1. Suppose we are given a set H of n horizontal line segments in the plane, each specified by its left x-coordinate h.l, its right x-coordinate h.r, and its y-coordinate h.y. Describe a data structure for H that supports queries of the following form:

- CrossCount(v): Given a vertical line segment v, specified by its x-coordinate $v . x$, its bottom y-coordinate $v . b$, and its top y-coordinate $v . t$, return the number of horizontal segments in H that intersect v.

Solution (segment-range tree): The query segment v crosses a horizontal segment $h \in H$ if and only if both of the following conditions are satisfied:

- The x-projection of h contains the x-coordinate of v; that is, h.l $<v . x<h . r$.
- The y-coordinate of h stabs the y-projection of v; that is, $v . b<h . y<v . t$.

We build a two-layer data structure, where each layer is responsible for one of these two conditions.

Specifically, we first build a segment tree T over the x-projections [h.l,h.r] of segments $h \in H$. For each node u in T, let H_{u} denote the corresponding subset of segments (that is, every segment in H whose canonical partitions include the x-range of u). For each node u in the primary segment tree, we construct a secondary range tree T_{u} over the y-coordinates h. y of segments $h \in H_{u}$.

The primary segment tree uses $O(n)$ space. For each node u, the secondary range tree T_{u} uses $O\left(\left|H_{u}\right|\right)$ space. Each segment in H appears in at most two canonical subsets H_{u} at each level of the primary range tree, and therefore at most $O(\log n)$ canoncial subsets overall, so $\sum_{u}\left|H_{u}\right|=O(n \log n)$. Thus, in total, our two-level data structure uses $\sum_{u} O\left(\left|H_{u}\right|\right)=\boldsymbol{O}(n \log n)$ space.

To implement CrossCount (v), we first find the search path $u_{0}, u_{1}, \ldots, u_{k}$ in the primary segment tree for the x-coordinate $v . x$. Here, u_{0} is the root of the segment tree, and each node u_{i+1} is one of the children of u_{i}. Then for each node u_{i}, we perform a range query for the y-projection $[v . b, v . t]$ in the secondary range tree $T_{u_{i}}$. Finally, we return the sum of the results from all secondary range queries.

If any segment $h \in H$ appeared in two subsets $H_{u_{i}}$ and $H_{u_{j}}$, then the canonical partition of h would contain two overlapping intervals, which is impossible. On the other hand, if h does not appear in any subset $H_{u_{i}}$, then h does not cross the query segment v. Thus, each segment $h \in H$ that intersects v is an element of exactly one subset $H_{u_{i}}$. In other words, each secondary range query counts each segment $h \in H$ that crosses v exactly once.

Altogether, we perform $O(\log n)$ secondary range queries. For each node u in the primary range tree, a range query in the corresponding subset H_{u} takes $O\left(\log \left|H_{u}\right|\right)=O(\log n)$ time. Thus, in total, CrossCount runs in $O\left(\log ^{2} n\right)$ time.

Solution (range-segment tree): The query segment v crosses a horizontal segment $h \in H$ if and only if both of the following conditions are satisfied:

- The y-coordinate of h stabs the y-projection of v; that is, $v . b<h . y<v . t$.
- The x-projection of h contains the x-coordinate of v; that is, h.l $<v . x<h . r$.

We build a two-layer data structure, where each layer is responsible for one of these two conditions.

Specifically, we first build a range tree over the y-coordinates h.y of segments $h \in H$. For any node u in this range tree, let H_{u} denote the corresponding canonical subset of segments (those whose x-coordinates are stored in leaves in subtree rooted at u). For each node u in the primary range tree, we build a secondary segment tree T_{u} over the x-projections [h.l,h.r] of segments $h \in H_{u}$.

The primary range tree uses $O(n)$ space. For each node u, the secondary segment tree T_{u} uses $O\left(\left|H_{u}\right|\right)$ space. Each segment in H is an element of exactly one canonical subset H_{u} at each level of the primary range tree, so $\sum_{u}\left|H_{u}\right|=O(n \log n)$. Thus, in total, our two-level data structure uses $\sum_{u} O\left(\left|H_{u}\right|\right)=\boldsymbol{O}(\boldsymbol{n} \log n)$ space.

To implement CrossCount (v), we first partition the query segment v into $O(\log n)$ canonical segments $v_{1}, v_{2}, \ldots, v_{k}$, each associated with a node in the primary range tree, by performing a binary search for the endpoint coordinates $v . b$ and $v . t$. Then for each canonical segment v_{i}, we perform a stabbing query for $v_{i} \cdot x=v . x$ in the corresponding canonical subset of segments H_{i}, using the corresponding secondary structure. Finally, we return the sum of the results from all secondary stabbing queries.

The canonical segments v_{i} defined a partition the query segment v. Thus, any horizontal segment $h \in H$ that stabs v stabs exactly one of the canonical segments v_{i}. It follows that our secondary stabbing queries count each segment $h \in H$ that crosses v exactly once.

Altogether, we perform $O(\log n)$ secondary stabbing queries. For each node u in the primary range tree, a stabbing query in the canonical subset H_{u} takes $O\left(\log \left|H_{u}\right|\right)=$ $O(\log n)$ time. Thus, in total, CrossCount runs in $O\left(\log ^{2} n\right)$ time.

