Homotopy Testing
Given a closed walk W a surface map Σ, is W contractible on the surface? \downarrow
reduce to empty walk via spike + face mons

Max Den (1911, 1912)
Assume $X<0$ $\bar{g}>2$

Reduce to system of loops.
Find a tree-cotrec decomposition (T, L, C)
$\Lambda=\sum / T \backslash C \leftarrow$ system of loops 1 vertex 1 face
 $\overline{9}$ edges.

$$
w=\xrightarrow{v_{0} \rightarrow v_{12} \rightarrow v_{7} \rightarrow \cdots \rightarrow v_{l}}
$$

We can reduce in time $O\left(n+l^{\prime}\right)=O(n+\bar{g} l)$

Universal cover $\tilde{\Lambda}$

Universal cover is coveringspare
$\pi: \Sigma^{\prime} \rightarrow \Sigma$ covering map

$\pi: V \rightarrow V$
$E^{E^{\prime}} \rightarrow \vec{E} \quad$ preserve incidences + degrees
Σ^{\prime} is cowering space of Σ
Universal \mathfrak{z} cover is unique simply-connectial covering space = maximal connected cowering space

Lemma: Closed walk W in Σ is contractible if
\tilde{W} is a closed walk in $\tilde{\mathcal{Z}}$.
Homotopy lifting theorem.

Every nontrivid closed walk
Dehris Lemma: in X has either a spike or 2y-z consecutive edges on the boundary of a face.
\downarrow
Contractibility test:

Repeat
T if spike, remove it else face move thru some face with $\geqslant 2 \bar{g}-2$ consec.edges in W
until stack
If $\omega=\varepsilon$ return T else F
\#iterations $\leq O\left(l^{\prime} / \bar{g}\right)=O(l)$
traversal seq

match against $O(\mathrm{~g})$ strings \longrightarrow DEA $O(g)$ time
Overall running time $=O\left(n+g^{2}+g l\right)$ ヶ \uparrow

Proof of Den's Lemma:
\widetilde{W} simple closed walk, non trivial
\widetilde{w} is boundary of a disk $\Delta^{\text {in }} \tilde{\mathcal{L}}$

Combinatorial Gauss-Bonnet: $\sum_{f} x(f)+\sum_{v} x(w)=\chi$

$$
\begin{aligned}
& K(F)=1-\sum_{c \in F} L c \quad K(v)=\frac{1-\sum_{c \in v}\left(\frac{1}{2} L c\right)}{} \\
&=1-\frac{1}{2} \operatorname{deg}(v)+\sum_{c \in v} L_{c} \\
& \# \text { inideril } \\
& \text { darts }
\end{aligned}
$$

$$
\angle C=1 / 4
$$

$$
k(f)=1-\frac{1}{4} \cdot 2 \bar{g}=1-\frac{\overline{9}}{2}<\theta
$$

$$
k(u)=1-\bar{g}+\frac{1}{4} \cdot z_{\bar{g}}=1-\frac{\bar{g}}{2}<0 \text { if } \sim \text { interior }
$$

$$
K(v)=\frac{3}{4}-\frac{\bar{g}}{2}
$$

if v bdry

$$
\left\{\begin{array}{l}
=\frac{1}{4} \text { if } v \text { is convex } \\
\leq 0 \text { otherwise }
\end{array}\right.
$$

$\sum k=1 \Rightarrow \geqslant 4$ convex vertices!

$$
\begin{gathered}
\left.|F| \cdot\left(1-\frac{\bar{g}}{2}\right)+\left\lvert\, \frac{1-g}{2}\right.\right)+\left|V_{+}\right| \cdot \frac{1}{4}+\frac{1}{\left|V_{+}\right| \geqslant(2 \bar{g}-4) \cdot|F|+1}
\end{gathered}
$$

system of quads
ğquads

$$
\begin{aligned}
& x 1 z^{k} 1 y \\
& \downarrow-1 \quad-z^{k} \quad y-1
\end{aligned}
$$

$$
x-1-2_{\downarrow}^{k}-1 \text { y }
$$

$O(n+l)$ time
[Lazarns Rivand '12]
[E. Whittlesey '13]

