1. Describe how to implement a quack with three black-box stacks, so that each quack operation requires $O(1)$ amortized stack operations.

Solution (clones and ghosts; partial credit): Let’s call the three stacks QIn, $QOut$, and $Stack$. The first two stacks QIn and $QOut$ will simulate a queue; the third stack $Stack$ will behave like a normal stack.

Any item that is really in the quack appears exactly twice in our data structure: once in either QIn or $QOut$, and once in $Stack$. However, our structure may also contain at most one ghost copy of each item that the user has already extracted from the quack, either at the bottom of $QOut$ or at the bottom of $Stack$. We also keep track of the number of ghosts in these two stacks. Whenever we discover that every item on a stack is a ghost, we empty that stack.

QUACKPUSH(qck, x):
- Push($qck.QIn, x$)
- Push($qck.Stack, x$)

QUACKPOP(qck):
- if $qck.QIn$ is not empty
 - Pop($qck.QIn$)
- else
 - HAUNT($qck.QOut$)
 - return Pop($qck.Stack$)

HAUNT(S):
- $S.ghosts ← S.ghosts + 1$
- if $S.ghosts = S.num$
 - while S is not empty
 - Pop(S)
 - $S.ghosts = 0$

Consider a sequence of N quack operations. In the worst case, a single quack operation could require $O(N)$ stack operations. However, each item inserted into the quack is pushed and popped from each of the three stacks at most once during its lifetime. Thus, any sequence of N quack operations leads to at most $6N$ stack operations, which implies that each quack operation uses $O(1)$ amortized stack operations.

One significant downside of this solution is that its memory footprint is not bounded by any function of the number of items in the quack. For example, suppose we perform N Pushes and then $N - 1$ Pulls on an initially empty quack. The resulting abstract quack contains only one item, but in our implementation, $Stack$ still contains $N - 1$ ghosts, and therefore uses $\Omega(N)$ space.

Solution (no clones; no ghosts; full credit): I will implement the quack as a triple of black-box stacks Top, Bot, and Tmp, and an integer counter num, which stores the number of items in the quack. After each quack operation, stack Tmp is empty and each item in the quack is stored in exactly one of the other two component stacks.

Intuitively, pushes insert items into Top, pops remove items from Top, and pulls remove items from Bot. However, whenever we need to pop from an empty stack, we
first transfer half of the items from the other stack, using Tmp to maintain the correct item order.

```
INITQuack():
qck ← new quack
qck.num ← 0
qck.Top ← InitStack()
qck.Bot ← InitStack()
qck.Temp ← InitStack()
return qck

QUACKIsEmpty(qck):
return qck.num = 0

QUACKPush(qck, x):
Push(qck.Top, x)
qck.num ← qck.num + 1

QUACKPop(qck):
if IsEmpty(qck.Top)
   QUACKBalance(qck, qck.Bot, qck.Top)
   qck.num ← qck.num − 1
   return Pop(qck.Top)

QUACKPull(qck):
if IsEmpty(qck.Bot)
   QUACKBalance(qck, qck.Top, qck.Bot)
   qck.num ← qck.num − 1
   return Pop(qck.Bot)

(Move the deep half of stack Src to stack Dst)
QUACKBalance(qck, Src, Dst):
for i ← 1 to [qck.num/2]
   Push(qck.Temp, Pop(Src))
while ¬IsEmpty(Src)
   Push(Dst, Pop(Src))
while ¬IsEmpty(qck.Temp)
   Push(Dst, Pop(qck.Temp))
```

The only part of these algorithms that does not run in $O(1)$ worst-case time is QUACKBalance, runs in $O(n)$ time. The following figure shows an example of QUACKBalance in action.

Consider the sequence of quack operations between two consecutive QUACKBalance calls. Let n_0 and n_1 denote the values of $qck.num$ just after the first QUACKBalance.
and just before the second. To simplify the case analysis, I'll assume that n_0 is even; after the first QuackBalance, stacks In and Out each contain exactly $n_0/2$ items. (Dealing with odd n_0 only changes the constants in $O(1)$ amortized time bounds.)

- Just before the second QuackBalance, one of the stacks In or Out is empty, so we must have performed at least $n_0/2$ deletions (QuackPops and QuackPulls). Thus, if $n_0 \geq n_1$, we can charge the $O(n_1) = O(n_0)$ stack operations for the second rebalance to these $\Omega(n_0)$ deletions.

- On the other hand, if $n_1 > n_0$, then just before the second QuackBalance, at least half of the n_1 items in the non-empty stack Top were QueuePushed after the first rebalance. Thus, we can charge the $O(n_1)$ stack operations for the second QuackBalance to these $\Omega(n_1)$ QueuePushes.

In both cases, $O(1)$ stack operations are charged to each quack operation.

Assuming the component stacks are space-efficient, this data structure always uses $O(n)$ space to store n items, unlike the cones-and-ghosts data structure. ■
2. (a) Describe how to implement a steque with two black-box stacks, so that each steque operation requires $O(1)$ amortized stack operations.

Solution: We make only minor modifications to our implementation of queues with two stacks. I will implement the steque as a pair of black-box stacks \textit{In} and \textit{Out}, and an integer counter \textit{num}, which stores the number of items in the steque. After each steque operation, each item in the steque is stored in exactly one of the two component stacks.

Intuitively, items are shoved into \textit{In}, pushed into \textit{Out}, and popped from \textit{Out}. But if \textit{Out} is empty when we try to pop, we first transfer all items from \textit{In} to \textit{Out}, similarly to our queue simulation. If there are no pushes, this is our queue implementation, but using shove and pop instead of push and pull, and swapping the roles of \textit{In} and \textit{Out}.

\begin{Verbatim}
\textbf{InitSteque}():
stq ← new steque
stq.num ← 0
stq.In ← InitStack()
stq.Out ← InitStack()
return stq
\end{Verbatim}

\begin{Verbatim}
\textbf{StequeIsEmpty}(stq):
return stq.num = 0
\end{Verbatim}

\begin{Verbatim}
\textbf{StequePush}(stq, x):
Push(stq.In, x)
stq.num ← stq.num + 1
\end{Verbatim}

\begin{Verbatim}
\textbf{StequeShove}(stq, x):
Push(stq.In, x)
stq.num ← stq.num + 1
\end{Verbatim}

\begin{Verbatim}
\textbf{StequePop}(stq):
if IsEmpty(stq.In)

 \langle Transfer items from In to Out \rangle

 \textbf{while} ¬IsEmpty(stq.In)
 \textbf{Push}(stq.Out, Pop(stq.In))

 x ← Pop(stq.In)
 stq.num ← stq.num - 1
return x
\end{Verbatim}

The only part of these algorithms that does not run in $O(1)$ worst-case time is the transfer loop in \textbf{StequePop}, which moves the contents of stack \textit{In} to stack \textit{Out} in $\Theta(n)$ time.

Consider the sequence of operations between two consecutive transfers. Let n_0 and n_1 respectively denote the values of \textit{stq.num} just after the first transfer and just before the second. Between these two transfers we must perform exactly n_1 \textbf{StequeShoves} (and at least n_0 \textbf{StequePushes}). Thus, we can charge the $O(n_1)$ stack operations in the second transfer to these n_1 \textbf{StequeShoves}. Each \textbf{StequeShove} is charged for $O(1)$ stack operations; \textbf{StequePushes} and \textbf{StequePops} are not charged at all.

Alternatively, each item that is ever inserted into the steque participates in at most four stack operations. There are only two cases to consider:

- Inserted by \textbf{QuackShove}: shoved into \textit{In}, pulled from \textit{In}, pushed into \textit{Out}, and popped from \textit{Out}.
- Inserted by \textbf{QuackPush}: pushed into \textit{Out}, and popped from \textit{Out}.

Thus, each \textbf{QuackShove} uses 4 amortized stack operations, \textbf{QuackPush} uses 2 amortized stack operations, and \textbf{QuackPop} uses zero stack operations.\footnote{We can’t use this global argument for our space-efficient quack, because a single item can be involved in arbitrarily many calls to \textbf{QuackBalance}.}
4. Describe how to implement a queue with $O(1)$ black-box stacks, so that each queue operation takes $O(1)$ stack operations in the worst case.

Solution: I will implement the queue using seven stacks: \textit{In}, \textit{Out}, \textit{Clone}, \textit{OldIn}, \textit{Tmp}, \textit{NewOut}, and \textit{NewClone}. Each item in the queue is stored once in either \textit{In} or \textit{Out}, but copies of that item may also be stored in other stacks. We also maintain counters $S.num$ storing the number of items in each stack S. (I’ll pretend these counters are part of the black-box stacks, but we can maintain them separately if necessary.)

As long as $\textit{In}.num < \textit{Out}.num$ (or the queue is empty), the stacks \textit{In} and \textit{Out} behave exactly like their counterparts in the amortized queue implementation, and \textit{Clone} is an exact copy of \textit{Out}. However, whenever $\textit{In}.num = \textit{Out}.num$, we start transferring all items from \textit{In} to \textit{Out}, using the other stacks either as temporary storage or as backups. Here is a description of the transfer process as a standalone algorithm. (To simplify the algorithm, I’m assuming that our dynamic memory model includes garbage collection. Explicitly emptying and deleting stacks when they become useless only increases the final constant running time.)

displaymath
\begin{align*}
\textbf{TRANSFER}(\cdot):
\begin{align*}
&\quad\langle\langle \text{--- Initialize transfer stacks ---}\rangle\rangle \\
&\quad \text{\textit{OldIn} \leftarrow \textit{In}} \\
&\quad \text{\textit{In} \leftarrow \text{new stack}} \\
&\quad \text{\textit{NewOut} \leftarrow \text{new stack}} \\
&\quad \text{\textit{NewClone} \leftarrow \text{new stack}} \\
&\quad \langle\langle \text{--- Transfer \textit{OldIn} to \textit{NewOut} and \textit{NewClone} ---}\rangle\rangle \\
&\quad \text{\text{while} \textit{OldIn} \text{ is not empty}} \\
&\quad \quad x \leftarrow \textit{OldIn}.\text{Pop}() \\
&\quad \quad \textit{NewOut}.\text{Push}(x) \\
&\quad \quad \textit{NewClone}.\text{Push}(x) \\
&\quad \langle\langle \text{--- Transfer \textit{Clone} to \textit{NewOut} and \textit{NewClone} ---}\rangle\rangle \\
&\quad \text{\textit{Tmp} \leftarrow \text{new stack}} \\
&\quad \text{\text{while} \textit{Clone} \text{ is not empty}} \\
&\quad \quad \text{\textit{Tmp}.Push(\textit{Clone}.\text{Pop}())} \\
&\quad \text{\textit{fromIn} \leftarrow \textit{NewOut}.num} \\
&\quad \text{\text{while} \textit{NewOut}.num < \textit{fromIn} + \textit{Out}.num} \\
&\quad \quad x \leftarrow \text{\textit{Tmp}.Pop()} \\
&\quad \quad \textit{NewOut}.\text{Push}(x) \\
&\quad \quad \textit{NewClone}.\text{Push}(x) \\
&\quad \langle\langle \text{--- Reset to normal behavior ---}\rangle\rangle \\
&\quad \text{\textit{Out} \leftarrow \textit{NewOut}} \\
&\quad \text{\textit{Clone} \leftarrow \textit{NewClone}} \\
&\quad \text{xfer \leftarrow \text{FALSE}}
\end{align*}
\end{align*}

displaymath

This \textbf{TRANSFER} process is illustrated on the next page.
In fact, we spread the execution of `TRANSFER` across the next several queue operations after `In.num = Out.num`, as described below. The subroutine `TRANSFERStep()` performs the next 12 stack operations in `TRANSFER`, plus $O(1)$ additional work. (That is, one call to `TRANSFERStep()` either transfers four items from `In`, six items from `Clone`, or four items from `Tmp`.) While `TRANSFER` is active (indicated by the boolean flag `xfer` being `True`), we `Push` new items into stack `In` as usual, and we `Pull` items from `Out` as usual, but `Pull` does not directly modify `Clone`.

```plaintext
QueuePush(x):
  if xfer
    TRANSFERStep()
    In.Push(x)
  if In.num ≥ Out.num
    xfer ← True

QueuePull():
  if xfer
    TRANSFERStep()
  else
    Clone.Pop()
    x ← Out.Pop
  if In.num ≥ Out.num
    xfer ← True
  return x
```
If $n = \text{In.num} = \text{Out.num}$ when \text{TRANSFER} begins, then \text{TRANSFER} performs at most $3n + 2n + 3n = 8n$ stack pushes and pops, plus $O(1)$ other work. Thus, \text{TRANSFER} is complete after $2n/3$ queue operations. This implies that \text{TRANSFER} is complete before the old Out stack becomes empty, and that after \text{TRANSFER}, we have more items in Out than In.

This solution is adapted from a description by Hood and Melville [1], which uses only six stacks. The difference between their six-stack solution and my seven-stack solution is that Hood and Melville’s stacks are standard LISP lists, not black boxes. Implementing stacks in a functional language like LISP automatically makes them \textit{fully persistent}, meaning old versions of stacks are still available to be queried or even modified. In Hood and Melville’s implementation, “\text{Clone}” begins as the version of “\text{Old}” when \text{TRANSFER} begins. In \textit{git} terminology, \text{Clone} is a branch of Out. In imperative terms, Hood and Melville’s stacks are implemented as linked lists, except that Out and Clone are pointers into the same linked list.

In short, they cheated.\(^{\text{a}}\)

Okasaki [2] describes several purely functional queues that are more efficient than Hood-Melville. I don’t know whether these can be adapted to fast queue implementations with fewer black-box stacks.

\(^{\text{a}}\)More accurately, they played a different and more interesting game than the one I’m playing.