
CS 225 Honors Homework 8 (due Tuesday, April 16) Spring 2024

1. Suppose we are given an undirected, unrooted tree T with n vertices, represented using an
adjacency list data structure. The tree T necessarily has n− 1 edges.

For any two vertices u and v of T , let pathT (u, v) denote the unique path from u to v
in T . For any three vertices u, v, w of T , let meetT (u, v, w) denote the unique vertex of T
that lies on all three paths pathT (u, v) and pathT (u, w) and pathT (v, w).

Describe and analyze a data structure that supports the following query:

• Meet(u, v, w): return the vertex meetT (u, v, w).

For full credit, your solution should have the following components:

• A description of your actual data structure

• An analysis of the space used by your data structure

• A preprocessing algorithm that builds your data structure from an adjacency list for T

• An analysis of the running time of your preprocessing algorithm.

• A query algorithm that implements Meet.

• A brief argument that your query algorithm is correct.

• An analysis of the running time of Meet.

For full credit, your algorithm should use O(n) space, your preprocessing algorithm should
run in O(n) time, and your query algorithm should run in O(1) time; however, larger
and/or slower data structures are worth significant partial credit if they are correct.

[Hint: Make liberal use of results from both the regular lecture and the honors lecture.
Do not reinvent the wheel. If you use a result from class, just explain how to use it;
don’t regurgitate the details. Most of the components of your solution should be very
short, because we’ve seen the details elsewhere. In particular, give the tree T a root and
use the LCA data structure described in the honors lecture on Monday. What can you say
about the tree lowest common ancestors lcaT (u, v) and lcaT (u, w) and lcaT (v, w)?]

1



CS 225 Honors Homework 8 (due Tuesday, April 16) Spring 2024

The remaining problems are for you play with on your own.
Discussion in office hours or on Discord is welcome, but don’t submit solutions!

2. Let A[1 .. n] be an array of numbers. Recall that a Cartesian tree for A is a rooted binary
tree with n vertices, each with a numerical value satisfying two properties:

• Listing the vertex values according to an inorder traversal of T yields the original
array A.

• Values in T satisfy the min-heap property: If v is a child of p, then v.value> p.value.

(a) Prove that if the numbers in A are distinct, then A has a unique Cartesian tree.

(b) Describe an algorithm that constructs the Cartesian tree of A, and show that it runs in
O(n) time.

3. Suppose we are given a set P of n points in the plane, each specified by an x-coordinate
and a y-coordinate. A Cartesian tree for P is a rooted binary tree T with n vertices, each
associated with a unique point of P, satisfying two properties:

• An inorder traversal of T lists the points in P in sorted order by increasing x-coordinate.

• The y-coordinates in T satisfy the min-heap property: If v is a child of p, then
v.y > p.y .

Equivalently, after sorting P by increasing x-coordinate, the Cartesian tree for P is precisely
the Cartesian tree of the y-coordinates of P.

The reduction from RMQ to LCA implies that we can answer the following query in
O(log n) time:

• LowestBetween(l, r): Return the lowest point p ∈ P (if any) such that l < p.x < r.

Specifically, let pl be the leftmost point in P such that pl .x > l, and let pr be the rightmost
point in P such that pr .x < r. To answer LowestBetween(l, r), we find pl and pr in
O(log n) time using a binary search over the x-coordinates of P, after which we find and
return lcaT (pl , rl) in O(1) time.

Describe how to answer the following 3-sided range query in O(log n+ k) time, where k
is the size of the output:

• ListAllBelow(l, r, t): Return a list of all points p ∈ P such that l < p.x < r and
p.y < t.

[Hint: Finding pl and pr still takes O(log n) time. The rest of the query algorithm takes
O(1) time, plus O(1) time per output point.]

2


