1. Suppose we are given a set $S$ of $n$ line segments in the plane, each of which is either horizontal or vertical. Each horizontal segment $h \in S$ is specified by its left $x$-coordinate $h . l$, its right $x$-coordinate h.r, and its $y$-coordinate h.y. Each vertical segment $v \in S$ is specified by its $x$-coordinate $v . x$, its bottom $y$-coordinate $v . b$, and its top $y$-coordinate $v . t$. Assume that all $x$ - and $y$-coordinates are distinct.

Describe and analyze an algorithm to compute the number of pairs of segments in $S$ that intersect. (Because all coordinates are distinct, if two segments in $S$ intersect, one must be horizontal and the other vertical.)
[Hint: You can do better than blindly applying Homework 9.]
Solution (Blindly applying HW9): Partition the input segments $S$ into horizontal segments $H$ and vertical segments $V$, preprocess $H$ into either of the data structures described in the HW9 solutions, and then perform a CrossCount query for each segment in $V$ using the corresponding query algorithm.

For both data structures, the total time to build the data structure is

$$
\sum_{u} O\left(\left|H_{u}\right| \log \left|H_{u}\right|\right) \leq\left(\sum_{u}\left|H_{u}\right|\right) \cdot O(\log n)=O\left(n \log ^{2} n\right)
$$

and the total time to perform at most $n$ CrossCount queries is at most $n \cdot O\left(\log ^{2} n\right)$ $=O\left(n \log ^{2} n\right)$. So the overall algorithm runs in $O\left(n \log ^{2} n\right)$ time .

Solution (Sweep with dynamic range tree): Partition the input segments $S$ into horizontal segments $H$ and vertical segments $V$.

We count segment intersections using a sweepline algorithm. Intuitively, we sweep a vertical line $\ell$ from left to right across the segments, maintaining the $y$-coordinates of the intersection $S=\ell \cap H$ in a one-dimensional range tree. Whenever $\ell$ touches the left endpoint of a horizontal segment $h \in H$, we insert $h . y$ into the range tree; when $\ell$ touches the right endpoint of a horizontal segment $h \in H$, we delete $h . y$ from the range tree; when $\ell$ reaches a vertical segment $v \in V$, we perform a range query for the range [ $v . b, v . t]$.

Our description of range trees as exogenous binary search trees (for example, in the $\mathrm{HW}_{7}$ solutions) did not include insertion and deletion algorithms. There are at least two ways to make range trees dynamic:

- Use a standard (endogenous) balanced binary search tree, where each node $u$ stores the number of nodes u.size in its subtree. We have already seen how to use such a tree tree to answer Rank queries-How many points in $S$ are less than a query value $q$ ?-in $O(\log n)$ time, and how to maintain the tree in $O(\log n)$ time per iteration (using, for example, the AVL balancing algorithms). The number of points in $S$ in any range [ $v . b, v . t$ ] is exactly Rank( $v . t)$ - Rank ( $v . b$ ).
- Store the $y$-coordinates of all horizontal segments in the leaves of a static balanced binary tree. Additionally, give each segment $h \in H$ a weight, which is 1 if $h$ intersects $\ell$ and 0 otherwise; each node $u$ in the range tree stores the total
weight of its leaves in a new field u.totalwt.
- When the sweepline $\ell$ touches a vertical segment $v \in V$, we use the range tree to decompose $v$ into $O(\log n)$ canonical segments, and we return the sum of $u$.totalwt over the $O(\log n)$ corresponding nodes, in $O(\log n)$ time. (See the Minimum algorithm in the $\mathrm{HW}_{7}$ solutions.)
- When the sweepline $\ell$ touches either endpoint of a horizontal segment $h \in H$, we change the weight of $h$ and update $u$.totalwt for every ancestor of $h$ in the tree, in $O(\log n)$ time. (See the Shift algorithm in the $\mathrm{HW}_{7}$ solutions.)

Using either of these strategies, the overall algorithm runs in $O(n \log n)$ time.

