
Data Structures Lecture 10: Range Trees and Segment Trees [Sp’24]

10 Range Trees and Segment Trees

A range searching problem asks us to preprocess a set X of geometric objects, so that later, given
a query object q of some fixed type, we can compute some fixed function of all objects in X that
share some geometric relationship with q. For example:

• X is a set of points in the plane, q is another point in the plane, and we want to know if
any point in X is both above and to the right of q.

• X is a set of points in the plane, q is an axis-aligned rectangle, and we want the number of
points in X that are contained in q.

• X is a set of axis-aligned rectangles in the plane, each with a priority, q is a single point,
and we want the minimum-priority rectangle in X that contains q.

• X is a set of horizontal line segments in the plane, q is a vertical line segment, and we want
the number of segments in X that intersect q.

• X is a set of spheres in 3-space, q is a line in 3-space, and we want the smallest sphere in X
that intersects q.

In this lecture I’ll describe some basic ingredients that can be combined to build data structures
for orthogonal range searching problems, where both the stored objects and the query object are
products of one-dimensional points and intervals. (All of these examples above except the last one
are orthogonal range searching problems; the last example is also a geometric range searching
problem, but solving it requires very different techniques than described here.)

10.1 Range Trees

We’ve already seen one canonical range-searching data structure, called the range tree. Here
we assume X is a set of points on the real line (that is, real numbers), each query object q is a
closed interval [l, r], and we are interested in some function of the points in X ∩ q. Let’s initially
assume that we want the number of points in X ∩ q.

A range tree is a balanced binary search tree whose leaves store the points in X in sorted
order from left to right; this is sometimes also called an exogenous binary search tree.1Specifically,
each leaf ℓ in T stores a unique point ℓ.point ∈ X , and each interior node stores three values:

• v.pivot is a pivot value for v, used for searching.

• v.size is the number of points/vertices in the subtree rooted at v.

• v.min is the smallest point value in the subtree rooted at v.

• v.max is the largest point value in the subtree rooted at v.

The interval [v.min, v.max] is called the canonical range associated with v. In all examples, I will
use the pivot value v.pivot= v.left.max.

The following algorithm answers any range-counting query in O(log n) time, essentially by
decomposing the query range [l, r] into O(log n) canonical ranges. (The leaf base case is using
Iverson bracket notation; the expression is equal to 1 if the inequalities hold and 0 otherwise.)

1We can also build range trees from standard binary search trees, which associate a point in X with every vertex,
but these lead to annoying corner cases that I’d rather avoid.

© Copyright 2024 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

Data Structures Lecture 10: Range Trees and Segment Trees [Sp’24]

Count(v, l, r):
if v is a leaf

return [l ≤ v.point≤ r]
else if l > v.max or r < v.min 〈〈canonical range outside the query range〉〉

return 0

else if l ≤ v.min and r ≥ v.max 〈〈canonical range inside the query range〉〉
return v.size

else
return Count(v.left, l, r) +Count(v.right, l, r)

3

4

8

14

23

25

31 39

44

52

61

680 9

16

8

4

2 2

4

2 2

4

2 2

8

4

2 2

0 3 4 9 14 23 25 31 36 39 44 52 61 68 77

6 50

36

8
1

Figure 1. Answering a range-counting query using a range tree; the indicated range contains 1+ 4+ 4= 9 points.

We can easily adapt this structure to other types of queries. For example, suppose every point
in X has a weight. If each leaf ℓ stores the weight of its point as ℓ.wt, and we redefine v.size to
be the total weight of all points in v’s subtree, then the following algorithm computes the total
weight of all points in a query range in O(log n) time. Only the second and third line of this
algorithm are different from Count.

TotalWt(v, l, r):
if v is a leaf

if l ≤ v.point≤ r
return v.wt

else if l > v.max or r < v.min 〈〈disjoint〉〉
return 0

else if l ≤ v.min and r ≥ v.max 〈〈contained〉〉
return v.size

else
return TotalWt(v.left, l, r) + TotalWt(v.right, l, r)

We can print the complete list of all k points in the query range in O(log n+ k) time as follows:

2

Data Structures Lecture 10: Range Trees and Segment Trees [Sp’24]

Report(v, l, r):
if v is a leaf

if l ≤ v.point≤ r
print v.point

else if l > v.max or r < v.min 〈〈disjoint〉〉
do nothing

else if l ≤ v.min and r ≥ v.max 〈〈contained〉〉
for every leaf ℓ below v

print ℓ.point
else

Report(v.left, l, r)
Report(v.right, l, r)

Finally, suppose every point in x has a priority, which we store in the corresponding leaf ℓ
as ℓ.prior, and we store the minimum priority in v’s subtree in v.best. Then we can find the
minimum-priority point in any query range in O(log n) time as follows:

Minimum(v, l, r):
if v is a leaf

if l ≤ v.point≤ r
return v.prior

else
return∞

else if l > v.max or r < v.min 〈〈disjoint〉〉
return∞

else if l ≤ v.min and r ≥ v.max 〈〈contained〉〉
return v.best

else
return min {Minimum(v.left, l, r), Minimum(v.right, l, r)}

10.2 Multidimensional Queries

Now suppose P is a set of points in the plane, each specified by a pair (x , y) of real numbers, and
we want to query for the number of points in an axis-aligned rectangle [l, r]× [b, t]. We can
think of this problem as a one-dimensional range-query problem, where the function we want to
compute for the points in a canonical range is another one-dimensional range-query problem!

Let Tx(P) denote a range tree over the x-coordinates of points in P. For each node v in this
tree, let Pv denote the canonical subset of points whose x-coordinates are stored in the subtree
rooted at v. To support two-dimensional queries, we construct a secondary data structure
Ty(Pv) for each canonical subset Pv. This secondary data structure is another range tree, this
time over the y-coordinates of the subset Pv . In each primary node v, we store a pointer v.ytree
to the root of the corresponding secondary structure Ty(Pv).

Each secondary data structure Ty(Pv) uses O(|Pv|) space. Each point in X appears in a most
one canonical subset at each level of the primary tree. Thus, assuming the primary tree Tx is
balanced, each point in X appears in at most O(log n) secondary structures. It follows that the
entire two-level data structure uses O(n logn) space.

The top-level query algorithm is almost identical to the one-dimensional case.

3

Data Structures Lecture 10: Range Trees and Segment Trees [Sp’24]

BoxXCount(v, l, r, b, t):
if v is a leaf

return [l ≤ v.x ≤ r and b ≤ v.y ≤ t]
else if l > v.maxx or r < v.minx 〈〈canonical x -range outside query x -range〉〉

return 0

else if l ≤ v.minx and r ≥ v.maxx 〈〈canonical x -range inside query x -range〉〉
return BoxYCount(v.ytree, b, t)

else
return BoxXCount(v.left, l, r, b, t) + BoxXCount(v.right, l, r, b, t)

In the case where the query x-range [l, r] contains the canonical x-range [v.minx, v.maxx], we
call another standard range-query algorithm on the secondary data structure at v:

BoxYCount(w, b, t):
if w is a leaf

return [b ≤ w≤ t]
else if b > w.maxy or t < w.miny 〈〈canonical y-range outside query y-range〉〉

return 0

else if b ≤ w.miny and t ≥ w.maxy 〈〈canonical y-range inside query y-range〉〉
return v.size

else
return BoxYCount(w.down, b, t) + BoxYCount(w.up, b, t)

Answering a single box query requires at most two secondary queries at each level of the
primary tree. The time to answer a secondary query at primary node v is at most O(log|Pv|),
which is conservatively at most O(log n). So assuming the primary tree is balanced, the total
worst-case query time is conservatively at most O(log2 n).2

More generally, the primary tree decomposes the x-projection of the query rectangle q into
O(log n) canonical x-ranges, and each secondary tree decomposes the intersection of q with one
canonical x-range into O(log n) canonical rectangles, such that a point p ∈ P lies inside q if and
only if p lies in one of these canonical rectangles. See Figure 3.

This construction generalizes to any number of dimensions. A d-dimensional range tree
is a 1-dimensional range tree over one coordinate of the points, where each node v stores a
(d − 1)-dimensional range tree over the remaining d − 1 coordinates of the canonical subset Pv .
The overall data structure uses O(n logd−1 n) space, and answers orthogonal range queries in
O(logd n) time.

10.3 Segment Trees

Now let’s turn the range-tree problem on its head. Instead of preprocessing a set of points for
range queries, we now want to preprocess intervals for point queries. Specifically, we are given a
set S of real intervals, each specified by its left and right boundary points s.l and s.r. We want to
build a data structure for S so that later, we can compute some fixed function of the subset of
intervals {s ∈ S | q ∈ s} that contain a given query point q.

2This conservative upper bound turns out to be tight, even if the primary tree is perfectly balanced. In a perfectly
balanced tree, each node at height h is the root of a subtree with 2h −1 nodes. So a secondary query at height h takes
Θ(log(2h − 1)) = Θ(h) time in the worst case. Our primary tree has depth D = ⌊lg n⌋, so our overall query algorithm
takes
∑D

h=0Θ(h) = Θ(D
2) = Θ(log2 n) time in total.

4

Data Structures Lecture 10: Range Trees and Segment Trees [Sp’24]

Figure 2. Subdividing the points inside a query rectangle into O(log2 n) canonical rectangles.

A segment tree for S is a balanced binary search tree T over the endpoints of intervals in
S, with some additional information stored at each vertex. (To avoid confusion, I’ll refer to the
elements of S as segments.) 〈〈Interior nodes correspond to endpoints; leaves to gaps betweenÂÂÂÂÂ

consecutive endpoints.〉〉 Recall from the previous section that T partitions every interval [l, r]
into O(log n) canonical intervals, with at most two at each level of T . For each node v, let Sv

denote the set of segments in S whose canonical partition includes the canonical range of v.
Each node v in a segment tree stores a fixed function of the set Sv that depends on the query

type. For example, suppose we want to ask for the number of segments that contain a query
point q. Then every node in our segment tree stores the following information:

• v.pivot is a pivot value, used for searching.

• v.min is the smallest endpoint value in the subtree rooted at v.

• v.max is the largest endpoint value in the subtree rooted at v.

• v.size is the number of segments in Sv .

The total size of this data structure is O(n).
The following algorithm returns the number of segments containing a query point q in

O(log n) time; the algorithm is almost identical to a standard binary search for q:

StabCount(v, q):
if v = Null

return 0

if q < v.pivot
return v.size+ StabCount(v.left, q)

else
return v.size+ StabCount(v.right, q)

Just like range trees, segment trees can be easily adapted to other query functions, with only
minimal changes to the data structure or the query algorithm. For example, if segments have
weights and we want the total weight of all segments containing q, we store the total weight

5

Data Structures Lecture 10: Range Trees and Segment Trees [Sp’24]

3

4

8

14

23

25

31 39

44

52

61

680 9

–∞
0

0
3

3
4

8
9

9
14

14
23

23
25

25
31

31
36

36
39

39
44

44
52

52
61

61
68

68
∞

36

4
8

A
B F

H

E

C

A

A H

A B

A B D

D

D

F G

F

G

D
G

E

C

A EC

Figure 3. A segment tree for eight segments. Numbers at the leaves are the left and right endpoints of the gaps between
segment endpoints. Segments in each set Sv are listed directly above the corresponding node v.

of all segments in Sv in v.size and use exactly the same query algorithm. If each segment has
a priority, and we want the minimum-priority segment containing q, we store the minimum
priority among all segments in Sv in v.best, and we replace “v.size+ . . . ” in the query algorithm
with “min {v.best, . . .}”.

10.4 Multidimensional Stabbing Queries

Also just like range trees, segment trees can be generalized to higher dimensions. For example,
suppose we are given a set of R of axis-aligned rectangles in the plane, each specified by left,
right, bottom, and top coordinates, and we want to support queries that ask for the number of
rectangles that contain a query point. We build a two-level data structure as follows.

The primary data structure is a segment tree over the x-projections of R. For each node v
in the primary tree, we build a secondary segment tree v.ytree over the y-projections of the
rectangles in the subset Rv . The secondary tree uses O(|Rv|) space, and every rectangle appears
in O(log n) subsets Rv, so the overall data structure uses O(n logn) space. We can answer
point-stabbing queries using the following two-phase algorithm:

StabX(v, q):
if v = Null

return 0

if q.x < v.pivotx
return StabY(v.ytree, q) + StabX(v.left, q)

else
return StabY(v.ytree, q) ++StabX(v.right, q)

StabY(w, q):
if w= Null

return 0

if q.y < w.pivoty
return w.size+ StabY(v.down, q)

else
return w.size+ StabY(v.up, q)

Each primary query performs O(log n) secondary queries, each of which takes O(log n) time, so
the overall algorithm takes O(log2 n) time.

Again, this construction generalizes to any number of dimensions. A d-dimensional segment
tree stores n d-dimensional boxes in O(n logd−1 n) space and answers point-stabbing queries in
O(logd n) time.

6

Data Structures Lecture 10: Range Trees and Segment Trees [Sp’24]

© Copyright 2024 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.

7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	Range Trees and Segment Trees
	Range Trees
	Multidimensional Queries
	Segment Trees
	Multidimensional Stabbing Queries

