
CS 225 Honors Homework 1 Solutions Spring 2024

1. I claim that in any intermixed sequence of Inserts and Deletes, starting with a New
array-list, the amortized cost of each Insert and Delete is O(1). What this claim means
is that the total time required to execute any intermixed sequence of Ni Inserts and Nd

Deletes is at most O(Ni + Nd).
One way to prove this claim is partition the overall running time of the data structure

into phases immediately after each Resize, as indicated in the pseudocode in the homework
handout, and analyze each phase separately.

There are two cases to consider, depending on whether the phase ends by doubling or
halving the data array. Let n0 denote the value of AL.num at the start of a phase; to avoid
trivial boundary cases, assume n0 ≥ 4.

(a) Suppose the phase ends by doubling the data array. What is the exact minimum
number of Insert and Delete operations that phase can contain? Your answer
should be a function of n0.

Solution: At the start of each phase, we have n0 = AL.num = AL.cap/2. The
capacity AL.cap does not change until Resize doubles the array and ends the
phase. Thus, just before Resize doubles the array, we have AL.num= AL.cap=
2n0. The number of items in the array-list has increased by n0, so we must have
performed at least n0 Inserts. (There are also trivially at least 0 Deletes, and
therefore at least n0 operations overall.) ■

(b) Suppose the phase ends by halving the data array. What is the exactminimum number
of Insert and Delete operations that phase can contain? Your answer should be a
function of n0.

Solution: At the start of each phase, we have n0 = AL.num = AL.cap/2. Just
before Resize halves the array, we have AL.num = AL.cap/4 = n0/2. The
number of items in the array-list has decreased by n0/2, so we must have
performed at least n0/2 Deletes. (There are also trivially at least 0 Inserts,
and therefore at least n0 operations overall.) ■

(c) Complete the amortized analysis: Prove that the total time to execute any phase
containing Ni Inserts and Nd Deletes is at most O(Ni + Nd).

Solution: Ignoring calls to Resize, each Insert and Delete requires O(1) time,
and the final call to Resize requires O(n0) time. So the total running time for
the entire phase is O(Ni + Nd + n0).
• If the phase ends by doubling the array, we have n0 ≤ Ni , so the total time

for the phase is at most O(2Ni + Nd) = O(Ni + Nd).
• If the phase ends by halving the array, we have n0 ≤ 2Nd , so the total time

for the phase is at most O(Ni + 3Nd) = O(Ni + Nd).
We conclude that each Insert and Delete within any particular phase runs in
O(1) amortized time. But every Insert and Delete is in some phase! ■

1



CS 225 Honors Homework 1 Solutions Spring 2024

2. Think about this one on your own; do not submit solutions.

Suppose we are allowed to maintain a tighter invariant AL.cap ≤ (1+ ϵ)n, for some
fixed constant ϵ > 0. We still want to keep the amortized time for each Insert and Delete
as small as possible.

(a) How would you change the Insert, Delete, and Resize algorithms?

Solution:

• Insert still triggers a Resize when num≥ cap.
• Delete triggers a Resize when num≤ (1− ϵ)cap.
• Resize copies the data into an array of size ⌈num · (1+ ϵ/2)⌉.

■

(b) What is the amortized time for each Insert and Delete, as a function of ϵ? (You
should see a tradeoff between space and time; the amortized time for each operation
should increase as ϵ approaches zero.)

Solution (sketch): Following the analysis in problem 1, we partition the se-
quence of operations into phases, each ending immediately after a Resize.

Let n0 denote the value of AL.num at the start of a phase. Ignoring floors
and ceilings, the phase contains at least n0ϵ/2 operations, and the overall time
for the phase is O(n0). So each operation takes O(1/ϵ) amortized time. ■

2


