
CS 225 Honors Homework 6 Solutions Spring 2024

1. Describe how tomodify the splay-tree-based rope data structure (described in the homework
handout) to support a new operation Reverse(S), which replaces a string S with its reversal
in O(1) worst-case and amortized time. The amortized times for all other operations
should change by at most a small constant factor.

Solution: We add a single boolean flag v.rev to every node v, which indicates whether
the subtree rooted at v should be considered reversed. The Reverse algorithm is
almost trivial: To reverse a string S, we call the following function on the root of the
tree representing S.

Reverse(v):
if v ̸= Null

v.rev←¬v.rev

The simplest approach to modifying the other operations is to never let them see
the reversal bits. In every operation, just before we read any field of any node v, we
run the following algorithm. (To pronounce the function name “OkayFine” correctly,
pretend that you are a petulant teenager whose parents have been nagging you for
months to clean your room.)

OkayFine(v):
if v.rev= True

v.rev← False
swap v.left↔ v.right
Reverse(v.left)
Reverse(v.right)

(In C++, this code could be injected transparently by overloading the -> operator.)
Calling OkayFine adds only O(1) time to every node access, and therefore increases
the cost of any other operation by only a constant factor.

The fact that we’ve implemented ropes using splay trees is utterly irrelevant.
Precisely the same lazy-propagation strategy works for any balanced binary search
tree that supports Split and Join in O(log n) (possibly amortized / expected) time.

In the following figure, a node is red if and only if its reversal bit is set to True.
The tree on the left is a splay-rope for the string S = STRESSED. The remaining steps
show the execution of Lookup(S, 8), first performing the search and then splaying
the target node up to the root.

R

E S

D S

E

T

S

R

ES

D S

E

T

S

R

ES

DS

E

T

S

R

ES

DS

E

T

S

R

E

S

D

S

ET S

■

1


