
20a Systems of Cycles and Homology

Homology is a natural equivalence relation between cycles, similar to but both simpler and
coarser than homotopy; where homotopy treats cycles as sequences of darts, homology treats
cycles as sets of edges (or more generally, linear combinations of darts). Homology can be defined
with respect to any “coefficient ring”, but to keep the presentation simple, I’ll describe only the
simplest special case (Z2-homology) in this section, and return to a slightly more complicated
special case (R-homology) in a later note.

20a.1 Cycles and Boundaries

Fix a surface map Σ= (V, E, F) with Euler genus ḡ.

Z2-homology is an equivalence relation between certain subgraphs of Σ, formally represented as
subsets of E.

An even subgraph of Σ is a subgraph H such that degH(v) is even for every vertex v ∈ V (Σ). The
empty subgraph is an even subgraph, as is every simple cycle. Every even subgraph is the union
(or symmetric difference) of simple edge-disjoint cycles.

For every edge e ̸∈ T , let cycleT (e) denote the unique simple undirected cycle in the graph T + e;
we call cycleT (e) a fundamental cycle with respect to T . Let C= {cycleT (e) | e ∈ L}. The set C is
called a system of cycles for the map Σ.

Fundamental Cycle Lemma: Let T be an arbitrary spanning tree of an arbitrary graph G (sic).
For every even subgraph H of G, we have

H =
⊕

e∈H\T
cycleT (e).

Thus, even subgraphs are symmetric differences of fundamental cycles.

Proof: Let H be an arbitrary even subgraph of G, and let H ′ =
⊕

e∈H\T cycleT (e). The symmetric
difference of any two even subgraphs is even, so H ⊕H ′ is an even subgraph and therefore
the union of edge-disjoint cycles. On the other hand, H ⊕ H ′ is a subgraph of T and
therefore acyclic. We conclude that H ⊕H ′ is empty, or equivalently, H = H ′. □

Mnemonically, any even subgraph can be named by listing its edges in C ∪ L.

Let Z be a subset of the faces of Σ. The boundary of Z , denoted ∂ Z , is the subgraph of Σ
containing every edge that is incident to both a face in Z and a face in F \Z . A boundary subgraph
is any subgraph that is the boundary of a subset of faces. Every boundary subgraph is an even
subgraph. Conversely, if Σ is a planar map, the Jordan curve theorem implies that every even
subgraph is a boundary subgraph, but this equivalence does not extend to more complex surfaces.

Fundamental Boundary Lemma: Let (T, L, C) be an arbitrary tree-cotree decomposition of a
surface map Σ. For every boundary subgraph B of Σ, we have

B =
⊕

e∈B∩C
bdryC(e).

Thus, boundary subgraphs are symmetric differences of fundamental boundaries.
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Proof: We mirror the proof of the Fundamental Cycle lemma. Let B be any boundary subgraph,
and let B′ =
⊕

e∈B∩C bdryC(e). The boundary space is closed under symmetric difference,
so B′ ⊕ B is a boundary subgraph. On the other hand, B ⊕ B′ has no edges in C , so B ⊕ B′

is a subgraph of the cut graph T ∪ L. We conclude that B ⊕ B′ is empty, or equivalently,
B = B′. □.

Mnemonically, any boundary subgraph can be named by listing its edges in C .

20a.2 Homology

Finally, two subgraphs A and B of Σ are (Z2)-homologous if their symmetric difference A⊕ B
is a boundary subgraph of Σ. For example, every boundary subgraph is homologous with the
empty subgraph, which is why boundary subgraphs are also called null-homologous subgraphs.
Straightforward definition-chasing implies that (Z2)-homology is an equivalence relation, whose
equivalence classes are obviously called (Z2)-homology classes. We usually omit “Z2” if the type
of homology is clear from context.

Lemma: Let (T, L, C) be an arbitrary tree-cotree decomposition of a surface map Σ. The only
boundary subgraph of the cut graph T ∪ L is the empty graph.

Proof: Let H be a non-empty cut graph in Σ; H must be the boundary of a non-empty proper
subset Z of the faces in Σ. Consider the fundamental domain ∆= Σ \\ (T ∪ L). Because
both Z and its complement are non-empty, some interior edge e of ∆ separates a face in Z
from a face not in Z . But the interior edges of ∆ are precisely the edges in C . □

Lemma: Let (T, L, C) be an arbitrary tree-cotree decomposition of a surface map Σ. Every even
subgraph in Σ is homologous with an even subgraph of the cut graph T ∪ L.

Proof: It suffices to prove that every edge e ∈ C is homologous with a subgraph of T ∪ L that
has even degree everywhere except the endpoints of e.

Consider the fundamental domain ∆ = Σ \\ (T ∪ L). Every edge e ∈ C appears in ∆ as
a boundary-to-boundary chord, which partitions the faces of ∆ into two disjoint subsets
Y ⊔Z . (Recall that no edge in C can be an isthmus!) Every face of∆ is a face of the original
map Σ and vice versa; let β denote the boundary of Y (or equivalently, the boundary of Z)
in Σ. Because β is a boundary subgraph in Σ, e is homologous with β ⊕ e. Finally, every
edge in β ⊕ e is an edge in the cut graph T ∪ L. □

Lemma: Let (T, L, C) be an arbitrary tree-cotree decomposition of a surface map Σ. Every subgraph
of Σ is homologous with a symmetric difference of cycles in C.

Proof: By the previous lemma, it suffices to consider only even subgraphs of the cur graph T ∪ L.
Every even subgraph of T ∪ L is the symmetric difference of simple cycles in T ∪ L. The
simple cycles in T ∪ L are precisely the cycles in C. □

Homology Basis Theorem: Let (T, L, C) be an arbitrary tree-cotree decomposition of a surface
map Σ. For every even subgraph H of Σ, we have

H =

�

⊕

i∈I(H)
cycleT (ℓi)

�

⊕
�

⊕

e∈H∩C
bdryT (e)

�

for some subset I(H) ⊆ {1, 2, . . . , ḡ}. Thus, every even subgraph is homologous with the symmetric
difference of a unique subset of cycles in C, which is nonempty if and only if H is a boundary
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subgraph.

The Homology Basis Theorem immediately implies an algorithm to decide if two even subgraphs
H and H ′ are homologous: Compute their canonical decompositions into fundamental cycles
and boundaries, with respect to the same tree-cotree decomposition, and then compare the index
sets I(H) and I ′(H). A careful implementation of this algorithm runs in O( ḡn) time; details are
left as an exercise (because we’re about to describe simpler algorithms).

20a.3 Relax, it’s just linear algebra!

Unlike our earlier characterization of homotopy, our characterization of homology is unique;
every even subgraph is homologous with the symmetric difference of exactly one subset of cycles
in C. The easiest way to prove this fact is to observe that subgraphs, even subgraphs, boundary
subgraphs, and homology classes all define vector spaces over the finite field Z2 = ({0, 1},⊕, ·).
In particular, homology can be viewed as a linear map between vector spaces.

Subgraphs (subsets of E) comprise the edge space (or first chain space) C1(Σ) = Z
|E|
2 . The

(indicator vectors of) individual edges in Σ comprise a basis of the edge space.

Even subgraphs ofΣ comprise a subspace of C1(Σ) called the cycle space Z1(Σ). The Fundamental
Cycle Lemma implies that the fundamental cycles cycleT (e), for all e ̸∈ T , define a basis for the
cycle space. The number of fundamental cycles is equal to the number of edges not in T , which
is |E| − (|V | − 1). Thus, Z1(Σ) = Z

|E|−|V |+1
2 .

Boundary subgraphs of Σ comprise a subspace of Z1(Σ) called the boundary space B1(Σ). The
Fundamental Boundary lemma implies that the fundamental boundaries bdryC(e), for all e ∈ C ,
define a basis for the boundary space. The number of fundamental boundaries is equal to the
number of edges of C , which is |F | − 1. Thus, B1(Σ) = Z

|F |−1
2 .

Finally, the set of homology classes of even subgraphs of Σ comprise the (first) homology space,
which is the quotient space

H1(Σ) := Z1(Σ)/B1(Σ)

= Z|E|−|V |+1
2

�

Z|F |−1
2

∼= Z|E|−(|V |−1)−(|F |−1)
2

= Z|E|−|T |−|C |2 = Z|L|2 = Z ḡ
2 .

(Hey look, we proved Euler’s formula again!) The Homology Basis Theorem implies that homology
classes of fundamental cycles cycleT (e), for all e ∈ L, define a basis for the homology space. In
particular, there are exactly 2 ḡ distinct homology classes.

20a.4 Crossing Numbers

Another way to characterize the homology class of an even subgraph H is to determine which
cycles in a system of cycles cross H. The definition of “cross” is rather subtle, but mirrors the
intuition of transverse intersection.

Consider two distinct simple cycles α and β , and letπ be one of the components of the intersection
α∩ β . (Because α ≠ β , the intersection π must be either a single vertex of a common subpath.)
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We call π a crossing between α and β (or we say that α and β cross at π) if, after contracting the
path π to a point p, the contracted curves α/π and β/π intersect transversely at p.

Equivalently, α and β cross at π if, no matter how we perturb the two curves within a small
neighborhood of π, the two perturbed curves α̃ and β̃ intersect. By convention, no two-sided
cycle crosses itself (because we can perturb two copies of a two-sided cycle so that they are
disjoint), but every one-sided cycle crosses itself once (because we cannot).

For any simple cycles α and β , the crossing number cr(α,β) is the number of crossings between
α and β , modulo 2. In particular, cr(α,α) = 0 if for every two-sided cycle α, and cr(β ,β) = 1
for every one-sided cycle β .

We can extend this definition of crossing number to even subgraphs by linearity: cr(α⊕ β ,γ) =
cr(α,γ)⊕ cr(β ,γ). Although one can express any even subgraph as a symmetric difference of
cycles in many different ways, crossing numbers are the same for every such decomposition.

For any face f and any cycle γ, we have cr(∂ f ,γ) = 0. It follows by linearity that if either γ or δ
is a boundary subgraph, then cr(δ,γ) = 0. More generally, it follows that crossing numbers are
a homology invariant: if α and β are homologous even subgraphs, then cr(α,γ) = cr(β ,γ) for
every cycle γ, because α⊕ β is the symmetric difference of face boundaries.

Lemma: For any even subgraphs H and H ′, if cr(H, H ′) = 1, then neither H nor H ′ is a boundary
subgraph.

Proof: If (say) H is a boundary subgraph, then H is the symmetric difference of face boundaries,
and therefore cr(H, H ′) = 0 by linearity. □

Lemma: Let σ be a simple cycle and let C= {γ1,γ2, . . . ,γ ḡ} be a system of cycles in a surface map
Σ. Then σ is boundary cycle if and only if cr(σ,γi) = 0 for every cycle γi ∈ C.

Proof: If σ is a boundary cycle, homology invariance immediately implies cr(σ,γi) = cr(∅,γi) =
0.

Suppose on the other hand that σ is not a boundary cycle. Then by definition the sliced
surface Σ \\ σ is connected. Let v be a vertex of σ, and let π be any path from v+ to
v− in Σ \\σ. This path π appears in Σ as a closed walk that crosses σ exactly once, so
cr(π,σ) = 1. It follows from the previous lemma that π is not a boundary cycle. Thus, by
the Homology Basis theorem, π is homologous with

⊕

i∈I γi for some non-empty subset
I ⊆ {1,2, . . . , ḡ}. Finally, homology invariance implies cr(π,σ) =

⊕

i∈I cr(γi ,σ) = 1, so
we must have cr(γi ,σ) = 1 for an odd number of indices i ∈ I , and therefore for at least
one such index. □

Corollary: Let C be a system of cycles in a surface map Σ. An even subgraph H of Σ is a boundary
subgraph if and only if cr(H,γi) = 0 for every cycle γi ∈ C. Two even subgraphs H and H ′ of Σ are
homologous if and only if cr(H,γi) = cr(H ′,γi) for every cycle γi ∈ C.

20a.5 Systems of Cocycles and Cohomology

Cohomology is the dual of homology. While homology is an equivalence relation between
subgraphs of maps, cohomology is an equivalence relation between subgraphs of dual maps. In
fact, it’s the dual equivalence relation between subgraphs of dual maps. Two subgraphs A and
B of Σ are cohomologous if and only if the corresponding dual subgraphs A∗ and B∗ of Σ∗ are
homologous.
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I’ll adopt the convenient convention of adding the prefix “co” to indicate the dual of a structure
in the dual map. Mnemonically, a cosnarfle in Σ is the dual of snarfle in Σ∗.

• We’ve already defined a spanning co-tree of Σ is a subset of edges whose corresponding
dual edges comprise a spanning tree of Σ∗. Less formally, a spanning cotree of Σ is the
dual of a spanning tree of Σ∗.

• A cocycle in Σ is the dual of a cycle in Σ∗. (In planar graphs, every cocycle is a minimal
edge cut, but that equivalence does not extend to more complex surfaces.)

• A co-even subgraph of Σ is the dual of an even subgraph of Σ∗. That is, a subgraph H of
Σ is co-even if every face of Σ has an even number of incidences with H. No edge in a
co-even subgraph is a loop, because loops are co-isthmuses.

• The coboundary if a subset X of vertices of Σ, denoted δX , is the dual of the boundary of
the corresponding subset X ∗ of faces of Σ∗ . That is, δX is the subset of edges with one
endpoint in X and one endpoint not in X . A coboundary subgraph is the coboundary of
some subset of vertices. Every coboundary subgraph is co-even.

• Finally, two co-even subgraphs are cohomologous if their symmetric difference is a cobound-
ary subgraph.

As usual, fix a tree-cotree decomposition (T, L, C) of a surface map Σ. For every edge e ∈ T ∪ L,
let cocycleC(e) denote the subgraph of Σ dual to the fundamental cycle cyclec∗(e

∗) in the dual
map Σ∗. Finally, let K= {cocycleC(e) | e ∈ T}. The following lemmas follow immediately from
our earlier characterization of homology.

Lemma: Let (T, L, C) be an arbitrary tree-cotree decomposition of a surface map Σ. Every co-even
subgraph of Σ a symmetric difference of fundamental cocycles cocycleC(e) where e ̸∈ C.

Lemma: Let (T, L, C) be an arbitrary tree-cotree decomposition of a surface map Σ. Every co-even
subgraph of Σ is cohomologous with a co-even subgraph of the cocut graph C ∪ L.

Lemma: Let (T, L, C) be an arbitrary tree-cotree decomposition of a surface map Σ. Every co-even
subgraph of Σ is cohomologous with a symmetric difference of cocycles in K.

20a.6 Homology Signatures

More importantly, however, cohomology offers us a COnvenient method to efficiently COmpute
homology classes of even subgraphs of the primal map Σ, by assigning a COordinate system
to the first homology space. Index the leftover edges in L as ℓ1,ℓ2, . . . ,ℓ ḡ .1 For every edge e
in Σ, the homology signature [e] is the ḡ-bit vector indicating which cocycles in K contain e.
Specifically:

[e]i = 1 ⇐⇒ e ∈ cocycleC(ℓi).

Finally, the homology signature [H] of any subgraph H is the bitwise exclusive-or of the homology
signatures of its edges.

The function H 7→ [H] is a linear function from the cycle space Z1(Σ) to the vector space Z ḡ
2 of

homology signatures. In particular:

Linearity Lemma: For any two even subgraphs H and H ′ of Σ, we have [H ⊕H ′] = [H]⊕ [H ′].

Basis Lemma: For all indices i and j, we have [cycleT (ℓi)] j = 1 if and only if i = j.

1Here I’m using ℓ as a mnemonic for “leftover edge” instead of “loop”. We have a lot of other e’s flying around, so
I don’t want to use ei to denote the ith edge in L.
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Proof: The only edge in any fundamental cycleT (e) that is not in T is the determining edge e. Sim-
ilarly, the only edge in any fundamental cocycleC(e) that is not in C is the determining edge
e. Thus, cycleT (el li)∩ cocycleC(ℓ j) =∅ whenever i ̸= j, and cycleT (ℓi)∩ cocycleC(ℓi) = ℓi
for every index i. □

Theorem: Two even subgraphs H and H ′ of Σ are homologous if and only if [H] = [H ′].

Proof: By the Linearity Lemma, it suffices to prove that an even subgraph H is a boundary
subgraph if and only if [H] = 0.

Let f be any face of Σ, and let λ be any cocycle in Σ. The boundary of f either contains
no edges of λ or exactly two edges of λ, depending on whether the dual cycle λ∗ contains
the dual vertex f ∗. It follows that [∂ f ] = 0 for every face f . The Linearity Lemma implies
that [H] = 0 for every boundary subgraph H.

Conversely, suppose H is not null-homologous. Then we can write

H =

�

⊕

i∈I

cycleT (ℓi)

�

⊕
�

⊕

e∈H∩C
bdryT (e)

�

for some nonempty subset I ⊆ {1, 2, . . . , ḡ}. The Linearity and Basis lemmas imply that

[H] =

�

⊕

i∈I

[cycleT (ℓi)]

�

and therefore [H]i = 1 if and only if i ∈ I . Because I is non-empty, [H] ̸= 0. □

20a.7 Separating Cycles

Lemma: Let γ be a simple cycle in a surface map Σ. The sliced map Σ \\ γ is disconnected if and
only if [γ] = 0

20a.8 References

20a.9 Aptly Named Sir

• Pants decompositions (except possibly in passing)
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