1. Describe how to implement a quack with three black-box stacks, so that each quack operation requires $O(1)$ amortized stack operations.

Solution (clones and ghosts; partial credit): Let's call the three stacks QIn, QOut, and Stack. The first two stacks QIn and QOut will simulate a queue; the third stack Stack will behave like a normal stack.

Any item that is really in the quack appears exactly twice in our data structure: once in either QIn or QOut, and once in Stack. However, our structure may also contain at most one ghost copy of each item that the user has already extracted from the quack, either at the bottom of QOut or at the bottom of Stack. We also keep track of the number of ghosts in these two stacks. Whenever we discover that every item on a stack is a ghost, we empty that stack.

Consider a sequence of N quack operations. In the worst case, a single quack operation could require $O(N)$ stack operations. However, each item inserted into the quack is pushed and popped from each of the three stacks at most once during its lifetime. Thus, any sequence of N quack operations leads to at most 6 N stack operations, which implies that each quack operation uses $O(1)$ amortized stack operations.

One significant downside of this solution is that its memory footprint is not bounded by any function of the number of items in the quack. For example, suppose we perform N Pushes and then $N-1$ Pulls on an initially empty quack. The resulting abstract quack contains only one item, but in our implementation, Stack still contains $N-1$ ghosts, and therefore uses $\Omega(N)$ space.

Solution (no clones; no ghosts; full credit): I will implement the quack as a triple of black-box stacks Top, Bot, and Tmp, and an integer counter num, which stores the number of items in the quack. After each quack operation, stack Tmp is empty and each item in the quack is stored in exactly one of the other two component stacks.

Intuitively, pushes insert items into Top, pops remove items from Top, and pulls remove items from Bot. However, whenever we need to pop from an empty stack, we
first transfer half of the items from the other stack, using Tmp to maintain the correct item order.

The only part of these algorithms that does not run in $O(1)$ worst-case time is QuackBalance, runs in $O(n)$ time. The following figure shows an example of QuackBalance in action.

Consider the sequence of quack operations between two consecutive QuackBalance calls. Let n_{0} and n_{1} denote the values of $q c k . n u m$ just after the first QuackBalance
and just before the second. To simplify the case analysis, I'll assume that n_{0} is even; after the first QuackBalance, stacks In and Out each contain exactly $n_{0} / 2$ items. (Dealing with odd n_{0} only changes the constants in $O(1)$ amortized time bounds.)

- Just before the second QuackBalance, one of the stacks In or Out is empty, so we must have performed at least $n_{0} / 2$ deletions (QuackPops and QuackPulls). Thus, if $n_{0} \geq n_{1}$, we can charge the $O\left(n_{1}\right)=O\left(n_{0}\right)$ stack operations for the second rebalance to these $\Omega\left(n_{0}\right)$ deletions.
- On the other hand, if $n_{1}>n_{0}$, then just before the second QuackBalance, at least half of the n_{1} items in the non-empty stack Top were QueuePushed after the first rebalance. Thus, we can charge the $O\left(n_{1}\right)$ stack operations for the second QuackBalance to these $\Omega\left(n_{1}\right)$ QueuePushes.

In both cases, $O(1)$ stack operations are charged to each quack operation.
Assuming the component stacks are space-efficient, this data structure always uses $O(n)$ space to store n items, unlike the cones-and-ghosts data structure.
2. (a) Describe how to implement a steque with two black-box stacks, so that each steque operation requires $O(1)$ amortized stack operations.

Solution: We make only minor modifications to our implementation of queues with two stacks. I will implement the steque as a pair of black-box stacks In and Out, and an integer counter num, which stores the number of items in the steque. After each steque operation, each item in the steque is stored in exactly one of the two component stacks.

Intuitively, items are shoved into In, pushed into Out, and popped from Out. But if Out is empty when we try to pop, we first transfer all items from In to Out, similarly to our queue simulation. If there are no pushes, this is our queue implementation, but using shove and pop instead of push and pull, and swapping the roles of In and Out.

$\frac{\text { STEQUESHOVE }(\text { stq, } x):}{\operatorname{PuSh}(\text { stq.In, } x)}$
stq.num \leftarrow stq.num +1

```
STEQUEPOP(stq):
```

STEQUEPOP(stq):
if IsEmpty(stq.In)
if IsEmpty(stq.In)
<<Transfer items from In to Out\rangle\rangle
<<Transfer items from In to Out\rangle\rangle
while \negIsEmpty(stq.In)
while \negIsEmpty(stq.In)
Push(stq.Out, Pop(stq.In))
Push(stq.Out, Pop(stq.In))
x}\leftarrow\operatorname{Pop(stq.In)
x}\leftarrow\operatorname{Pop(stq.In)
stq.num }\leftarrow\mathrm{ stq.num - 1
stq.num }\leftarrow\mathrm{ stq.num - 1
return x

```
    return x
```

The only part of these algorithms that does not run in $O(1)$ worst-case time is the transfer loop in StequePop, which moves the contents of stack In to stack Out in $\Theta(n)$ time.

Consider the sequence of operations between two consecutive transfers. Let n_{0} and n_{1} respectively denote the values of stq.num just after the first transfer and just before the second. Between these two transfers we must perform exactly n_{1} StequeShoves (and at least n_{0} StequePushes). Thus, we can charge the $O\left(n_{1}\right)$ stack operations in the second transfer to these n_{1} StequeShoves. Each StequeShove is charged for $O(1)$ stack operations; StequePushes and StequePops are not charged at all.

Alternatively, each item that is ever inserted into the steque participates in at most four stack operations. There are only two cases to consider:

- Inserted by QuackShove: shoved into In, pulled from In, pushed into Out, and popped from Out.
- Inserted by QuackPush: pushed into Out, and popped from Out.

Thus, each QuackShove uses 4 amortized stack operations, QuackPush uses 2 amortized stack operations, and QuackPop uses zero stack operations. ${ }^{a}$

[^0]4．Describe how to implement a queue with O（1）black－box stacks，so that each queue operation takes $O(1)$ stack operations in the worst case．

Solution：I will implement the queue using seven stacks：In，Out，Clone，OldIn，Tmp， NewOut，and NewClone．Each item in the queue is stored once in either In or Out，but copies of that item may also be stored in other stacks．We also maintain counters S．num storing the number of items in each stack S ．（I＇ll pretend these counters are part of the black－box stacks，but we can maintain them separately if necessary．）

As long as In．num＜Out．num（or the queue is empty），the stacks In and Out behave exactly like their counterparts in the amortized queue implementation，and Clone is an exact copy of Out．However，whenever In．num $=$ Out．num，we start transferring all items from In to Out，using the other stacks either as temporary storage or as backups．Here is a description of the transfer process as a standalone algorithm． （To simplify the algorithm，I＇m assuming that our dynamic memory model includes garbage collection．Explicitly emptying and deleting stacks when they become useless only increases the final constant running time．）

```
TRANSFER():
    〈
    OldIn \(\leftarrow\) In
    In \(\leftarrow\) new stack
    NewOut \(\leftarrow\) new stack
    NewClone \(\leftarrow\) new stack
    \(\langle\langle-\) Transfer OldIn to NewOut and NewClone -- 》〉
    while OldIn is not empty
        \(x \leftarrow\) OldIn. \(\operatorname{Pop}()\)
        NewOut.Push \((x)\)
        NewClone.PUSH \((x)\)
    \(\langle\langle-\) Transfer Clone to NewOut and NewClone -->>
    Tmp \(\leftarrow\) new stack
    while Clone is not empty
        Tmp.Push(Clone.Pop())
    fromIn \(\leftarrow\) NewOut.num
    while NewOut.num < fromIn + Out.num
        \(x \leftarrow\) Tmp. \(\operatorname{Pop}()\)
        NewOut.Push \((x)\)
        NewClone.Push \((x)\)
    \(\langle\langle-\) Reset to normal behavior --\(\rangle\rangle\)
    Out \(\leftarrow\) NewOut
    Clone \(\leftarrow\) NewClone
    xfer \(\leftarrow\) FALSE
```

This Transfer process is illustrated on the next page．

In fact, we spread the execution of Transfer across the next several queue operations after In.num $=$ Out.num, as described below. The subroutine TransferStep() performs the next 12 stack operations in Transfer, plus $O(1)$ additional work. (That is, one call to TransferStep() either transfers four items from In, six items from Clone, or four items from Tmp.) While Transfer is active (indicated by the boolean flag xfer being True), we Push new items into stack In as usual, and we Pull items from Out as usual, but Pull does not directly modify Clone.

$\frac{\operatorname{QUEUEPUSH}(x):}{\text { if } x f e r}$
TransFERSTEP ()
In.PUSh (x)
if In.num \geq Out.num
x fer \leftarrow True

$\frac{\text { QueuePull() : }}{\text { if } x f e r ~}$
TransferSTEP()
else
Clone.Pop()
$x \leftarrow$ Out.Pop
if In.num \geq Out.num
$x f e r \leftarrow$ True
return x

If $n=$ In.num $=$ Out.num when Transfer begins, then Transfer performs at most $3 n+2 n+3 n=8 n$ stack pushes and pops, plus $O(1)$ other work. Thus, Transfer is complete after $2 n / 3$ queue operations. This implies that Transfer is complete before the old Out stack becomes empty, and that after Transfer, we have more items in Out than In.

This solution is adapted from a description by Hood and Melville [1], which uses only six stacks. The difference between their six-stack solution and my seven-stack solution is that Hood and Melville's stacks are standard LISP lists, not black boxes. Implementing stacks in a functional language like LISP automatically makes them fully persistent, meaning old versions of stacks are still available to be queried or even modified. In Hood and Melville’s implementation, "Clone" begins as the version of "Old" when Transfer begins. In git terminology, Clone is a branch of Out. In imperative terms, Hood and Melville's stacks are implemented as linked lists, except that Out and Clone are pointers into the same linked list.

In short, they cheated. ${ }^{a}$
Okasaki [2] describes several purely functional queues that are more efficient than Hood-Melville. I don't know whether these can be adapted to fast queue implementations with fewer black-box stacks.
[1] Robert T. Hood and Robert V. Melville. Real time queue operations in pure LISP. Information Processing Letters 13(2):50-54, 1981. Technical Report TR80-422, Department of Computer Science, Cornell University, 1980.
[2] Chris Okasaki. Simple and efficient purely functional queues and deques. Journal of Functional Programming 5(4):583-592, 1995. See also Chapter 5 in Purely Functional Data Structures.
${ }^{a}$ More accurately, they played a different and more interesting game than the one I'm playing.

[^0]: ${ }^{a}$ We can't use this global argument for our space-efficient quack, because a single item can be involved in arbitrarily many calls to QuackBalance.

