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11 Efficient Heaps

11.1 Mergeable Priority Queue

A mergeable priority queue is an abstract data type that stores a collection of items, each with a
prior, and supports the following operations.

* INSERT(Q, x, p): Insert a new object x with priority p into priority queue Q. This operation
can also be used to create a new priority queue containing just one key.

* FINDMIN(Q): Return the item with the smallest priority in priority queue Q.

* DELETEMIN(Q): Remove the item with the smallest priority in priority queue Q, and return
the removed item.

¢ MERGE(Q,Q’): Replace the priority queues Q and Q' with a new heap containing all items
in both Q and Q’.!

* DECREASEKEY(x,p): Change the priority of item x to a smaller value p. Here x is
a pointer/reference/handle directly to item x inside the priority queue data structure,
typically returned by INSERT.?2

A data structure implementing this abstract data type is called a mergeable heap.

If we never had to use DELETEMIN, mergeable heaps would be completely trivial. Each
“heap” just stores to maintain the single record (if any) with the smallest key. INSERTS and
MERGES require only one comparison to decide which record to keep, so they take constant time.
FINDMIN obviously takes constant time as well.

If we need DELETEMIN, but we don’t care how long it takes, we can still implement mergeable
heaps so that INSERTS, MERGES, and FINDMINs take constant time. We store the records in a
circular doubly-linked list, and keep a pointer to the minimum key. Now deleting the minimum
key takes ©(n) time, since we have to scan the linked list to find the new smallest key.

Without the MERGE operation, we can support all other operations in at most O(logn) time
using a standard binary heap or even a standard balanced binary search tree (like scapegoat
trees, splay trees, or treaps). In fact, binary heaps support FINDMIN and INSERT in constant time,
and balanced binary search trees can be modified to support FINDMIN in constant time. However,
without considerably more work,? both of these standard priority queues require Q(n) time to
MERGE.

In the rest of this lecture note, I'll describe several mergeable heap data structures that are
more efficient than binary heaps or balanced binary search trees. These are summarized in the
following table.

1Some sources call this operation MELD and refer to this data type as a meldable priority queue.

2Yes, this operation should be called DEcREASEPRIORITY. Historically, priorities are also called “keys”, despite the
fact that they generally cannot be used to find items in a priority queue.

30ne exception is Iacono and Ozkan’s mergeable dictionary data structure, which supports INSERT, PRED, SPLIT,
and MERGE in O(logn) amortized time each.
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INSERT EXTRACTMIN MERGE DECREASEKEY Refs
leftist heap O(logn) O(logn) O(logn) O(logn) [?]
binomial heap : O(logn) : [?]
“Fibonacciheap” | 0(1) O(logn) | o)
quake heap* 0(1)
* pairingheap* | O(logn) : O(logn) . O(logn) : O(logn) .
o1) i o(ogn) : 0(1)  O(ogn) (2,2,?]

o@VeEEn) | o(logn) o(22vElEn) | o(22vlEeen) | )

Figure 1. Performance of some mergeable heaps. Time bounds for starred* heaps are amortized.

11.2 Leftist Heaps

Let T be an arbitrary binary tree. For any node v in T, we store an integer v.mind defined
recursively as follows:

d 0 if v.left = NULL or v.right = NULL
v.mind =
1 + min{v.left.mind, v.right.mind} otherwise

v.mind is the minimum distance from v to a descendant of v that does not have two children, or
equivalently, the depth of the largest perfect binary subtree rooted at v. Abusing notation, we
define v.mind = —1 when v = NuLL. Finally, we call T a leftist tree if v.left. mind > v.right.mind
for every node v. Every rooted subtree of a leftist tree is also a leftist tree.

Lemma 1. Let T be a leftist tree with n vertices and root v.
(a) The right spine of T has length v.mind.
(b) v.mind <log,n.

A leftist heap is a leftist tree where every node v stores a number v.prior, and these priorities
satisfy the heap property: If node v is the parent of node w, then v.prior < w.prior.

MEeRrGing two leftist heaps is relatively straightforward. Let u and v be the roots of two leftist
heaps that we want to merge. Without loss of generality, we can assume that u has smaller
priority than v; otherwise, swap the two variable names. First, we recursively merge the right
subtree of u with v, and attach the result as the new right subtree of v. Next, if necessary, we
swap the left and right subtrees of u to restore the leftist property. Finally, we return u as the
root of the merged leftist heap.

MERGE(U, V):
if u = NuLL
return v
if v =NuLL
return u
if u.prior > v.prior
swap u «— v
u.right < MERGE(u.right, v)
if u.left.mind < u.right.mind
swap u.left <= u.right
u.mind « 1+ u.right.mind
return u
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Because each recursive call moves either u or v to its right child, the leftist property implies
that MERGE recurses at most log, u.size +log, v.size = O(log n) times before reaching a base case.
Thus, MERGE runs in O(logn) time in the worst case.
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Figure 2. Merging two leftist heaps.

The remaining operations are all performed using MERGE as a subroutine:
* INSERT(H, x): Create a new one-node heap containing x and MERGE it with H.

* EXxTRACTMIN(H): Let r be the root node of H. MERGE the left and right subtrees of H and
return r.

* DECREASEKEY(x, p): Cut node x from its parent in H, set x.prior < p, update mind values
and swap children to make the rest of H leftist again, and then MERGE the rest of H with
the subtree rooted at x.

11.3 Binomial Heaps

Now we consider a different heap structure that (at least superficially) looks very different from
binary heaps of leftist heaps. Instead of a single binary tree, a binomial heap consists of one or
more trees, each with a very specific recursive structure.

A kth-order binomial tree, abbreviated By, is defined recursively as follows:

* B, is a single node.

* B is constructed from two copies of By_; by making the root of one copy a new child of
the root of the other.

It is easy to prove by induction that B, contains exactly 2¢ nodes. Moreover, each node in a
binomial tree By is the root of a binomial tree B; for some index j < k. Finally, the order k of a
binomial tree By, is equal to both its depth and the degree of its root.

A single node in a binomial tree can have arbitrarily high degree, so we cannot store pointers
directly from nodes to each of their children. Instead, each node v stores its priority v.prior, a
pointer v.child to its first child, and a pointer v.next to its next sibling. Thus, the children of v
are stored in a linked list, starting at v.child and connected by next pointers. Each node in this
list has priority larger than v.prior.
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T

Figure 3. Binomial trees of order 0 through 6.

Thus, binomial trees are actually represented in memory as binary trees, where the root has
no right child; this binary tree is sometimes called a half-tree. Moreover, if we sort the children of
every node in every binomial tree by decreasing order, the half-tree representation of B consists
of a single node, whose left subtree is a perfect binary tree with depth k and whose right subtree
is empty.

Figure 4. A 5th order binomial tree and its corresponding half-tree.

A binomial heap is a collection of heap-ordered binomial trees, with at most one binomial
tree of each order. If the binomial heap contains n items, it contains a kth order binomial tree if
and only if the kth bit of the binary representation of n is equal to 1. This connection to binary
numbers is important for implementing the various algorithms. We index the trees using an
auxiliary array B[O..|lgn|], where each entry B[ k] is either a pointer to the unique kth order
binomial tree or NULL if there is no such tree. Finally, we maintain an explicit pointer min to the
node with smallest priority.

Figure 5. A binomial heap for the English alphabet, constructed by inserting the sequence PACKMYBOXWITHFVEDZNLQURJGS.

* INSERT mirrors the algorithm for incrementing a binary number. We start by creating
a new Oth order binomial tree containing the new item. Then we repeatedly link pairs
of binomial trees with the same order—making one root a new child of the other—until
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all the binomial trees have distinct orders. The following pseudocode shows the INSERT
algorithm in complete gory detail. Because a binomial heap of size n consists of at most
lgn binomial trees, INSERT runs in O(logn) time.

INSERT(p) :

newrt « new node
newrt.prior < p
newrt.child < NULL
newrt.next < NULL
order < 0

{(Repeatedly link trees with the same order))
while B[order] # NuLL

oldrt « B[order]

Blorder] « NULL

order « order + 1

((Link old and new roots))
if oldrt.prior < newrt.prior
swap oldrt «— newrt
oldrt.next < newrt.child
newrt.child < oldrt
B[order] « newrt
if B[min].prior > newrt.prior
min < newrt

* MERGE similarly mirrors the algorithm for adding two binary numbers. For each order k
from O up to 1g(n + m), if there is more than one binomial tree of order k, we link two of
them into a tree of order k + 1. Again, the worst-case running time is O(logn).

* EXxTRACTMIN(H) removes the minimum-priority node min from H, transforms the children
of min into a new binomial heap H’, and then MERGES the remainder of H with H’. Again,
the worst-case running time is O(logn). See Figure ?? on the next page.

* Finally, DECREASEKEY(x, p) does not change the structure of the binomial trees at all.
Instead, we change the priority of x to p, and then we repeatedly swap x with its parent
until the heap property is restored. Implementing this operation efficiently requires each
node in the binomial heap to store pointers to its parent and to its previous sibling, so
that the children of any node are stored in a doubly-linked list. (The INSERT and MERGE
algorithms must be updated to maintain these pointers.) Because the depth of each tree is
at most O(logn), the worst-case running time of this algorithm is also O(logn).

11.4 Lazy Binomial (“Fibonacci”) Heaps

So far we have only considered priority queues that have the same performance as binary heaps:
O(logn) time per operation. It’s not hard to prove, using a reduction from sorting, that either
INSERT or EXTRACTMIN must take Q(logn) time in the worst case,* but nothing prevents us
from making one of those two operations faster. Indeed, there are now dozens of priority queue
structures that support INSERT in only O(1) time.

4...assuming all branches in those algorithms are based on simple comparisons
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Figure 6. Running EXTRACTMIN on the binomial heap in Figure ??. Top: After extracting the children of the extracted
minimum node into a new binomial heap. Bottom: After MERGEing the two binomial heaps.

The first such data structure is the Fibonacci heap, proposed in 1987 by Michael Fredman and
Robert Tarjan. Fibonacci heaps are variants of binomial heaps that are lazy in two different ways.
First, we only enforce the restriction that tree sizes are unique when we perform an EXTRACTMIN;
specifically, we link trees with the same size as we look for the new minimum element. Second,
we use a different algorithm for DECREASEKEY that can change the shape of the tree; thus, our
structure no longer consists of binomial trees, but of more general trees whose shapes and sizes
are close enough to binomial trees.

A Fibonacci heap is a list of heap-ordered trees, which for now you should think of as binomial
trees. In the simplest implementation, each node v in a Fibonacci heap maintains four pointers:

* v.child: The first child of v

* v.parent: The parent of v

* v.next: The root of the next tree if v is a root, or the next sibling of v otherwise

* v.prev: The root of the previous tree if v is a root, or the previous sibling of v otherwise
Thus, the top-level data structure is a doubly-linked list of roots, every node stores a pointer to a
doubly-linked list of its children, and each child has a pointer back to its parent.

Maintaining all these pointers means that Fibonacci heaps are often slower than binary heaps
and other variants in practice, even though they are faster in theory. Even for relatively large

values of n, the asymptotic gains are overwhelmed by larger constant factors in the O() notation.
I'll describe the (usually) fastest priority queue in practice in the next section.

11.4.1 Lazy INseErT and MERGE

The INserT and MERGE algorithms for Fibonacci heaps are identical to the same algorithms on
linked lists. INSERT adds a single node (that is, a heap-ordered order-0 binomial tree) to the
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linked list of roots, and MERGE concatenates the two given linked lists. Both operations clearly
take O(1) time in the worst case.

ExTrAcTing the MiNimum item is only slightly more complicated. First, we remove the
minimum element from the root list and concatenate its list of children to the root list. Except
for updating the parent pointers, this takes O(1) time. Then we scan through the root list to
find the new smallest key and update the parent pointers of the new roots. This scan could take
©(n) time in the worst case. To bring down the amortized deletion time, we apply a CLEANUP
algorithm, which connects pairs of equal-size trees until all tree sizes are distinct.

CLEANUP maintains an auxiliary array B[ 1..|lgn]], where B[i] is a pointer to some previously-
visited binomial tree of order i, or NULL if there is no such tree. CLEANUP simultaneously resets
the parent pointers of all the new roots and updates the pointer to the minimum key. I've split off
the part of the algorithm that links binomial trees of the same order into a separate subroutine
MERGEDUPES.

MERGEDUPES(V):
CLEANUP(): w < B[deg(v)]
min < head of the root list while w # NuLL
fori < 0to|lgn] B[deg(v)] « NuLL
B[i] « NuLL if w.prior > v.prior
for all nodes v in the root list swap v <> w

remove w from the root list ~ (x*)
w.next « v.child
v.child < w

v.parent < NULL  (*)
if min.prior > v.prior
min < v
MERGEDUPES(Vv) w « B[deg(v)]
B[deg(v)] « v

{(“Link w to v”))

During a single call to CLEANUP, the lines marked (x) and (*%) are each executed at most
once for each node in the root list. Thus, the running time of CLEANUP is O(logn + r’), where 1’
is the length of the root list just before CLEANUP is called. It follows that DELETEMIN runs in
time O(r + deg(min) +logn), where r is the number of roots just before DELETEMIN is called,
and min is the minimum-priority node being extracted. In a binomial heap with n nodes, every
node has degree O(logn), so the worst-case running time of DELETEMIN is O(r + logn).

We can remove the r term from the amortized time by charging the O(1) time spent on each
root to the INSERT operation that added that root to the root list. Thus INSERT and MERGE still
run in O(1) amortized time, but now EXTRACTMIN runs in O(logn) amortized time.

11.4.2 Lazy DECREASEKEY
11.5 Pairing Heaps

A pairing heap is a single heap-ordered rooted tree, with no other required structure. Similar
to binomial heaps, each node v stores a priority v.prior, a pointer to its first child v.child, and
a pointer to its next sibling v.next. (Just like binomial trees, the actual data structure can be
interpreted as a binary tree whose root has only one child.)

All operations in pairing heaps are based on the following extremely simple MERGE algorithm;
the root with larger priority becomes the new first child of the root with smaller priority. The
MERGE algorithm trivially runs in O(1) time in the worst case. This operation is also referred to
as linking.
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MERGE(u,V):
if u.prior > v.prior
swap u «— v
v.next < u.child
u.child « v
return u

INSERTIng a new item into a pairing heap H is equivalent to MERGEIng a new singleton
pairing heap with H. Each INSERT clearly takes O(1) time in the worst case.

The DECREASEKEY algorithm has two cases. If the priority of the target item x can be changed
without violating the heap property, we are done. Otherwise, after changing the priority of x,
we unlink x from its parent, and then MERGE the subtree rooted at x with the remainder of the
pairing heap. Each DECREASEKEY clearly takes O(1) time in the worst case.

The minimum-priority item in any pairing heap is stored at the root. EXTRACTMIN treats the
children of the root as a sequence of pairing heaps and MERGEs into a single new pairing heap
using the subroutine MERGELIST, which merges a list of pairing heaps into a single pairing heap.

EXTRACTMIN(V):

return MERGELIST(v.child)

MERGELIST(V):
if v = NULL or v.next = NULL
return v
return MERGE(MERGE(V, v.next), MERGELIST(v.next.next))

In the worst case, EXTRACTMIN runs in ©(n) time; consider a pairing heap consisting of one node
with n—1 children. In the next section, however, we will describe an amortization scheme that
reduces the amortized time for each pairing heap operation—including ExTRAcTMIN—t0 only
O(logn).
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Figure 7. Running EXTRACTMIN on a pairing heap; letters indicate priorities in alphabetical order. The initial pairing heap,
created by INSERTing the sequence PACKMYBOXWITHFVEDZNLQURJIGS into an empty heap, has a root with priority A and 25
children. Top: After removing the root. Middle: After the pairing phase. Bottom: After the gathering phase.

11.6 Amortized Analysis of Pairing Heaps

The original analysis of EXTRACTMIN in pairing heaps by Fredman et al.[?] uses the binary
half-tree view, which treats child and next pointers as left and right pointers in a binary tree.
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MERGEing/linking two adjacent children of a common parent in the multiway-tree view closely
resembles a rotation in the binary tree view. Specifically, linking a child to its successor looks
exactly like rotation, and lining a child to its predecessor looks like a rotation followed by swapping
two nodes and two subtrees; see Figures ?? and ?? below. This view allows us to leverage
amortization arguments about rotations in binary search trees.

A R A
QA 5K

Figure 8. The binary tree view of two adjacent siblings u and v of a parent node p.

D s
: o«AA

Figure 9. Linking looks like rotation in the binary-tree view. Left: linking u to v. Right: Linking v to u.

The specific order of MERGES in MERGELIST is crucial to the amortized analysis; different
orders can lead to significantly worse amortized time bounds for EXTRACTMIN. We can split the
execution of MERGELIST into two phases.

* In the pairing phase, we MERGE successive pairs of subtrees of v—first and second, third
and fourth, and so on—in the order they appear in the next-sibling list (that is, in reverse
order they were linked to v by earlier MERGES). If v has an odd number of children, the
last one is left untouched in this phase. This part of the ExTRACTMIN algorithm gives
pairing heaps their name. In the binary tree view, the pairing phase looks exactly like
adding a new rightmost node, splaying that node to the root (using only roller-coasters),
and deleting it; see Figure ??. Almost exactly the same potential argument as play trees
implies the amortized time for the pairing phase is O(logn).

* In the gathering phase, we repeatedly MERGE the last two heaps until only one heap remains.
The number of links/rotations in this phase is at most the number of links/rotations in the
pairing phase, so we can charge the gathering links/rotations to the pairing links/rotations.
Moreover, Fredman et al. argue that this gathering phase changes the potential of the binary
tree by at most O(logn), so the amortize time for the gatehring phase is also O(logn).

Later authors refined this amortized analysis to get tighter bounds, but a completely tight
analysis is still an open problem. Iacono [?, ?] proved, using a different potential function,
that INSERT and MERGE actually run in only O(1) amortized time; their analysis was later
simplified by Sinnamon* and Tarjan [?]. Pettie [?] found a different amortization scheme by
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child next

Figure 10. Binary tree view of the same ExXTRACTMIN as Figure ??. The pairing phase compresses the right spine.

which ExTRACTMIN runs in O(log n) amortized time and all other operations run in O(22v8181)
amortized time.
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