- 1. A *rope* is a data structure that stores a string (that is, a sequence of characters) and that supports the following operations:
 - NEwSTRING(*a*) creates a new string of length 1 containing only the character *a* and returns a pointer to that string.
 - CONCAT(*S*, *T*) replaces the strings *S* and *T* (given by pointers) with the concatenated string *ST*, and returns a pointer to the new string.
 - SPLIT(*S*, *k*) replaces the string *S* (given by a pointer) with the prefix *S*[1..*k*] and the suffix *S*[*k* + 1..*length*(*S*)], and returns pointers to those two new strings. You can safely assume that $1 \le k \le length(S) 1$.
 - LOOKUP(*S*, *k*) returns a copy of the *k*th character in string *S* (given by a pointer), or NULL if the length of *S* is less than *k*.

For example, we can build the strings SPLAYTREE and UNIONFIND with 18 calls to NEwSTRING and 16 calls to CONCAT. Further operations modify our collection of strings as follows:

operation	result	stored strings
Split(SPLAYTREE, 5)	SPLAY, TREE	SPLAY, TREE, UNIONFIND
Split(UNIONFIND, 3)	UNI, ONFIND	SPLAY, TREE, UNI, ONFIND
Concat(UNI, SPLAY)	UNISPLAY	UNISPLAY, TREE, ONFIND
Split(UNISPLAY, 5)	UNISP, LAY	UNISP, LAY, TREE, ONFIND
NewString(Lookup(UNISP, 5))	Р	P , UNISP, LAY, TREE, ONFIND

Except for NEWSTRING and LOOKUP, these operations are destructive; at the end of the sequence above, the string UNISPLAY is no longer stored anywhere in memory.

One standard implementation of ropes stores each string in a splay tree, implicitly using the character positions as the search keys. Each node v stores two values, in addition to its left and right child pointers: *v.char* is the corresponding character, and *v.size* is the size of the subtree rooted at v. The rope for a single string of length n uses O(n) space.

- NEwSTRING: *O*(1) worst-case and amortized time.
- LOOKUP(*S*, *k*): Run a SELECT operation to find the target node, splay that node to the root, and return the root's character. This takes *O*(log|*S*|) amortized time.
- CONCAT(*S*, *T*): Run LOOKUP(*T*, 1) (which splays the first symbol in *T* to the root of its splay tree), set $T.left \leftarrow S$, and return *T*. This takes $O(\log(|S| + |T|))$ amortized time.
- SPLIT(*S*, *k*): Run LOOKUP(*S*, *k*), set $S_1 \leftarrow S$ and $S_2 \leftarrow S.right$, set *S.right* \leftarrow NULL, and return S_1 and S_2 . This takes $O(\log|S|)$ amortized time.

Describe how to modify this data structure to support a new operation Reverse(S), which replaces a string *S* with its reversal *in O*(1) *worst-case and amortized time*. For example, Reverse(ONFIND) = DNIFNO. Achieving this time bound will require modifying some of the other rope update algorithms; carefully describe these modifications. The amortized times for all other operations should change by at most a small constant factor.

The remaining problems are for you play with on your own. Discussion in office hours or on Discord is welcome, but don't submit solutions!

- 2. Define a *left spine* to be a binary tree in which no vertex has a right child. Let *T* be an arbitrary binary search tree with *n* vertices, with keys 1, 2, ..., n, for some $n \ge 4$.
 - (a) Prove that splaying the nodes of *T* in increasing order from 1 to *n* transforms *T* into a left spine. [*Hint: What does T looks like after the first i splays*?]
 - (b) Show that it is possible to transform *T* into *any* other binary tree with *n* vertices using splay operations. How many splays do you need in the worst case? [*Hint: Find a sequence of splays that turn a particular node into a leaf, and then recurse.*]
 - (c) Why did we require $n \ge 4$?
- 3. Let T be a binary tree with n vertices.
 - (a) Prove that $\sum_{v} depth(v) = \Omega(n \log n)$.
 - (b) Suppose that $\sum_{v} depth(v) = O(n \log n)$. Prove that $\max_{v} depth(v) = O(\sqrt{n \log n})$.
 - (c) Show that the analysis in part (b) is tight; that is, for any integer *n* describe a binary search tree with *n* vertices such that $\sum_{v} depth(v) = \Theta(n \log n)$ and $\max_{v} depth(v) = \Theta(\sqrt{n \log n})$
- 4. In last Monday's lecture, we saw how to efficiently implement Split and Join operations on splay trees in *O*(log *n*) amortized time. This question asks you how to support the same operations in AVL trees in *O*(log *n*) *worst-case* time.
 - (a) Suppose we are given two AVL trees $T_{<}$ and $T_{>}$, with a total of *n* vertices, such that every search key in $T_{<}$ is smaller than every search key in $T_{>}$. Describe how to join $T_{<}$ and $T_{>}$ into a new AVL tree containing all *n* vertices, in $O(\log n)$ time. Crucially, the two input trees $T_{<}$ and $T_{>}$ may have very different sizes.
 - (b) Describe how to split an AVL tree *T* at a given key value *k* into two AVL trees, one tree *T_{<k}* containing all nodes in *T* with search keys less than *k*, and the other tree *T_{>k}* containing all nodes in *T* with search keys greater than *k*. You can assume no node has search key equal to *k*. [Hint: Split *T* along the search path to *k* and then use part (a) to assemble *T_{<k}* and *T_{>k}*. The analysis is the hard part.]