
CS 225 Honors Homework 2 Solutions Spring 2024

1. Describe how to implement a quack with three black-box stacks, so that each quack
operation requires O(1) amortized stack operations.

Solution (clones and ghosts; partial credit): Let’s call the three stacks QIn, QOut,
and Stack. The first two stacks QIn and QOut will simulate a queue; the third stack
Stack will behave like a normal stack.

Any item that is really in the quack appears exactly twice in our data structure:
once in either QIn or QOut, and once in Stack. However, our structure may also
contain at most one ghost copy of each item that the user has already extracted from
the quack, either at the bottom of QOut or at the bottom of Stack. We also keep track
of the number of ghosts in these two stacks. Whenever we discover that every item on
a stack is a ghost, we empty that stack.

QuackPush(qck, x):
Push(qck.QIn, x)
Push(qck.Stack, x)

QuackPop(qck):
if qck.QIn is not empty

Pop(qck.QIn)
else

Haunt(qck.QOut)
return Pop(qck.Stack)

QuackPull(qck):
if qck.QOut is empty

while qck.QIn is not empty
Push(qck.QOut,Pop(qck.QIn))

Haunt(qck.Stack)
return Pop(qck.QOut)

〈〈Add a ghost to stack S; clear if all ghosts〉〉
Haunt(S):

S.ghosts← S.ghosts+ 1
if S.ghosts= S.num

while S is not empty
Pop(S)

S.ghosts= 0

Consider a sequence of N quack operations. In the worst case, a single quack operation
could require O(N) stack operations. However, each item inserted into the quack is
pushed and popped from each of the three stacks at most once during its lifetime.
Thus, any sequence of N quack operations leads to at most 6N stack operations, which
implies that each quack operation uses O(1) amortized stack operations.

One significant downside of this solution is that its memory footprint is not bounded
by any function of the number of items in the quack. For example, suppose we perform
N Pushes and then N − 1 Pulls on an initially empty quack. The resulting abstract
quack contains only one item, but in our implementation, Stack still contains N − 1
ghosts, and therefore uses Ω(N) space. ■

Solution (no clones; no ghosts; full credit): I will implement the quack as a triple
of black-box stacks Top, Bot, and Tmp, and an integer counter num, which stores the
number of items in the quack. After each quack operation, stack Tmp is empty and
each item in the quack is stored in exactly one of the other two component stacks.

Intuitively, pushes insert items into Top, pops remove items from Top, and pulls
remove items from Bot. However, whenever we need to pop from an empty stack, we

1



CS 225 Honors Homework 2 Solutions Spring 2024

first transfer half of the items from the other stack, using Tmp to maintain the correct
item order.

InitQuack():
qck← new quack
qck.num← 0
qck.Top← InitStack()
qck.Bot← InitStack()
qck.Tmp← InitStack()
return qck

QuackIsEmpty(qck):
return qck.num= 0

QuackPush(qck, x):
Push(qck.Top, x)
qck.num← qck.num+ 1

QuackPop(qck):
if IsEmpty(qck.Top)

QuackBalance(qck,qck.Bot,qck.Top)
qck.num← qck.num− 1
return Pop(qck.Top)

QuackPull(qck):
if IsEmpty(qck.Bot)

QuackBalance(qck,qck.Top,qck.Bot)
qck.num← qck.num− 1
return Pop(qck.Bot)
〈〈Move the deep half of stack Src to stack Dst〉〉
QuackBalance(qck,Src,Dst):
for i← 1 to ⌈qck.num/2⌉

Push(qck.Tmp,Pop(Src))
while ¬IsEmpty(Src)

Push(Dst,Pop(Src))
while ¬IsEmpty(qck.Tmp)

Push(Dst,Pop(qck.Tmp))

The only part of these algorithms that does not run in O(1) worst-case time is
QuackBalance, runs in O(n) time. The following figure shows an example of
QuackBalance in action.

Push

Pop Pull

ABCDEFGH
In Out

Tmp

ABCD

E F G H

Push

Pop Pull

In Out

Tmp

ABCD

E F G H

Push

Pop Pull

In Out

Tmp

ABCDEFGH

Push

Pop Pull

In Out

Tmp

Consider the sequence of quack operations between two consecutive QuackBalance
calls. Let n0 and n1 denote the values of qck.num just after the first QuackBalance

2



CS 225 Honors Homework 2 Solutions Spring 2024

and just before the second. To simplify the case analysis, I’ll assume that n0 is even;
after the first QuackBalance, stacks In and Out each contain exactly n0/2 items.
(Dealing with odd n0 only changes the constants in O(1) amortized time bounds.)

• Just before the second QuackBalance, one of the stacks In or Out is empty, so
we must have performed at least n0/2 deletions (QuackPops and QuackPulls).
Thus, if n0 ≥ n1, we can charge the O(n1) = O(n0) stack operations for the
second rebalance to these Ω(n0) deletions.

• On the other hand, if n1 > n0, then just before the second QuackBalance, at
least half of the n1 items in the non-empty stack Top were QueuePushed after
the first rebalance. Thus, we can charge the O(n1) stack operations for the
second QuackBalance to these Ω(n1) QueuePushes.

In both cases, O(1) stack operations are charged to each quack operation.
Assuming the component stacks are space-efficient, this data structure always uses

O(n) space to store n items, unlike the cones-and-ghosts data structure. ■

3



CS 225 Honors Homework 2 Solutions Spring 2024

2. (a) Describe how to implement a steque with two black-box stacks, so that each steque
operation requires O(1) amortized stack operations.

Solution: We make only minor modifications to our implementation of queues
with two stacks. I will implement the steque as a pair of black-box stacks In
and Out, and an integer counter num, which stores the number of items in the
steque. After each steque operation, each item in the steque is stored in exactly
one of the two component stacks.

Intuitively, items are shoved into In, pushed into Out, and popped from Out.
But if Out is empty when we try to pop, we first transfer all items from In to
Out, similarly to our queue simulation. If there are no pushes, this is our queue
implementation, but using shove and pop instead of push and pull, and swapping
the roles of In and Out.

InitSteque():
stq← new steque
stq.num← 0
stq.In← InitStack()
stq.Out← InitStack()
return stq

StequeIsEmpty(stq):
return stq.num= 0

StequePush(stq, x):
Push(stq.Out, x)
stq.num← stq.num+ 1

StequeShove(stq, x):
Push(stq.In, x)
stq.num← stq.num+ 1

StequePop(stq):
if IsEmpty(stq.In)
〈〈Transfer items from In to Out〉〉
while ¬IsEmpty(stq.In)

Push(stq.Out,Pop(stq.In))
x ← Pop(stq.In)
stq.num← stq.num− 1
return x

The only part of these algorithms that does not run in O(1) worst-case time
is the transfer loop in StequePop, which moves the contents of stack In to stack
Out in Θ(n) time.

Consider the sequence of operations between two consecutive transfers. Let
n0 and n1 respectively denote the values of stq.num just after the first transfer
and just before the second. Between these two transfers we must perform exactly
n1 StequeShoves (and at least n0 StequePushes). Thus, we can charge
the O(n1) stack operations in the second transfer to these n1 StequeShoves.
Each StequeShove is charged for O(1) stack operations; StequePushes and
StequePops are not charged at all.

Alternatively, each item that is ever inserted into the steque participates in at
most four stack operations. There are only two cases to consider:
• Inserted by QuackShove: shoved into In, pulled from In, pushed into Out,

and popped from Out.
• Inserted by QuackPush: pushed into Out, and popped from Out.

Thus, each QuackShove uses 4 amortized stack operations, QuackPush uses 2
amortized stack operations, and QuackPop uses zero stack operations.a ■

aWe can’t use this global argument for our space-efficient quack, because a single item can be
involved in arbitrarily many calls to QuackBalance.

4



CS 225 Honors Homework 2 Solutions Spring 2024

4. Describe how to implement a queue with O(1) black-box stacks, so that each queue
operation takes O(1) stack operations in the worst case.

Solution: I will implement the queue using seven stacks: In, Out, Clone, OldIn, Tmp,
NewOut, and NewClone. Each item in the queue is stored once in either In or Out, but
copies of that item may also be stored in other stacks. We also maintain counters
S.num storing the number of items in each stack S. (I’ll pretend these counters are
part of the black-box stacks, but we can maintain them separately if necessary.)

As long as In.num< Out.num (or the queue is empty), the stacks In and Out behave
exactly like their counterparts in the amortized queue implementation, and Clone is
an exact copy of Out. However, whenever In.num = Out.num, we start transferring
all items from In to Out, using the other stacks either as temporary storage or as
backups. Here is a description of the transfer process as a standalone algorithm.
(To simplify the algorithm, I’m assuming that our dynamic memory model includes
garbage collection. Explicitly emptying and deleting stacks when they become useless
only increases the final constant running time.)

Transfer():
〈〈—— Initialize transfer stacks ——〉〉
OldIn← In
In← new stack
NewOut← new stack
NewClone← new stack
〈〈—— Transfer OldIn to NewOut and NewClone ——〉〉
while OldIn is not empty

x ← OldIn.Pop()
NewOut.Push(x)
NewClone.Push(x)

〈〈—— Transfer Clone to NewOut and NewClone ——〉〉
Tmp← new stack
while Clone is not empty

Tmp.Push(Clone.Pop())
fromIn← NewOut.num
while NewOut.num< fromIn+Out.num

x ← Tmp.Pop()
NewOut.Push(x)
NewClone.Push(x)

〈〈—— Reset to normal behavior ——〉〉
Out← NewOut
Clone← NewClone
xfer← False

This Transfer process is illustrated on the next page.

5



CS 225 Honors Homework 2 Solutions Spring 2024

Push

Pull
ABCDEFGH

In Out

ABCD
Clone

Push

Pull
BCDEFGH

In Out

ABCD
Clone

OldIn

Push

Pull
BCDEFGH

In Out

ABCD
Clone

NewOut

EFGH
NewClone

Push

Pull

Out

Tmp

NewOut

NewClone

E

IJ

IJ

E

IJ

IJ

K

In
KL CDE

ABCDE

FGHI

J FGHI

J

Push

Pull

Out

Tmp

NewOut

NewClone

In
KL

ABCD

EFGHIJ

FGHIJ

D

E

Push

Pull

Out

Clone

In
KL

D

EFGHIJ

FGHIJ

D

E

A

A

B A

C B AM

M

DE

O(1) time

3n stack ops + O(1) time

2n stack ops + O(1) time

≤3n stack ops + O(1) time

O(1) time

In fact, we spread the execution of Transfer across the next several queue opera-
tions after In.num= Out.num, as described below. The subroutine TransferStep()
performs the next 12 stack operations in Transfer, plus O(1) additional work. (That
is, one call to TransferStep() either transfers four items from In, six items from
Clone, or four items from Tmp.) While Transfer is active (indicated by the boolean
flag xfer being True), we Push new items into stack In as usual, and we Pull items
from Out as usual, but Pull does not directly modify Clone.

QueuePush(x) :
if xfer

TransferStep()
In.Push(x)
if In.num≥ Out.num

xfer← True

QueuePull() :
if xfer

TransferStep()
else

Clone.Pop()
x ← Out.Pop
if In.num≥ Out.num

xfer← True
return x

6



CS 225 Honors Homework 2 Solutions Spring 2024

If n = In.num = Out.num when Transfer begins, then Transfer performs at
most 3n+2n+3n= 8n stack pushes and pops, plus O(1) other work. Thus, Transfer
is complete after 2n/3 queue operations. This implies that Transfer is complete
before the old Out stack becomes empty, and that after Transfer, we have more
items in Out than In.

This solution is adapted from a description by Hood and Melville [1], which uses
only six stacks. The difference between their six-stack solution and my seven-stack
solution is that Hood and Melville’s stacks are standard LISP lists, not black boxes.
Implementing stacks in a functional language like LISP automatically makes them
fully persistent, meaning old versions of stacks are still available to be queried or
even modified. In Hood and Melville’s implementation, “Clone” begins as the version
of “Old” when Transfer begins. In git terminology, Clone is a branch of Out. In
imperative terms, Hood and Melville’s stacks are implemented as linked lists, except
that Out and Clone are pointers into the same linked list.

In short, they cheated.a

Okasaki [2] describes several purely functional queues that are more efficient
than Hood-Melville. I don’t know whether these can be adapted to fast queue
implementations with fewer black-box stacks.

[1] Robert T. Hood and Robert V. Melville. Real time queue operations in pure
LISP. Information Processing Letters 13(2):50-54, 1981. Technical Report TR80-422,
Department of Computer Science, Cornell University, 1980.

[2] Chris Okasaki. Simple and efficient purely functional queues and deques. Journal
of Functional Programming 5(4):583–592, 1995. See also Chapter 5 in Purely
Functional Data Structures.

■
aMore accurately, they played a different and more interesting game than the one I’m playing.

7

https://doi.org/10.1016/0020-0190(81)90030-2
https://doi.org/10.1016/0020-0190(81)90030-2
https://ecommons.cornell.edu/items/ddc7b5af-c5ea-43dc-889e-bab2a00278bc
https://doi.org/10.1017/S0956796800001489

