
2 Week 5: February 26

2.1 Rank and Select Queries

Suppose we want to design an ordered dictionary data structure that not only supports the
standard operations Find, Insert, Delete, Pred, and Succ, but also supports two additional
operations:

• Rank(k): Return the rank of k: the number of items in the dictionary with value at most k.
• Select(r): Return the rth smallest item in the dictionary, that is, the item with rank r.

For example, if the dictionary holds the 26 letters of the alphabet, then Rank(J) should return
the integer 10, and Select(18) should return the letter R.

We can support the standard operations using a standard binary search tree. With only a small
modification to these data structures, we can support Rank and Select queries with exactly the
same worst-case (or amortized) time as Find.

Specifically, we augment the binary search tree by storing an additional value v.size at each
node v, which is equal to the size of the subtree rooted at v, in addition to the search key v.key
and the child pointers v.left and v.right. Then the Rank and Select queries can be implemented
recursively as follows; in both algorithms, the input argument v is (a pointer to) a node in the
tree.

Rank(v, k):
if v == NULL

return 0

if v.left == NULL
leftsize ← 0

else
leftsize ← v.left.size

if k == v.key
return 1 + leftsize

else if k < v.key
return Rank(v.left, k)

else
return leftsize + 1 + Rank(v.right, k)

Select(v, r):
if v == NULL or r < 0 or r > v.size

explode

if v.left == NULL
leftsize ← 0

else
leftsize ← v.left.size

if r == leftsize + 1
return v

1



else if r < leftsize + 1
return Select(v.left, r)

else
Select(v.left, r - leftsize - 1)

The Rank algorithm follows the usual search path from the root to the node with key k. Whenever
the search path turns to the right right, we know that both v and every node in the right subtree
of v have keys smaller than k, so we have identified v.left.size+ 1 nodes smaller than k.

Conversely, in the Select algorithm, if r > v.left.size+ 1, then we know that the target of our
search must have rank r − v.left.size− 1 in the right subtree of v. Thus Select also follows the
standard binary search path to its target node.

These augmented trees are sometimes called order statistic trees by people who feel the need to
name every single variant of every data structure.

M 26

G 12 Y 13

J 4E 6 X 4Q 9

D 4 F 1 I 2 L 1 O 3 T 5 W 1 Y 2

H 1

K 1

N 1 R 3

S 1

U 1A 3

C 2

P 1

B 1

Z 1

Figure 1: An order-statistic tree for the alphabet; each node stores a search key and the number of nodes in its subtree.

M 26

G 12 Y 13

J 4E 6 X 4Q 9

D 4 F 1 I 2 L 1 O 3 T 5 W 1 Y 2

H 1

K 1

N 1 R 3

S 1

U 1A 3

C 2

P 1

B 1

Z 1

Rank(R) = 

 +1

+1

1+…

+12

+3

+1

Figure 2: Answering the query Rank(R)

2



2.2 Construction and Updates

Of course we can’t just magically assume that the v.size is correct; we have to maintain this value
as nodes are inserted into or deleted from the subtree rooted at v.

• When the tree is first constructed, we can compute v.size for all nodes v in O(n) time using
a single post-order traversal:

– If v is a leaf, then v.size= 1.
– Otherwise, v.size= v.left.size+ 1+ v.right.size1.

• Whenever we insert a new node x into the tree, we add 1 to v.size for every node v on the
search path to x .

• Whenever we delete a node x from the tree, we first subtract 1 from v.size for every node
v on the search path to x .

These extra operations increase the construction time, insertion time, and deletion time by at
most a small constant factor.

2.3 . . . In Balanced Binary Search Trees

We can support all the standard ordered dictionary operations in O(log n) time (possibly amortized
and/or expected) using any balanced binary search tree: AVL tree, red-black tree, scapegoat tree,
splay tree, treap, skip list, etc. (The query and updates times for some of these data structures,
are amortized and/or randomized.) With some care, we can support Rank and Select in the
same running time. The precise details depend on how the binary search tree is kept balanced.
For example:

• If we are using a tree that maintains balance by rotations, such as an AVL tree or a splay
tree, we recalculate v.size after any rotation that changes the children of v. Each rotation
changes the children of at most two vertices, so this recalculation takes only O(1) time per
rotation.

• If we are using a splay tree, both Rank and Select should splay the target node before
returning a result, just like Find.

2.4 Other Augmentation: Prefix Queries

This same augmentation idea generalizes to other kinds of queries. For example, Suppose each
item in our ordered dictionary has a positive weight, which is independent of its search key.
(We can store the weight of any item a field v.wt at the corresponding node v.) Consider the
following terribly-named queries.

• TotalWtLess(k): Return the total weight of all items with less than k
• TotalWtRank(r): Return the total weight of items with the r smallest keys
• RankByWt(w): Find the largest rank r such that TotalWtRank(r)≤ w
• SelectByWt(w): Find the largest search key k such that TotalWtLess(k)≤ w

To support these queries, maintain for each node v the value v.totalwt, which is the sum of the
weights of nodes in the subtree of v. The new query algorithms are nearly identical to Rank and
Select, the maintenance of the extra fields is almost identical to maintaining subtree sizes, and
the query algorithms have the same running time as Find.

• MaxWtLess(k): Return the maximum weight among all items less than k

3



• MaxWtRank(k): Return the maximum weight of all items with rank at most r

To support these two queries, maintain for each node v the value v.maxwt, which is the maximum
weight among all nodes in the subtree of v. Similarly, if we store v.minwt, we can support the
corresponding minimum-weight queries

• MinWtLess(k): Return the minimum weight among all items less than k
• MinWtRank(k): Return the minimum weight of all items with rank at most r

The key feature of all these queries is that they are computing efficiently decomposable functions
of prefixes of the item sequence. A function f : 2X → Y over subsets of the set X is efficiently
decomposable if, for any two disjoint subsets A and B, we have f (A∪ B) = f (A) ⋄ f (B), where ⋄ is
some function we can compute in O(1) time.

4


	Week 5: February 26
	Rank and Select Queries
	Construction and Updates
	…In Balanced Binary Search Trees
	Other Augmentation: Prefix Queries


