CS 225 Honors Homework 7 (due Tuesday, April 2) Spring 2024

1. This question asks you to develop a data structure that maintains sequences of numbers,
all initially equal to zero, subject to the following operations. (I'll use array notation to
describe the underlying sequence, but your actual data structure should not be an array.)

* S « InrT(n): Initialize a new sequence S[1..n] containing n zeros.

* SuIFT(S,1,j,A): Add A to every number in the interval S[i..j]. The number A is
not necessarily an integer; moreover, A could be positive, negative, or zero.

* ScALE(S, 1, j,a): Multiply every number in the interval S[i..j] by a. The number a
is not necessarily an integer; moreover, a could be positive, negative, or zero.

* x « MinimuM(S, 1, j): Return the smallest number in the interval S[i..j].

Designing this data structure all at once in a single week is a bit much to ask in a single
homework. So I'm breaking the design up into steps, extending the deadline by a week,
and doubling the credit for this homework. To simplify grading, please start your solution
to each part at the top of a new page.

(@) [4 points] Describe a static data structure that supports MiNnimuM in O(logn) worst-
case time, where n is the length of the stored sequence. Your data structure does not
need to support SHFT or SCALE at all.

(b) [4 points] Describe a modification of your data structure from part (a) that supports
both MintmuM and SHIFT, each in O(logn) worst-case time. Your data structure does
not need to support ScaLE at all. Don’t describe the data structure from scratch;
instead, describe your changes from part (a), including any necessary changes to your
MinimuMm algorithm.

(©) [2 points] Further modify your data structure to support SHIFT, SCALE, and MINIMUM,
each in O(logn) worst-case time. Again, only describe your changes from part (b),
including any necessary changes to your earlier algorithms. [Hint: Remember that
the scale factor a can be negative.]

(d) [2 points] Finally, modify your data structure again so that INTT runs in O(1) worst-
case time; in particular, your INIT does not have time to allocate an array of n zeros.
Again, only describe your changes from part (c), including any necessary changes to
your earlier algorithms.

For simplicity, you can assume that n is a power of 2, and that arithmetic operations
(addition and multiplication) can be performed in O(1) time each.

[Hint: Use a balanced binary tree with extra information at the vertices. Be lazy.]

Please read the note about partial credit on the next page.




CS 225 Honors Homework 7 (due Tuesday, April 2) Spring 2024

A note about partial credit:

Whenever you are asked to design and analyze an algorithm or a data structure, it is important
to keep your priorities straight:

Clarity is more important than correctness.

Correctness is more important than speed.

An algorithm that correctly solves the stated problem is always better than an algorithm that
does not correctly solve the stated problem, even if the correct algorithm runs in exponential
time. If your algorithm is incorrect, it doesn’t matter how fast it is. We provide target running
times in part to let you know that those running times are possible, but your first goal should
be to make something that works at all. Designing a slower solution is often the best first step
toward finding a faster one.

Similarly, a clearly-presented result that contains errors is always better than a correct but
badly presented result. If your presentation is poorly written, it doesn’t matter whether the
algorithm / data structure you're describing is correct. Clearly expressing an incorrect solution is
often the best first step toward finding a correct solution, in part because expressing the incorrect
solution clearly make you think about it more clearly, which makes the errors easier to spot.

In particular, we strongly recommend writing your algorithms using pseudocode—not raw
English prose, and definitely not compilable C++ or Java or Python or whatever. Structure your
pseudocode using standard iterative programming idioms, like indentation, for-loops, while-loops,
if-then-else blocks, and function calls. Start each step of your pseudocode on a new line.

Your partial credit for homework reflects these priorities: Slow correct algorithms are worth
significantly more partial credit than fast incorrect algorithms; and unreadable solutions are
worth nothing, even if they are correct. The same will be true in CS 374 and other later theory
courses.



CS 225 Honors Homework 7 (due Tuesday, April 2) Spring 2024

The remaining problems are for you play with on your own.
Discussion in office hours or on Discord is welcome, but don’t submit solutions!

2. A maxiphobic heap is a mergeable priority queue similar to a leftist heap. A maxiphobic
heap is a (not necessarily balanced) binary tree, where each node v stores four values:

* A pointer v.left to the left child of v
* A pointer v.right to the right child of v
* A priority v.priority, which is larger than the priority of v’s parent (if any)

* An integer v.size equal to the number of descendants of v (including v itself)

MERGE is implemented as follows:

MERGE(U,V):
if u =NuLL
return v
if v =NuLL
return u
if u.priority > v.priority
swap u «—v

w — u.left

X « u.right

biggest = max{v.size, w.size, x .size}

if biggest = v.size
u.left < MERGE(W, x)
u.right < v

else if biggest = w.size
{(u.left = w))
u.right < MERGE(V, x)

else ((biggest = x.size))
u.left — MERGE(v, w)
{(u.right = w))

return u

Prove that MERGE runs in O(logn + log m) time in the worst case, where n and m are the
sizes of the two input heaps.

3. Describe and analyze a mergeable priority queue that supports the following operation, in
addition to the standard MERGE, INSERT, EXTRACTMIN, and DECREASEKEY:

* SHIFT(PQ,A): Add A to the priority of every item in the priority queue PQ.

MERGE should run in O(log n+log m) time, where n and m are the sizes of the two priority
queues. INSERT, EXTRACTMIN, DECREASEKEY, and SHIFT should each run in O(logn) time,
where n is the size of the priority queue.

[Hint: If we didn’t have to support MERGE, then supporting SHIFT in O(1) time would
be trivial. (Do you see why?) Think about how you would MERGE two different heaps
that have had different As added to them.]



