1. Describe and analyze an algorithm that answers the following query in $O(\sqrt{n})$ time, assuming the points P are stored in a kd-tree.

CountAbove(b): Return the number of points in P that lie above the horizontal line $y=b$.

To avoid some boundary cases, assume that $n=2^{k}-1$ for some integer k, that all points in P have distinct x - and y-coordinates, and that no point in P lies directly on the line $y=b$. [Hint: How many boxes does the query line intersect?]

Solution: The main idea is to recursively calculate the total number of points above the line in both subtrees, but we don't recurse if all points in a subtree lie above the line, or all points in a subtree lie below the line.

```
<<Return the number of points above y = b in a kd-tree rooted at v.\\
CountAbove(v,b):
    if v=NULL
        return 0
    else if v.dir = VERTICAL
        return CountAbove(v.left,b) + [v.y>b] + CountAbove(v.right,b)
    else \\langlev.dir = HorIzonTAL \rangle}
        if v.y>b
            return size(v.up) + 1 + CountAbove(v.down,b)
        else
            return CountAbove(v.up,b)
```

(The expression " $[v . y>b]$ " evaluates to 1 if $v . y>b$ and 0 otherwise; this notation is called the Iverson bracket.)

We can prove by induction that this algorithm is correct. The base case $v=$ Null is trivial. If v is a vertical node, we correctly count v 's point if it lies above the line, and by the induction hypothesis, we correctly count the points above the line on either side of the vertical cut. If v is a horizontal node and $v . y>b$, we correctly count v 's point and all points in $v . u p$, and the induction hypothesis implies that the points below the cut are counted correctly. Finally, if v is a horizontal node and $v . y<b$, all the points above the line $y=b$ are in the upper subtree, and the induction hypothesis implies that these points are counted correctly.

Let $H(n)$ and $V(n)$ denote the running times when the top-level cut is horizontal or vertical, respectively. Ignoring floors and ceilings, which don't matter asymptotically, we have mutual recurrences

$$
V(n)=2 H(n / 2)+O(1) \quad \text { and } \quad H(n)=V(n / 2)+O(1)
$$

with the usual base cases $H(n)=V(n)=O(1)$ when $n=O(1)$. Substituting $H(n / 2)=V(n / 4)+O(1)$ in the first recurrence simplifies it to

$$
V(n)=2 V(n / 4)+O(1) .
$$

We can solve this simpler recurrence using the recursion tree method, as follows.
The root of the recursion tree for $V(n)$ has value 1 and two children, each of which is the root of a recursion tree for $V(n / 4)$. So the recursion tree has one root, two nodes at depth 1 , four nodes at depth 2 , and more generally, 2^{d} nodes at any depth d. Thus, the level sums form an increasing geometric series $T(n)=1+2+4+\cdots+2^{D}=O\left(2^{D}\right)$, where D is the maximum depth of the tree. The overall depth of the recursion tree is at most $L=\log _{4} n$. Thus, $T(n)=O\left(2^{\log _{4} n}\right)=O\left(n^{\log _{4} 2}\right)=O\left(n^{1 / 2}\right)=O(\sqrt{n})$, as required.

