately maintain the number of points

in v’s subtree, the sum of their x-coordinates, and the sum of their y-coordinates.]

(e) AboveRight(ℓ, b): Return the number of points (x , y) ∈ P such that x > ℓ and
y > b.

(f) BoxCount(ℓ, r, b, t): Return the number of points (x , y) ∈ P such that ℓ < x < r and
b < y < t.

(g) BoxFar(ℓ, r, b, t): Return the farthest point (x , y) ∈ P from the origin (that is,
maximizing the function x2 + y2) such that ℓ < x < r and b < y < t.

(h) L1-Neighbor(a, b): Find the largest diamond (square rotated 45◦) centered at (a, b)
with no point in P in is interior, and return a point in P that lies on the boundary of
that diamond.

⋆(i) L∞-Neighbor(a, b): Find the smallest axis-aligned square □ centered at (a, b) with
no point in P in is interior, and return a point in P that lies on the boundary of □.
(This one might require O(

p
n log n) time.)

2



CS 225 Honors Homework 5 (due March 4) Spring 2024

⋆3. There are several ways to add support for insertions and deletions in kd-trees.

(a) Show that using the Bentley-Saxe logarithmic method (described in Homework 3
problem 4) to support insertions, and using tombstones and global rebuilding to
support deletion, we get the following amortized time bounds:

• Insert: O(log2 n) amortized time
• Delete: O(log n) amortized time
• Any of the queries for problem 1 or 2: O(

p
n) worst-case time.

(b) Suppose we allow the kd-tree to use approximate medians to define cuts, so if a node
has size m, its children each have size at most αn for some constant α > 1/2. Show
that if we support insertions using a local-rebuilding strategy similar to scapegoat
trees, and we implement deletion using tombstones, we can achieve the following
time bounds:

• Insert: O(log n) amortized time
• Delete: O(log n) amortized time
• Any of the queries for problem 1 or 2: O(nβ) worst-case time, where β > 1/2 is a

constant that depends on α.

3


