
CS 225 Honors Homework 6 (due Tuesday, March 19) Spring 2024

1. A rope is a data structure that stores a string (that is, a sequence of characters) and that
supports the following operations:

• NewString(a) creates a new string of length 1 containing only the character a and
returns a pointer to that string.

• Concat(S, T) replaces the strings S and T (given by pointers) with the concatenated
string ST , and returns a pointer to the new string.

• Split(S, k) replaces the string S (given by a pointer) with the prefix S[1 .. k] and the
suffix S[k + 1 .. length(S)], and returns pointers to those two new strings. You can
safely assume that 1≤ k ≤ length(S)− 1.

• Lookup(S, k) returns a copy of the kth character in string S (given by a pointer), or
Null if the length of S is less than k.

For example, we can build the strings SPLAYTREE and UNIONFINDwith 18 calls toNewString
and 16 calls to Concat. Further operations modify our collection of strings as follows:

operation result stored strings
Split(SPLAYTREE, 5) SPLAY, TREE SPLAY, TREE,UNIONFIND
Split(UNIONFIND, 3) UNI, ONFIND SPLAY,TREE,UNI,ONFIND
Concat(UNI,SPLAY) UNISPLAY UNISPLAY,TREE,ONFIND
Split(UNISPLAY, 5) UNISP, LAY UNISP,LAY,TREE,ONFIND

NewString(Lookup(UNISP, 5)) P P,UNISP,LAY,TREE,ONFIND

Except for NewString and Lookup, these operations are destructive; at the end of the
sequence above, the string UNISPLAY is no longer stored anywhere in memory.

One standard implementation of ropes stores each string in a splay tree, implicitly
using the character positions as the search keys. Each node v stores two values, in addition
to its left and right child pointers: v.char is the corresponding character, and v.size is the
size of the subtree rooted at v. The rope for a single string of length n uses O(n) space.

• NewString: O(1) worst-case and amortized time.

• Lookup(S, k): Run a Select operation to find the target node, splay that node to the
root, and return the root’s character. This takes O(log|S|) amortized time.

• Concat(S, T): Run Lookup(T, 1) (which splays the first symbol in T to the root of its
splay tree), set T.left← S, and return T . This takes O(log(|S|+ |T |)) amortized time.

• Split(S, k): Run Lookup(S, k), set S1 ← S and S2 ← S.right, set S.right ← Null,
and return S1 and S2. This takes O(log|S|) amortized time.

Describe how to modify this data structure to support a new operation Reverse(S), which
replaces a string S with its reversal in O(1) worst-case and amortized time. For example,
Reverse(ONFIND) = DNIFNO. Achieving this time bound will require modifying some of
the other rope update algorithms; carefully describe these modifications. The amortized
times for all other operations should change by at most a small constant factor.

1

CS 225 Honors Homework 6 (due Tuesday, March 19) Spring 2024

The remaining problems are for you play with on your own.
Discussion in office hours or on Discord is welcome, but don’t submit solutions!

2. Define a left spine to be a binary tree in which no vertex has a right child. Let T be an
arbitrary binary search tree with n vertices, with keys 1, 2, . . . , n, for some n≥ 4.

(a) Prove that splaying the nodes of T in increasing order from 1 to n transforms T into
a left spine. [Hint: What does T looks like after the first i splays?]

(b) Show that it is possible to transform T into any other binary tree with n vertices using
splay operations. How many splays do you need in the worst case? [Hint: Find a
sequence of splays that turn a particular node into a leaf, and then recurse.]

(c) Why did we require n≥ 4?

3. Let T be a binary tree with n vertices.

(a) Prove that
∑

v depth(v) = Ω(n log n).

(b) Suppose that
∑

v depth(v) = O(n log n). Prove that maxv depth(v) = O(
p

n log n).

(c) Show that the analysis in part (b) is tight; that is, for any integer n describe a binary
search tree with n vertices such that

∑

v depth(v) = Θ(n log n) and maxv depth(v) =
Θ(
p

n log n)

4. In last Monday’s lecture, we saw how to efficiently implement Split and Join operations on
splay trees in O(log n) amortized time. This question asks you how to support the same
operations in AVL trees in O(log n) worst-case time.

(a) Suppose we are given two AVL trees T< and T>, with a total of n vertices, such that
every search key in T< is smaller than every search key in T>. Describe how to join
T< and T> into a new AVL tree containing all n vertices, in O(log n) time. Crucially,
the two input trees T< and T> may have very different sizes.

(b) Describe how to split an AVL tree T at a given key value k into two AVL trees, one
tree T<k containing all nodes in T with search keys less than k, and the other tree
T>k containing all nodes in T with search keys greater than k. You can assume no
node has search key equal to k. [Hint: Split T along the search path to k and then
use part (a) to assemble T<k and T>k. The analysis is the hard part.]

2

