1. Suppose we are given a set P of n points in the plane. A $k d$-tree ${ }^{1}$ for P recursively subdivides the points as follows. First we split the box into two smaller boxes with a vertical line, then we split each of those boxes with horizontal lines, and so on, always alternating between horizontal and vertical splits. Each time we split a box, the splitting line partitions the rest of the interior points as evenly as possible by passing through a median point in the interior of the box (not on its boundary). If a box doesn't contain any points, we don't split it any more; these final empty boxes are called cells.

Building a kd-tree for 15 points.
Formally, a kd-tree is a perfectly balanced binary tree in which each node v stores the following information:

- v.x and $v . y$: The coordinates of the point defining the cut at v
- $v . d i r \in\{$ vertical, horizontal $\}:$ The direction of the cut at v.
- v.left and v. right: The children of v if v.dir $=$ vertical
- v.up and v. down: The children of v if v.dir $=$ horizontal
- v.size: the number of nodes in the subtree rooted at v.

Describe and analyze an algorithm that answers the following query in $O(\sqrt{n})$ time, assuming the points P are stored in a kd-tree.

CountAbove(b): Return the number of points in P that lie above the horizontal line $y=b$.

To avoid some boundary cases, assume that $n=2^{k}-1$ for some integer k, that all points in P have distinct x - and y-coordinates, and that no point in P lies directly on the line $y=b$. [Hint: How many boxes does the query line intersect?]

There are 9 points above the green line.

[^0]
The remaining problems are for you play with on your own.

Discussion in office hours or on Discord is welcome, but don't submit solutions!

2. Suppose we are given a set P of $n=2^{k}-1$ points in the plane with distinct coordinates, stored in a kd-tree. Describe how to answer each of the following queries in $O(\sqrt{n})$ time. If necessary specify any additional information that must be stored at each node in the kd-tree (like v.size for question 1).
(a) LowestAbove(b): Return the lowest point $(x, y) \in P$ such that $y>b$.
(b) LeftmostBelow (t) : Return the leftmost point $(x, y) \in P$ such that $y<t$.
(c) LineRight (k) : Return a real number a such that there are exactly k points $(x, y) \in P$ where $x<a$.
(d) CenterLeft (r) : Return the center of mass or average of all points $(x, y) \in P$ such that $x<r$. (The center of mass of k points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)$ is the point $\left(\sum_{i=1}^{k} \frac{x_{i}}{k}, \sum_{i=1}^{k} \frac{y_{i}}{k}\right.$).) [Hint: For each node v, separately maintain the number of points in v 's subtree, the sum of their x-coordinates, and the sum of their y-coordinates.]
(e) $\operatorname{AboveRight}(\ell, b)$: Return the number of points $(x, y) \in P$ such that $x>\ell$ and $y>b$.
(f) $\operatorname{BoxCount}(\ell, r, b, t)$: Return the number of points $(x, y) \in P$ such that $\ell<x<r$ and $b<y<t$.
(g) $\operatorname{BoxFar}(\ell, r, b, t):$ Return the farthest point $(x, y) \in P$ from the origin (that is, maximizing the function $x^{2}+y^{2}$) such that $\ell<x<r$ and $b<y<t$.
(h) L_{1}-Neighbor (a, b) : Find the largest diamond (square rotated 45°) centered at (a, b) with no point in P in is interior, and return a point in P that lies on the boundary of that diamond.
*(i) L_{∞}-Neighbor (a, b) : Find the smallest axis-aligned square \square centered at (a, b) with no point in P in is interior, and return a point in P that lies on the boundary of \square. (This one might require $O(\sqrt{n} \log n)$ time.)
${ }^{\star} 3$. There are several ways to add support for insertions and deletions in kd-trees.
(a) Show that using the Bentley-Saxe logarithmic method (described in Homework 3 problem 4) to support insertions, and using tombstones and global rebuilding to support deletion, we get the following amortized time bounds:

- Insert: $O\left(\log ^{2} n\right)$ amortized time
- Delete: $O(\log n)$ amortized time
- Any of the queries for problem 1 or $2: O(\sqrt{n})$ worst-case time.
(b) Suppose we allow the kd-tree to use approximate medians to define cuts, so if a node has size m, its children each have size at most α n for some constant $\alpha>1 / 2$. Show that if we support insertions using a local-rebuilding strategy similar to scapegoat trees, and we implement deletion using tombstones, we can achieve the following time bounds:
- Insert: $O(\log n)$ amortized time
- Delete: $O(\log n)$ amortized time
- Any of the queries for problem 1 or 2: $O\left(n^{\beta}\right)$ worst-case time, where $\beta>1 / 2$ is a constant that depends on α.

[^0]: ${ }^{1}$ The name "kd-tree" was originally an abbreviation for " k-dimensional tree", which suggests that I really should call this example a " 2 d -tree". Over time this meaning has been mostly forgotten, so most modern users would refer to this data structure as a "two-dimensional kd-tree". See also: Sahara Desert, Mississippi River, Lake Tahoe, La Brea Tar Pits, and DC Comics. Also, who in their right mind uses the letter k to stand for dimension?

