
CS 225 Honors Homework 8 (due Tuesday, April 16) Spring 2024

1. Suppose we are given an undirected, unrooted tree T with n vertices, represented using an
adjacency list data structure. The tree T necessarily has n− 1 edges.

For any two vertices u and v of T , let pathT (u, v) denote the unique path from u to v
in T . For any three vertices u, v, w of T , let meetT (u, v, w) denote the unique vertex of T
that lies on all three paths pathT (u, v) and pathT (u, w) and pathT (v, w).

Describe and analyze a data structure that supports the following query:

• Meet(u, v, w): return the vertex meetT (u, v, w).

For full credit, your solution should have the following components:

• A description of your actual data structure
• An analysis of the space used by your data structure
• A preprocessing algorithm that builds your data structure from an adjacency list for T

• An analysis of the running time of your preprocessing algorithm.
• A query algorithm that implements Meet.
• A brief argument that your query algorithm is correct.
• An analysis of the running time of Meet.

Solution: I assume that the input tree T is represented using a standard adjacency
list. Each vertex v points to a linked list of b’s neighbors; specifically, v stores a
pointer v.first_nbr to one of its neighbors, and each neighbor record w stores a pointer
w.next_nbr to the next neighbor in the list.

• Data structure: We choose a root vertex r and treat T as a rooted tree. Then
we build a data structure that supports LCA queries in T in O(1) time, using
O(n) space, as described in the lecture notes.

• Preprocessing: First we need to transform T into a rooted tree. We start by
choosing an arbitrary vertex r to be the root of T . For each node v, we compute
the distance v.depth from r to v in T using a standard breadth-first search. Now
we can treat T as a rooted tree, without building a separate data structure, using
the following algorithms to navigate through the children of each vertex:

〈〈Return pointer to first child〉〉
FirstKid(v):
〈〈We know that v.first_nbr ̸= Null〉〉
if v.first_nbr.depth< v.depth

return v.first_nbr.next_nbr
else

return v.first_nbr

〈〈Return pointer to next sibling〉〉
NextSib(w):

if w.next_nbr= Null
return Null

else if w.next_nbr.depth< v.depth
return w.next_nbr.next_nbr

else
return w.next_nbr

(Alternatively, we could duplicate T into a standard rooted tree data structure,
but why waste memory?)

Once we’ve converted T into a rooted tree, we preprocess T into a data
structure that answers LCA queries using O(n) space and O(1) query time, exactly
as described in the lecture notes. (Building this structure requires computing

1



CS 225 Honors Homework 8 (due Tuesday, April 16) Spring 2024

the vertex depths, but we’ve already done that.)

• Preprocessing time: The time to convert T into a rooted tree is dominated
by breadth-first search, which takes O(n) time. Building the LCA-query data
structure for T takes O(n) time, as described in the lecture notes.

• Query algorithm:

Meet(u, v, w):
if Lca(u, v) = Lca(u, w)

return Lca(v, w)
else if Lca(u, w) = Lca(v, w)

return Lca(u, v)
else 〈〈Lca(u, v) = Lca(v, w)〉〉

return Lca(u, w)

• Proof of correctness: There are two cases to consider:

– If lca(u, v) = lca(u, w) = lca(v, w) = x , then meet(u, v, w) = x .
– Otherwise, without loss of generality, lca(u, v) ̸= lca(v, w). Both lca(u, v)

and lca(v, w) are ancestors of v, so one must be a proper ancestor of the
other. Without loss of generality, suppose lca(u, v) is a proper ancestor of
lca(v, w). Then lca(u, v) = lca(u, w) and meet(u, v, w) = lca(v, w).

• Query time: Meet makes at most five LCA queries, each of which is answered
in O(1) time, so its overall running time is O(1).

■

2


