
CS 225 Honors Homework 7 Solutions Spring 2024

1. Describe and analyze a data structure that maintains sequences of numbers, all initially
equal to zero, subject to the following operations.

• S← Init(n): Initialize a new sequence S[1 .. n] containing n zeros.

• Shift(S, i, j,∆): Add ∆ to every number in the interval S[i .. j]. The number ∆ is
not necessarily an integer; moreover, ∆ could be positive, negative, or zero.

• Scale(S, i, j,α): Multiply every number in the interval S[i .. j] by α. The number α
is not necessarily an integer; moreover, α could be positive, negative, or zero.

• x ←Minimum(S, i, j): Return the smallest number in the interval S[i .. j].

Solution: I’ll first describe a static data structure that supports Minimum queries but no
updates, then describe how to add the Shift and Scale updates, and finally sketch how to
reduce the running time of Init to O(1). I will assume without loss of generality that n is a
power of 2. I’ve made several arbitrary choices in my data structure design in the hope of
simplifying the presentation; many other variants are also correct.

My data structure consists of a fixed and perfectly balanced binary tree, called a tournament
tree, whose leaves store the values in the sequence in order from left to right. Each node v
stores the following information:

• v.value: the value of v (only if v is a leaf)
• v.left: a pointer to v’s left child, if any
• v.right: a pointer to v’s right child, if any
• v.first: the minimum index among all leaf descendants of v

• v.last: the maximum index among all leaf descendants of v

• v.min: the minimum value among all leaf descendants of v

The min, first, and last fields are defined recursively as follows: If v is a leaf, we have

v.first= v.last and
v.min= v.value,

and otherwise,

v.first= v.left.first,
v.last= v.right.last.
v.min=min{v.left.min, v.right.min},

Initializing this data structure in O(n) time is straightforward.

To answer Minimum, we use an algorithm similar to the query algorithm for kd-trees
from Homework 5. The first argument of Minimum is a node in the tree; specifically, in the
top-level function call, v is the root.

1



CS 225 Honors Homework 7 Solutions Spring 2024

Minimum(v, i, j):
if i > v.last or j < v.first

return∞
else if i ≤ v.first and j ≥ v.last

return v.min
else

lmin←Minimum(v.left, i, j)
rmin←Minimum(v.right, i, j)
return min{lmin, rmin}

Minimum(v, i, j) calls itself recursively if and only if v.first< i ≤ v.last or v.first≤ j <
v.last. At each level of the tree, there is at most one node v that meets each of these
conditions. (These are the yellow nodes in the figure above.) It follows that the total
number of recursive calls is at most 4 log2 n, which implies that Minimum runs in O(log n)
time.

Said differently, the tree partitions any index range [i .. j] into O(log n) canonical ranges,
each associated with a node in the tree. The output of Minimum(·, i, j) is the smallest min
value among these O(log n) nodes. (These are the red nodes in the figure below.)

3 1 4 5 9 2 6 5 3 5 8 9 7 9 3

1 1 5 2 3 5 7 3

1 2 3 3

1 3

1

1

Answering a range-minimum query

Now let’s consider the Shift function. To implement this function efficiently, we take a
lazy approach. Instead of actually adding ∆ to every number in the given index range, we
record the a few subtrees should eventually be shifted upward by ∆. Specifically, we add a
new field v.shift to the record of each node v, which indicates that all values in the subtree
rooted at v should eventually be shifted upward by v.shift. At all times, we maintain the
invariant

v.min=min

�

v.left.min+ v.left.shift,
v.right.min+ v.right.shift

�

for every internal node v. Initially, we set v.shift← 0 at every node v. The following figure
shows an example of a tournament tree with non-zero shift values that represents the same
sequence of numbers as the figure above.

5 3 6 2 6 –1 3 6 4 2 5 6 4 6 0

3 3 2 –1 4 2 5 0

3 –1 0 0

3 0

1

3

+3–2

+5

–4

3 1 4 5 9 2 6 5 3 5 8 9 7 9 31

Stored values and mins are black; non-zero shift fields are red; represented leaf values are gray.

2



CS 225 Honors Homework 7 Solutions Spring 2024

Before we examine any node v for any reason, we run the following algorithm, similar
to OkayFine in the previous homework. By Cleaning nodes as we go, we can essentially
pretend that these shifts do not exist, at only a small constant increase in running time.

〈〈Reset v.shift to 0 and propagate shift to children〉〉
Clean(v):

if v is a leaf
v.value← v.value+ v.shift

else
v.left.shift← v.left.shift+ v.shift
v.right.shift← v.right.shift+ v.shift

v.min← v.min+ v.shift
v.shift← 0

The actual Shift algorithm closely resembles Minimum. If the query range [i .. j] contains
every leaf below v, we adjust v.shift. Otherwise, if the query range [i .. j] contains at least
one leaf below v, we recursively Shift both children of v. The Minimum algorithm itself
needs only one minor change. Both algorithms run in O(log n) time in the worst case.

Shift(v, i, j,∆):
Clean(v)
if i > v.last or j < v.first

return
else if i ≤ v.first and j ≥ v.last

v.shift←∆
else

Shift(v.left, i, j,∆)
Shift(v.right, i, j,∆)

Minimum(v, i, j):
Clean(v)
if i > v.last or j < v.first

return∞
else if i ≤ v.first and j ≥ v.last

return v.min
else

lmin←Minimum(v.left, i, j)
rmin←Minimum(v.right, i, j)
return min{lmin, rmin}

To add support for Scale, we introduce two more lazily-updated fields v.scale and v.max
at every vertex, and we maintain the following invariants. (We need the max field and the
more complicated invariants because v.scale could be negative!)

v.min=















min

�

v.left.min · v.scale+ v.left.shift,
v.right.min · v.scale+ v.right.shift

�

if v.scale≥ 0

min

�

v.left.max · v.scale+ v.left.shift,
v.right.max · v.scale+ v.right.shift

�

otherwise

v.max=















max

�

v.left.max · v.scale+ v.left.shift,
v.right.max · v.scale+ v.right.shift

�

if v.scale≥ 0

max

�

v.left.min · v.scale+ v.left.shift,
v.right.min · v.scale+ v.right.shift

�

otherwise

Initially, v.scale = 1 for every vertex v. Adapting Clean to handle scale is tedious but
straightforward:

3



CS 225 Honors Homework 7 Solutions Spring 2024

〈〈Reset v.shift and v.scale and propagate to children〉〉
Clean(v):
if v is a leaf

v.value← v.value · v.scale+ v.shift
else

v.left.scale← v.left.scale · v.scale
v.left.shift← v.left.shift · v.scale+ v.shift
v.right.scale← v.right.scale · v.scale
v.right.shift← v.right.shift · v.scale+ v.shift

v.min← v.min · v.scale+ v.shift
v.max← v.max · v.scale+ v.shift
if v.min> v.max

swap v.min↔ v.max
v.scale← 1
v.shift← 0

Finally, Scale follows the same recursion pattern as Minimum and Shift, and thus also
runs in O(log n) worst-case time.

Scale(v, i, j,α):
Clean(v)
if i > v.last or j < v.first

return
else if i ≤ v.first and j ≥ v.last

v.scale←∆
else

Scale(v.left, i, j,α)
Scale(v.right, i, j,α)

Finally, to implement Init in O(1) time, we use a simple idea: Don’t allocate nodes until
we actually need them. The modified Init only allocates the root node r, by calling
NewNode(1, n). To lazily create the other nodes, it suffices to add a few more lines to
Clean that allocate the children of the node being cleaned if they do not already exist.

Clean(v):
if v.first= v.last

v.value← v.value · v.scale+ v.shift
else

mid← ⌊(v.first+ v.last)/2⌋
if v.left= Null

v.left← NewNode(v.first,mid)
v.right← NewNode(mid+ 1, v.last)

v.left.scale← v.left.scale · v.scale
v.left.shift← v.left.shift · v.scale+ v.shift
...

...

NewNode(first, last):
v← new node
v.left← Null
v.right← Null
v.first← first
v.last← last
v.value← 0
v.min← 0
v.max← 0
v.shift← 0
v.scale← 1
return v

■

4


