
Data Structures Lecture 9: Range-Minimum Queries [Sp’24]

9 Range Minimum Queries

Suppose we are given an array A[1 .. n] of real numbers, and we want to build a data structure
that supports the following query:

• MinimumBetween(l, r): Return the minimum value in the subarray A[l .. r]

In this lecture I’ll describe several range minimum query data structures, with different tradeoffs
between the size of the data structure and the time to answer queries, ultimately leading to a
structure that uses O(n) space and answers queries in O(1) worst-case time. These various data
structures are summarized in the following table.

technique space query time
lookup table O(n2) O(1)
binary search O(n) O(log n)
sparse table O(n log n) O(1)
indirection O(n log log n) O(1)

recursive indirection O(n log∗ n) O(log∗ n)
tetrarosic1 precomputation O(n) O(1)

9.1 Standard Solutions

Lookup Table

The simplest RMQ data structure is a brute-force n× n lookup table containing the answers to all
possible range-minimum queries. We can construct this table in O(n2) time as follows:

AllRangeMinima(A[1 .. n]):
for i← 1 to n

for j← 1 to i − 1
RMQ[i, j]←∞

RMQ[i, i]← A[i]
for j← i + 1 to n

RMQ[i, j]←min
�

RMQ[i, j − 1], A[j]
	

return RMQ[1 .. n, 1 .. n]

The resulting data structure uses O(n2) space and answers queries in O(1) time.

Sparse Lookup Table

We can reduce the size of the lookup table to O(n log n) using the following simple observation:
Every range A[l, r] .. is the union of at most two ranges whose lengths are powers of 2. Specifically,
for any indices i and j, we have

RMQ[i, j] =min
�

RMQ[i, i + 2k − 1], RMQ[j − 2k − 1, j]
	

1From the Greek τετρα- (“four”) and ρωσικός (“Russian”).

© Copyright 2024 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

Data Structures Lecture 9: Range-Minimum Queries [Sp’24]

where k = ⌊log2(j − i + 1)⌋. So instead of precomputing the minima of every range, we can
precompute only the minima of ranges whose lengths are powers of 2. The following algorithm
builds an array RMQ′ such that RMQ′[i, k] = RMQ′[i, i + 2k − 1].

SparseRangeMinima(A[1 .. n]):
for i← 1 to n

RMQ′[i, 0]← A[i]
L← 1
for ℓ← 1 to ⌊log2 n⌋

L← 2L 〈〈L = 2ℓ〉〉
for i← 1 to n− L

RMQ′[i,ℓ]←min
�

RMQ′[i,ℓ− 1], RMQ′[i + L/2,ℓ− 1]
	

return RMQ′[1 .. n, 1 .. ⌊log2 n⌋]

The array RMQ′ clearly uses O(n log n) space. With this array in hand, we can now answer any
range minimum query in O(1) time2 using two lookups:

Minimum(i, j):
k← ⌊log2(j − i + 1)⌋
return min
�

RMQ′(i, k), RMQ′(j − 2k + 1, k)
	

Tournament Tree

The simplest linear-space data structure builds a balanced binary tournaments tree T , whose
leaves store the values in the sequence in order from left to right. Each node v stores the following
information:3

• v.value: the value of v (only if v is a leaf)

• v.left: a pointer to v’s left child, if any

• v.right: a pointer to v’s right child, if any

• v.first: the minimum index among all leaf descendants of v

• v.last: the maximum index among all leaf descendants of v

• v.min: the minimum value among all leaf descendants of v

The min, first, and last fields are defined recursively as follows: If v is a leaf, we have

v.first= v.last and v.min= v.value,

and otherwise,

v.first= v.left.first v.last= v.right.last
v.min=min{v.left.min, v.right.min}.

2Careful readers might object that logarithms can’t be computed using only O(1) standard arithmetic operations,
so why does the first line take only O(1) time? Most modern CPUs can compute ⌊log2 ℓ⌋ for any integer ℓ using either
a single bsr (bit scan reverse) instruction, or a single clz or lzcnt (count leading zeros) instruction and a subtraction.
But even if your CPU doesn’t have bsr or clz or lzcnt instructions—weird flex, but okay—it is easy to precompute a
separate lookup table containing ⌊log2 ℓ⌋, for every integer ℓ from 1 to n, in O(n) time. Similarly, 2k can be computed
in O(1) time using a single left-shift instruction.

3In fact, we can compute v.left and v.right on the fly if each node stores the size of its subtree. If n is a power of 2,
we don’t even need to store that!

2

https://en.wikipedia.org/wiki/Find_first_set#Hardware_support

Data Structures Lecture 9: Range-Minimum Queries [Sp’24]

Initializing this data structure in O(n) time is straightforward.
To answer Minimum, we use the following recursive algorithm. The first argument v is a

node in the tournament tree; specifically, in the top-level function call, v is the root.

Minimum(v, i, j):
if i > v.last or j < v.first

return∞
else if i ≤ v.first and j ≥ v.last

return v.min
else

lmin←Minimum(v.left, i, j)
rmin←Minimum(v.right, i, j)
return min{lmin, rmin}

Minimum(v, i, j) calls itself recursively if and only if v.first< i ≤ v.last or v.first≤ j < v.last.
At each level of the tree, there is at most one node v that meets each of these conditions. (These
are the blue nodes in the figure below.) It follows that the total number of recursive calls is at
most 4 log2 n; we conclude that Minimum runs in O(log n) time.

Said differently, the preprocessing algorithm precomputes the minima of O(n) canonical
ranges, each associated with a node in the tournament tree.⁴ TheMinimum algorithm recursively
partitions the query range A[i .. j] into O(log n) disjoint canonical ranges. The output of
Minimum(·, i, j) is the smallest min value among these O(log n) nodes. (These are the red
octagonal nodes in the figure below.)

P A C M Y B O X W I T H F V E

A C M B W I F E

A B I E

A

B

D

K D Z N L Q U R J

D L Q J

D J

D

G S

G

G

A

Answering a range-minimum query using a tournament tree

While this data structure does use optimal O(n) space, its design is inextricably linked to
a recursive bisection of the data. Beating the O(log n) query time with linear space using this
approach seems unlikely; all our later data structures are variants of lookup tables.

9.2 Indirection

Partition the original array of length n into n/b blocks, each of length b. (Pad the array with∞s if
necessary so that n/b is an integer.) Equivalently, reindex the input array A as a two-dimensional
array A[1 .. n/b, 1 .. b].

Store a sparse table for each block, and store an array M[1 .. n/b] of row minima. Then we
can answer a range-minimum query as follows:

⁴If n is a power of 2, then the length of each canonical range is a power of 2, and the final index of any canonical
range is an integer multiple of its length.

3

Data Structures Lecture 9: Range-Minimum Queries [Sp’24]

Minimum(A, i, j):
ı̂← ⌈i/b⌉
ȷ̂← ⌈ j/b⌉
if ı̂ = ȷ̂

return Minimum(A[̂ı, ·], i − (̂ı− 1)b, j − (̂ı− 1)b) 〈〈sparse table〉〉
else

left←Minimum(A[̂ı, ·], i − (̂ı− 1)b, b) 〈〈sparse table〉〉
mid←Minimum(M , ı̂, ȷ̂) 〈〈sparse table〉〉
right←Minimum(A[ȷ̂, ·], 1, j − (ȷ̂− 1)b) 〈〈sparse table〉〉
return min{left,mid, right}

The query algorithm clearly runs in O(1) time. We need (n/b) ·O(b log b) = O(n log b) space
for the sparse tables for each row, plus O((n/b) log(n/b)) space for the sparse table for the row
minima. If we set b = ⌈α lg n⌉ for some constant α, the row tables use a total of O(n log log n)
space, and the row-minima table uses O(n) space.

P A C M Y B O X W I T H F V EK D Z N L Q U R J G S ∞ ∞

A B I E D J G

Answering a range-minimum query with one level of indirection

9.3 Recursive Indirection

Instead of immediately falling back to sparse tables, suppose we apply a second level of indirection
to the row tables. Then for each of the n/b rows, we need O(b log log b) space, and therefore
O(n log log b) = O(n log log log n) space overall.

More generally, if we apply k levels of indirection, the size of the data structure is O(kn+
n log(k) n), and the query time is O(k). The k-fold logarithm function log(k) n is defined recursively
as follows:

log(k) n=

¨

n if k = 0

log log(k−1) n otherwise

Each level of indirection adds another O(n) term to the space bound and two more table look-ups
in the query algorithm in the worst case.

For large enough k, the O(kn) time in the space bound is actually larger than the O(n log(k) n)
term. The crossover happens approximately when k is equal to the iterated logarithm log∗ n;
this is the smallest value of k such that log(k) n ≤ 1. If we use log∗ n levels of indirection, the
overall size of our data structure is O(n log∗ n), and we can answer any range-minimum query in
O(log∗ n) time.

9.4 Lowest Common Ancestors

Before we go any further, let me first describe a seemingly unrelated problem. Let u and v be
two vertices in an arbitrary rooted tree T . The lowest common ancestor lcaT (u, v) of u and v is
the deepest node in T that is both an ancestor of u and an ancestor of v. (Recall that an ancestor
of v is either v itself or an ancestor of v’s parent.) The LCA problem asks us to preprocess T into a

4

Data Structures Lecture 9: Range-Minimum Queries [Sp’24]

data structure, so that later the lowest-common ancestor of any two vertices of T can be reported
quickly.

Reducing RMQ to LCA: Cartesian Trees

We can reduce the range-minimum query problem for an array A[1 .. n] to the least-common
ancestor problem by constructing the Cartesian tree of A. A Cartesian tree is a binary tree T with
n nodes, each labeled with a unique input value A[i], satisfying the following properties:

• An inorder traversal of T yields the original input sequence A[1 .. n].

• The values in T satisfy the minimum heap property: If u is the parent of v, then u’s value
is smaller than v’s value.

Said differently, if we associate a unique rank from 1 to n with each node, a Cartesian tree is
simultaneously a binary search tree with respect to ranks, and a min-heap with respect to the
corresponding values A[v.rank].

The minimum value in any range A[i .. j] is precisely the value of the least common ancestor
of the nodes in T with ranks i and j. Conversely, the least common ancestor of two arbitrary
nodes u and v of T is the node with minimum value whose rank is between u.rank and v.rank.
Thus, if we can preprocess any Cartesian tree to answer LCA queries, we can also preprocess any
array of numbers to answer range-minimum queries, with the same asymptotic space and query
time bounds.

P

A

C

K

M

Y

B

O

X

W

I

T

H

F

V

E

D

Z

N

L

Q

U

R

J

G

S

P A C M Y B O X W T H F V EK Z N L Q U R G SI D J

Reducing range minimum queries to LCA queries in a Cartesian tree.

Reducing LCA to ±1RMQ: Euler Tours

It turns out that the simplest way to preprocess trees for LCA queries is to reduce back to (a
special case of) range-minimum queries!

Let T be an arbitrary (not necessarily binary) rooted tree. We use a particular method for
“flattening” T into an array called an Euler tour. An Euler tour of a rooted tree T is essentially the
result of walking around T , starting at the root and keeping your left hand on the wall, recording
each node each time your left hand touches it.

Suppose T is represented by storing at each node v a pointer v.child to its first child and a
pointer v.next to its next sibling, exactly as we did in the previous lecture for Fibonacci heaps
and pairing heaps. Then each of the following algorithms executes an Euler tour of T . (The
first algorithm is invoked at the root of T ; the second algorithm requires each node to store am
additional pointer to its parent.)

5

Data Structures Lecture 9: Range-Minimum Queries [Sp’24]

EulerTour(v):
visit v
w← v.child
while w ̸= Null

EulerTour(w)
visit v

EulerTour(T):
v← T.root
while v ̸= Null

visit v
if v.child ̸= Null

v← v.child
else if v.next ̸= Null

v← v.next
else

v← v.parent

Each node v in T appears in the Euler tour of T exactly deg(v) + 1 times, so the total length
of the Euler tour is

∑

v(deg(v)+1) =
∑

v deg(v)+ n= (n−1)+ n= 2n−1. (We can also derive
this length by observing that the Euler tour traverses each of the n− 1 edges of T exactly twice.)
It follows that both of our algorithms for computing the Euler tour run in O(n) time.

We can now reduce the LCA problem in T to an RMQ problem as follows:

1. Compute the depth of every node in T using a using a standard breadth-first search.

2. Record an Euler tour of T into a new array ET[1 .. 2n− 1]. For each node v, record the
index v.index of any occurrence of v in this array.

3. Build a depth array D[1 .. 2n− 1] by defining D[i] = ET[i].depth for each index i.

4. Finally, preprocess the depth array D for range-minimum queries. Vertex ET[i] is the least
common ancestor of nodes u and v if and only if D[i] is the smallest depth in the range
D[u.index .. v.index].

1

0

2

3

4

5

1

6

8

7

5

7

6

4

5

3

2

7

6

5

6

8

7

4

3

4

0 1 0 2 3 4 5 4 3 2 1 2 3 4 5 6 7 8 7 6 6 7 6 4 4 3 3 5 6 7 6 5 6 7 8 7 6 5 3 4 3 2 1 01 5 5 425 4

Reducing LCA queries to range minimum queries in an Euler tour of depths

Thus, if we can preprocess any array of numbers to answer range-minimum queries, we can
also preprocess any rooted tree to answer LCA queries, with the same asymptotic space and
query time bounds. Moreover, by combining this reduction with the previous one, we can reduce
the RMQ problem for arbitrary arrays to the special case of RMQ where each array entry is either
one greater or one smaller than its neighbors, with the same performance bounds. Tthis special
case of the range-minimum query problem is often called ±1RMQ.

9.5 Four Russians: Precompute Everything!

The last trick we need to reduce the space to O(n) is one of the simplest examples of the Four
Russians technique.

6

Data Structures Lecture 9: Range-Minimum Queries [Sp’24]

Suppose we are given an array D[1 .. N] where adjacent entries differ by 1, perhaps as output
of our earlier reductions to and from the LCA problem. Following our earlier indirection technique,
we partition the array into N/b blocks, each of length b, and build a sparse lookup table for the
sequence of N/b block minima. But we do not build an independent RMQ data structure for
each block.

Instead, we observe that two blocks A[1 .. b] and B[1 .. b] can use the same RMQ data
structure if they have the same sequences of differences, that is, A[i + 1]−A[i] = B[i + 1]− B[i]
for all i. Because each difference A[i + 1] − A[i] is either −1 or +1, there are at most 2b−1

equivalence classes of blocks; moreover, we can encode the equivalence class of any block with a
(b− 1)-bit integer, whose iht bit is 1 if and only if A[i + 1]− A[i] = 1.

0 1 0 2 3 4 5 4 3 2 1 2 3 4 5 6 7 8 7 6 6 7 6 4 4 3 3 5 6 7 6 5 6 7 8 7 6 5 3 4 3 2 1 01 5 5 425 4 1

+ - + + + + - - - + + + + + - - + + - - + - - + + + + - + + - - - - + - - - +

5 7 0 7 6 3 1 1 7 3 0 2 1
Identifying blocks of length b in a±1RMQ instance by (b− 1)-bit integers.

In this example, there are 13 blocks, but in only 7 equivalence classes.

Now instead of building an independent RMQ structure for each block, we compute the
equivalence class of each block, and then compute an RMQ structure for every equivalence class.
If we use naïve lookup tables, the total size of all these RMQ structures is O(2b b2). If we set
b = ⌊1

2 log2 n⌋, the block RMQ srtuctures use only O(
p

Nlog2N) = o(N) space, and the sparse
table for the block minima uses O(N) space. And we can still answr queries in O(1) time!

The Four Russians technique is more often used to improve the running time of certain
divide-and-conquer or dynamic-programming algorithms, but the principle is the same. Unlike
the log-log-improvements that we get from multiple layers of indirection, quadrimoscovian
precomputation leads to significant performance improvements in practice, even using fixed
block sizes like b = 8 or b = 16.

© Copyright 2024 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.

7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	Range Minimum Queries
	Standard Solutions
	Indirection
	Recursive Indirection
	Lowest Common Ancestors
	Four Russians: Precompute Everything!

