1. Suppose we are given an undirected, unrooted tree T with n vertices, represented using an adjacency list data structure. The tree T necessarily has $n-1$ edges.

For any two vertices u and v of T, let $\operatorname{path}_{T}(u, v)$ denote the unique path from u to v in T. For any three vertices u, v, w of T, let $\operatorname{meet}_{T}(u, v, w)$ denote the unique vertex of T that lies on all three paths $\operatorname{path}_{T}(u, v)$ and $\operatorname{path}_{T}(u, w)$ and $\operatorname{path}_{T}(v, w)$.

Describe and analyze a data structure that supports the following query:

- $\operatorname{Meet}(u, v, w)$: return the vertex meet $_{T}(u, v, w)$.

For full credit, your solution should have the following components:

- A description of your actual data structure
- An analysis of the space used by your data structure
- A preprocessing algorithm that builds your data structure from an adjacency list for T
- An analysis of the running time of your preprocessing algorithm.
- A query algorithm that implements Meet.
- A brief argument that your query algorithm is correct.
- An analysis of the running time of Meet.

For full credit, your algorithm should use $O(n)$ space, your preprocessing algorithm should run in $O(n)$ time, and your query algorithm should run in $O(1)$ time; however, larger and/or slower data structures are worth significant partial credit if they are correct.
[Hint: Make liberal use of results from both the regular lecture and the honors lecture. Do not reinvent the wheel. If you use a result from class, just explain how to use it; don't regurgitate the details. Most of the components of your solution should be very short, because we've seen the details elsewhere. In particular, give the tree T a root and use the LCA data structure described in the honors lecture on Monday. What can you say about the tree lowest common ancestors $\operatorname{lca}_{T}(u, v)$ and $\operatorname{lca}_{T}(u, w)$ and $\operatorname{lca}_{T}(v, w)$?]

The remaining problems are for you play with on your own.

 Discussion in office hours or on Discord is welcome, but don't submit solutions!2. Let $A[1 . . n]$ be an array of numbers. Recall that a Cartesian tree for A is a rooted binary tree with n vertices, each with a numerical value satisfying two properties:

- Listing the vertex values according to an inorder traversal of T yields the original array A.
- Values in T satisfy the min-heap property: If v is a child of p, then $v . v a l u e>p . v a l u e$.
(a) Prove that if the numbers in A are distinct, then A has a unique Cartesian tree.
(b) Describe an algorithm that constructs the Cartesian tree of A, and show that it runs in $O(n)$ time.

3. Suppose we are given a set P of n points in the plane, each specified by an x-coordinate and a y-coordinate. A Cartesian tree for P is a rooted binary tree T with n vertices, each associated with a unique point of P, satisfying two properties:

- An inorder traversal of T lists the points in P in sorted order by increasing x-coordinate.
- The y-coordinates in T satisfy the min-heap property: If v is a child of p, then v.y >p.y.

Equivalently, after sorting P by increasing x-coordinate, the Cartesian tree for P is precisely the Cartesian tree of the y-coordinates of P.

The reduction from RMQ to LCA implies that we can answer the following query in $O(\log n)$ time:

- LowestBetween (l, r) : Return the lowest point $p \in P$ (if any) such that $l<p . x<r$.

Specifically, let p_{l} be the leftmost point in P such that $p_{l} \cdot x>l$, and let p_{r} be the rightmost point in P such that $p_{r} . x<r$. To answer LowestBetween (l, r), we find p_{l} and p_{r} in $O(\log n)$ time using a binary search over the x-coordinates of P, after which we find and return $l c a_{T}\left(p_{l}, r_{l}\right)$ in $O(1)$ time.

Describe how to answer the following 3 -sided range query in $O(\log n+k)$ time, where k is the size of the output:

- $\operatorname{ListAllBelow}(l, r, t):$ Return a list of all points $p \in P$ such that $l<p . x<r$ and p. $y<t$.
[Hint: Finding p_{l} and p_{r} still takes $O(\log n)$ time. The rest of the query algorithm takes $O(1)$ time, plus $O(1)$ time per output point.]

