1. Suppose we are given a set S of n line segments in the plane, each of which is either horizontal or vertical. Each horizontal segment $h \in S$ is specified by its left x-coordinate $h.l$, its right x-coordinate $h.r$, and its y-coordinate $h.y$. Each vertical segment $v \in S$ is specified by its x-coordinate $v.x$, its bottom y-coordinate $v.b$, and its top y-coordinate $v.t$. Assume that all x- and y-coordinates are distinct.

Describe and analyze an algorithm to compute the number of pairs of segments in S that intersect. (Because all coordinates are distinct, if two segments in S intersect, one must be horizontal and the other vertical.)

[Hint: You can do better than blindly applying Homework 9.]

Solution (Blindly applying HW9): Partition the input segments S into horizontal segments H and vertical segments V, preprocess H into either of the data structures described in the HW9 solutions, and then perform a CrossCount query for each segment in V using the corresponding query algorithm.

For both data structures, the total time to build the data structure is

$$\sum_u O(|H_u| \log |H_u|) \le \left(\sum_u |H_u| \right) \cdot O(\log n) = O(n \log^2 n),$$

and the total time to perform at most n CrossCount queries is at most $n \cdot O(\log^2 n) = O(n \log^2 n)$. So the overall algorithm runs in $O(n \log^2 n)$ time.

Solution (Sweep with dynamic range tree): Partition the input segments S into horizontal segments H and vertical segments V.

We count segment intersections using a sweepline algorithm. Intuitively, we sweep a vertical line ℓ from left to right across the segments, maintaining the y-coordinates of the intersection $S = \ell \cap H$ in a one-dimensional range tree. Whenever ℓ touches the left endpoint of a horizontal segment $h \in H$, we insert $h.y$ into the range tree; when ℓ touches the right endpoint of a horizontal segment $h \in H$, we delete $h.y$ from the range tree; when ℓ reaches a vertical segment $v \in V$, we perform a range query for the range $[v.b, v.t]$.

Our description of range trees as *exogenous* binary search trees (for example, in the HW7 solutions) did not include insertion and deletion algorithms. There are at least two ways to make range trees dynamic:

- Use a standard (endogenous) balanced binary search tree, where each node u stores the number of nodes $u.size$ in its subtree. We have already seen how to use such a tree to answer RANK queries—How many points in S are less than a query value q?—in $O(\log n)$ time, and how to maintain the tree in $O(\log n)$ time per iteration (using, for example, the AVL balancing algorithms). The number of points in S in any range $[v.b, v.t]$ is exactly $\text{RANK}(v.t) - \text{RANK}(v.b)$.

- Store the y-coordinates of all horizontal segments in the leaves of a static balanced binary tree. Additionally, give each segment $h \in H$ a weight, which is 1 if h intersects ℓ and 0 otherwise; each node u in the range tree stores the total
weight of its leaves in a new field $u\.totalwt$.

- When the sweepline ℓ touches a vertical segment $v \in V$, we use the range tree to decompose v into $O(\log n)$ canonical segments, and we return the sum of $u\.totalwt$ over the $O(\log n)$ corresponding nodes, in $O(\log n)$ time. (See the Minimum algorithm in the HW7 solutions.)

- When the sweepline ℓ touches either endpoint of a horizontal segment $h \in H$, we change the weight of h and update $u\.totalwt$ for every ancestor of h in the tree, in $O(\log n)$ time. (See the Shift algorithm in the HW7 solutions.)

Using either of these strategies, the overall algorithm runs in $O(n \log n)$ time. ■