Data Structures (Algorithms)

Algorithms — run once — worst-case running time

Data Structures — build once

run operations many times

worst-case time for each operation

aggregate/total time for seq. of operations

AMORTIZED TIME

\(F(n) = O(g(n)) \) means

There are constants \(N \) and \(c \)

s.t. For all \(n \geq N \)

we have \(F(n) \leq c \cdot g(n) \)

\[
\liminf_{n \to \infty} \frac{F(n)}{g(n)} < \infty
\]

\(F(n) = \Omega(g(n)) \quad \iff \quad F(n) = \Theta(g(n)) \quad \text{O}(g(n)) \text{ and } \Omega(g(n)) \)

Amortized time

Suppose data structure has 3 operations \(A, B, C \)

" \(A \) has \(\text{am.-time } O(a(n)) \)

\(B \) runs in \(\text{am. time } O(b(n)) \)

\(C \) runs in \(\text{am. time } O(c(n)) \) "

\(\iff \)

Any sequence of \(N_A \) \(A \)'s + \(N_B \) \(B \)'s + \(N_C \) \(C \)'s

runs in \(O(N_A \cdot a(n) + N_B \cdot b(n) + N_C \cdot c(n)) \) time
Suppose AL has no items at start of phase

| no full | no empty |

when we double data array, it's full

\[\text{num} = 2\text{no} \]

\[\Rightarrow \text{we did no inserts} \]

Time to double the array = \(O(2\text{no}) = O(n) \)
Charging argument

Each cheap/fast operation pays in advance for future expensive/slow operations.

Expensive ops charge earlier cheap ops