- Suppose we are given a set *H* of *n* horizontal line segments in the plane, each specified by its left *x*-coordinate *h.l*, its right *x*-coordinate *h.r*, and its *y*-coordinate *h.y*. Describe a data structure for *H* that supports queries of the following form:
 - CROSSCOUNT(v): Given a vertical line segment v, specified by its x-coordinate v.x, its bottom y-coordinate v.b, and its top y-coordinate v.t, return the number of horizontal segments in H that intersect v.

Solution (segment-range tree): The query segment v crosses a horizontal segment $h \in H$ if and only if both of the following conditions are satisfied:

- The *x*-projection of *h* contains the *x*-coordinate of *v*; that is, h.l < v.x < h.r.
- The *y*-coordinate of *h* stabs the *y*-projection of *v*; that is, v.b < h.y < v.t.

We build a two-layer data structure, where each layer is responsible for one of these two conditions.

Specifically, we first build a *segment* tree *T* over the *x*-projections [h.l,h.r] of segments $h \in H$. For each node *u* in *T*, let H_u denote the corresponding subset of segments (that is, every segment in *H* whose canonical partitions include the *x*-range of *u*). For each node *u* in the primary segment tree, we construct a secondary *range* tree T_u over the *y*-coordinates h.y of segments $h \in H_u$.

The primary segment tree uses O(n) space. For each node u, the secondary range tree T_u uses $O(|H_u|)$ space. Each segment in H appears in at most two canonical subsets H_u at each level of the primary range tree, and therefore at most $O(\log n)$ canoncial subsets overall, so $\sum_u |H_u| = O(n \log n)$. Thus, in total, our two-level data structure uses $\sum_u O(|H_u|) = O(n \log n)$ space.

To implement CROSSCOUNT(v), we first find the search path u_0, u_1, \ldots, u_k in the primary segment tree for the *x*-coordinate v.x. Here, u_0 is the root of the segment tree, and each node u_{i+1} is one of the children of u_i . Then for each node u_i , we perform a range query for the *y*-projection [v.b, v.t] in the secondary range tree T_{u_i} . Finally, we return the sum of the results from all secondary range queries.

If any segment $h \in H$ appeared in two subsets H_{u_i} and H_{u_j} , then the canonical partition of h would contain two overlapping intervals, which is impossible. On the other hand, if h does not appear in any subset H_{u_i} , then h does not cross the query segment v. Thus, each segment $h \in H$ that intersects v is an element of *exactly one* subset H_{u_i} . In other words, each secondary range query counts each segment $h \in H$ that crosses v exactly once.

Altogether, we perform $O(\log n)$ secondary range queries. For each node u in the primary range tree, a range query in the corresponding subset H_u takes $O(\log|H_u|) = O(\log n)$ time. Thus, in total, CROSSCOUNT runs in $O(\log^2 n)$ time.

Solution (range-segment tree): The query segment ν crosses a horizontal segment $h \in H$ if and only if both of the following conditions are satisfied:

- The *y*-coordinate of *h* stabs the *y*-projection of *v*; that is, v.b < h.y < v.t.
- The *x*-projection of *h* contains the *x*-coordinate of *v*; that is, h.l < v.x < h.r.

We build a two-layer data structure, where each layer is responsible for one of these two conditions.

Specifically, we first build a *range* tree over the *y*-coordinates h.y of segments $h \in H$. For any node *u* in this range tree, let H_u denote the corresponding canonical subset of segments (those whose *x*-coordinates are stored in leaves in subtree rooted at *u*). For each node *u* in the primary range tree, we build a secondary segment tree T_u over the *x*-projections [h.l,h.r] of segments $h \in H_u$.

The primary range tree uses O(n) space. For each node u, the secondary segment tree T_u uses $O(|H_u|)$ space. Each segment in H is an element of exactly one canonical subset H_u at each level of the primary range tree, so $\sum_u |H_u| = O(n \log n)$. Thus, in total, our two-level data structure uses $\sum_u O(|H_u|) = O(n \log n)$ space.

To implement CROSSCOUNT(v), we first partition the query segment v into $O(\log n)$ canonical segments $v_1, v_2, ..., v_k$, each associated with a node in the primary range tree, by performing a binary search for the endpoint coordinates v.b and v.t. Then for each canonical segment v_i , we perform a stabbing query for $v_i.x = v.x$ in the corresponding canonical subset of segments H_i , using the corresponding secondary structure. Finally, we return the sum of the results from all secondary stabbing queries.

The canonical segments v_i defined a partition the query segment v. Thus, any horizontal segment $h \in H$ that stabs v stabs *exactly one* of the canonical segments v_i . It follows that our secondary stabbing queries count each segment $h \in H$ that crosses v exactly once.

Altogether, we perform $O(\log n)$ secondary stabbing queries. For each node u in the primary range tree, a stabbing query in the canonical subset H_u takes $O(\log|H_u|) = O(\log n)$ time. Thus, in total, CROSSCOUNT runs in $O(\log^2 n)$ time.