
CS 373 U Final Exam Questions (May 11, 2004) Spring 2004

Write your answers in the separate answer booklet.

1. In the well-known Tower of Hanoi problem, we have three spikes, one of which has a tower
of n disks of different sizes, stacked with smaller disks on top of larger ones. In a single step,
we are allowed to take the top disk on any spike and move it to the top of another spike. We
are never allowed to place a larger disk on top of a smaller one. Our goal is to move all the
disks from one spike to another.

Hmmm.... You’ve probably known how to solve this problem since CS 125, so make it more
interesting, let’s add another constraint: The three spikes are arranged in a row, and we are
also forbidden to move a disk directly from the left spike to the right spike or vice versa. In
other words, we must move a disk either to or from the middle spike at every step.

1
2

3 4

The first four steps required to move the disks from the left spike to the right spike.

(a) [4 pts] Describe an algorithm that moves the stack of n disks from the left needle to
the right needle in as few steps as possible.

(b) [6 pts] Exactly how many steps does your algorithm take to move all n disks? A
correct Θ-bound is worth 3 points. [Hint: Set up and solve a recurrence.]

2. Consider a random walk on a path with vertices numbered 1, 2, . . . , n from left to right. At
each step, we flip a coin to decide which direction to walk, moving one step left or one step
right with equal probability. The random walk ends when we fall off one end of the path,
either by moving left from vertex 1 or by moving right from vertex n. In Midterm 2, you
were asked to prove that if we start at vertex 1, the probability that the walk ends by falling
off the left end of the path is exactly n/(n + 1).

(a) [6 pts] Prove that if we start at vertex 1, the expected number of steps before the
random walk ends is exactly n. [Hint: Set up and solve a recurrence. Use the result
from Midterm 2.]

(b) [4 pts] Suppose we start at vertex n/2 instead. State a tight Θ-bound on the expected
length of the random walk in this case. No proof is required. [Hint: Set up and solve
a recurrence. Use part (a), even if you can’t prove it.]

3. Prove that any connected acyclic graph with n vertices has exactly n− 1 edges. Do not use
the word “tree” or any well-known properties of trees; your proof should follow entirely from
the definitions.

1

CS 373 U Final Exam Questions (May 11, 2004) Spring 2004

4. Consider a path between two vertices s and t in an undirected weighted graph G. The
bottleneck length of this path is the maximum weight of any edge in the path. The bottleneck
distance between s and t is the minimum bottleneck length of any path from s to t. (If there
are no paths from u to v, the bottleneck distance between s and t is ∞.)

s

t

1 11

7

128

5

10

9

2

3

6

4

The bottleneck distance between s and t is 5.

Describe and analyze an algorithm to compute the bottleneck distance between every pair of
vertices in an arbitrary undirected weighted graph. Assume that no two edges have the same
weight.

5. The 5Color asks, given a graph G, whether the vertices of a graph G can be colored with
five colors so that no edge has two endpoints with the same color. You already know from
class that this problem is NP-complete.

Now consider the related problem 5Color±1: Given a graph G, can we color each vertex with
an integer from the set {0, 1, 2, 3, 4}, so that for every edge, the colors of the two endpoints
differ by exactly 1 modulo 5? (For example, a vertex with color 4 can only be adjacent to
vertices colored 0 or 3.) We would like to show that 5Color±1 is NP-complete as well.

(a) [2 pts] Show that 5Color±1 is in NP.

(b) [1 pt] To prove that 5Color±1 is NP-hard (and therefore NP-complete), we must
describe a polynomial time algorithm for one of the following problems. Which one?

• Given an arbitrary graph G, compute a graph H such that 5Color(G) is true if
and only if 5Color±1(H) is true.

• Given an arbitrary graph G, compute a graph H such that 5Color±1(G) is true
if and only if 5Color(H) is true.

(c) [1 pt] Explain briefly why the following argument is not correct.
For any graph G, if 5Color±1(G) is true, then 5Color(G) is true (using the same
coloring). Therefore if we could solve 5Color±1 quickly, we could also solve 5Color
quickly. In other words, 5Color±1 is at least as hard as 5Color. We know that
5Color is NP-hard, so 5Color±1 must also be NP-hard!

(d) [6 pts] Prove that 5Color±1 is NP-hard. [Hint: Look at some small examples. Replace
the edges of G with a simple gadget, so that the resulting graph H has the desired
property from part (b).]

2

CS 373 U Final Exam Questions (May 11, 2004) Spring 2004

6. Let P be a set of points in the plane. Recall that a point p ∈ P is Pareto-optimal if no
other points in P are both above and to the right of p. Intuitively, the sequence of Pareto-
optimal points forms a staircase with all the other points in P below and to the left. The
staircase layers of P are defined recursively as follows. The empty set has no staircase
layers. Otherwise, the first staircase layer contains all the Pareto-optimal points in P , and
the remaining layers are the staircase layers of P minus the first layer.

1

1

1

1

2

2

4

3

2

3

5

2

3

4 2

A set of points with 5 staircase layers

Describe and analyze an algorithm to compute the number of staircase layers of a point set P
as quickly as possible. For example, given the points illustrated above, your algorithm would
return the number 5.

7. Consider the following puzzle played on an n × n square grid, where each square is labeled
with a positive integer. A token is placed on one of the squares. At each turn, you may
move the token left, right, up, or down; the distance you move the token must be equal to
the number on the current square. For example, if the token is on a square labeled ”3”, you
are allowed more the token three squares down, three square left, three squares up, or three
squares right. You are never allowed to move the token off the board.

5 1 2 3 4 3
3 5 4 1 4 2
2 4 1 3 4 2
3 1 4 2 3 5
2 3 1 2 3 1
1 4 3 2 4 5

5 1 2 3 4 3
3 5 4 1 4 2
2 4 1 3 4 2
3 1 4 2 3 5
2 3 1 2 3 1
1 4 3 2 4 5

A sequence of legal moves from the top left corner to the bottom right corner.

(a) [4 pts] Describe and analyze an algorithm to determine, given an n× n array of labels
and two squares s and t, whether there is a sequence of legal moves that takes the token
from s to t.

(b) [6 pts] Suppose you are only given the n×n array of labels. Describe how to preprocess
these values, so that afterwards, given any two squares s and t, you can determine in
O(1) time whether there is a sequence of legal moves from s to t.

3

