
CS 225 Honors Homework 3 Solutions Spring 2024

1. (a) Prove that in any intermixed sequence of Push and PullMany operations, each
operation runs in O(1) amortized time.

Solution: Charge the time to Pull each element off the queue, plus the overhead
of one iteration of the loop, to the corresponding Push operation. Each Push
operation received O(1) charge, so the amortized cost of a Push is still O(1). The
amortized cost of PullMany is actually zero. ■

Solution: Consider a mixed sequence of n Pushes and m PullManys. Clearly
m< n, because we can’t pull more than we push. Each of the n items that ever
appear in the queue is pushed onto the queue once and pulled off the queue at
most once. Thus, the total number of elementary queue operations is at most
2n, so the total time for all operations is O(n). We conclude that the amortized
cost of each operation is O(1). ■

Solution: Define the potential Φ of the queue to be the number of elements in
the queue. Each Push operation increases the potential by 1, so its amortized
cost is O(1). Each operation PullMany(k) requires k individual Pull operations
and decreases the potential by k, so its amortized cost is actually zero. ■

(b) Prove that for any integers ℓ and n, there is a sequence of ℓ PushClones and
PullMany operations that requires Ω(nℓ) time, where n is the maximum number of
items in the queue at any time. Such a sequence implies that the amortized time for
each operation is Ω(n).

Solution: Consider the sequence of operations executed by the following algo-
rithm. (Here • is an arbitrary value that doesn’t matter.)

ManyManyBad(ℓ, n) :
for i← 1 to ℓ

PushClones(•, n)
PullMany(n)

Each call to PushClones and PullMany takes Θ(n) time, so the total running
time is Θ(nℓ), as required. ■

1



CS 225 Honors Homework 3 Solutions Spring 2024

(c) Describe a data structure that supports arbitrary intermixed sequences of PushClones
and PullMany operations in O(1) amortized time per operation. Like a standard
queue, your data structure should use only O(1) space per item.

Solution: We maintain a standard FIFO queue PQ of ordered pairs, where each
ordered pair (item,num) represents num copies of item. However, because our
default queue interface does not allow us to modify pairs inside PQ, we maintain
the pair that should be at the front of PQ (that is, the pair that would be Pulled
next) in a separate field head. (The abstract queue of pairs is empty if and only
if head.num= 0.)

We implement PushClones and PullMany as follows:

PushClones(x , k) :
if head.num= 0

head← (x , k)
else

Push(PQ, (x , k) )

PullMany(k) :
while k > head.num

k← k− head.num
head← Pull(PQ)

x ← head.item
if k = head.num

head← Pull(PQ)
else

head.num← head.num− k

return x

The actual running time of PushClones is O(1), and the actual running time
of PullMany is O(1+ ℓ), where ℓ is the number of iterations of the while loop.
As in part (a), we can charge each of the ℓ calls to Pull (and the rest of that
iteration of the while loop) to the corresponding call to PushClones. Thus,
each operation takes O(1) amortized time. ■

2


