Surface map \rightarrow Planarize
Separators $\rightarrow r$-divisions
Cut graph - TVL (remove hair) From tree-cotree (T,L,C)
$\sum \$ TUL is disk but $\Omega(n)$ edges.

Planarizing/degenerating subgraph x each fragment of $\sum \backslash X$ has genus O
we chant as few edges a, possible.

both song separating
bontractible

1. Slice along shortest interesting cycle
r. Remise

After $O(g)$ iterations. we hare gens 0 .
Lemma[Albetson Hutchingon' 8_{x}]
$\bar{\Sigma}=$ orientable surface triangulation genus 9 , n vertices.
Shortest nousep. cycle has length $\leq Z \sqrt{n}$.
Proof:

$S=\min$ set of vertices separating σ^{-}from σ^{+}
Manger's Theorem:
$|S|=\max$ \# vertex-disjoint paths from σ^{-}to σ^{+}
Subgraph induced by S is ans a cycle homologous with σ^{+}
Sinduces non-sep cycle in Σ

$$
\Rightarrow \# S \geqslant \# \sigma \quad \Rightarrow \# S=\# \sigma
$$

\Rightarrow There are \# σ vertex-disjoint pates from σ^{-}to σ^{+}
Let π be shortest path from σ^{-}to σ^{+}

$$
\left.v-\text { to } v+\text { (adding } \leq \frac{\# r}{2}\right)
$$

π^{\prime} is non-sep cycle in Σ

$$
\begin{aligned}
& \# \pi^{\prime} \geqslant \# \sigma \\
& \# \pi \geqslant \# \sigma / \tau
\end{aligned}
$$

$\Rightarrow \# \sigma$ disjoint paths, each witt $\geqslant \# \sigma / \tau$ vertices

$$
n \geqslant \# \sigma^{2} / z \quad \Rightarrow \#+\sqrt{z n} \quad \square
$$

\Longrightarrow Planarizing antgraph with $O(\sqrt{u} \cdot g)$ vert+eiges.
$\Leftrightarrow \Theta(\sqrt{n \cdot g} \cdot \log g)$ in worst case $)$
$O(\sqrt{n g} \log 9)$

Level Planarizers

Fix source vertex S.
Tree-cotree decamp. (T, L, C)
$T=$ BFS tree Es
level $(v)=$ dist from s along T
path $h_{T}(v)=$ path thru $\tau_{\text {From stor }}$
$\operatorname{loop}_{T}(e)=\operatorname{path}(u) \cdot e^{t} \cdot \operatorname{rev}(p a t h(v))$
where $e^{+}=u \rightarrow v$
System of loops $=\left\{\operatorname{loop}_{T}\right.$ le $\left.) \mid e \in L\right\}$
union of these is a cut graph
$D_{j}=$ edges incident wite face depten j
face depth $j+1$

$$
\sum[i, j]=\operatorname{inducedb} ;\{F \mid i<\operatorname{depth}(F) \leqslant j\}
$$

$$
\begin{aligned}
& L[i, j]=L \cap \sum[i, j] \\
& Q[i, j]=\left\{100 p_{T}(e) \mid e \in L[i, j] \cap \sum[i, j]\right.
\end{aligned}
$$

$L[i, j]$

$$
Q[i, j]
$$

Lemma: $Q[i, j]$ planarizes $E[\tau, j]$
$=$ Every component of $\sum[i, j] \backslash Q[i, j]$ has genus O
Proof: (1) It suffices to consider $\bar{c}=0$ caps
(2) $\Sigma^{\prime}=\Sigma[0, j]$ wite disk e gained to cycles in D_{j}.
Isp map with no bury vila connected $^{\text {susa }}$
$-T^{\prime}=T \cap \Sigma^{\prime}$ is a BFS tree Q s.

- $C \cap \Sigma^{\prime}$ is a ${ }^{\text {co forest spanning even face except caps }}$

Extend to spanning core C^{\prime} of Σ^{\prime} br adding $\begin{array}{r}\text { edges not in } T^{\prime}\end{array}$

$$
-L^{\prime}=E\left[\Sigma^{\prime}\right] \backslash\left(C^{\prime} \cup T^{\prime}\right) \subseteq L
$$

So $\left\{l 00 p_{T}(e) \mid e \in L^{\prime \prime}\right\} \rightarrow$ out graph for Σ^{\prime}
\cap

$$
Q[0, j]=\left\{100 p_{T}(e) \mid e \in L[0, j]\right\}
$$

$$
D(i, k)=U\left\{D_{j} \mid j \bmod k=i\right\}
$$

Lemma:
Some set $D(i, k)$ has complexity

$$
\leq O(\sqrt{9 n})
$$

Proof:

$$
\begin{aligned}
& \quad \min _{i} D(i, k) \leq n / k=\sqrt{n g} \\
& \sum \| D\left(i^{*}, k\right)=\sum\left[0, i^{*}\right] \mu \sum\left[i^{*}, i^{*}+k\right] \sqcup \sum\left[k^{*}+k, i^{*}+2 k\right] \cup \ldots \\
& Q\left(i^{*}, k\right]= Q\left[0, i^{*}\right] \cup Q\left[i^{*}, i^{*}+k\right] \ldots
\end{aligned}
$$

$D\left[i^{*}, k\right] \cup Q\left[i^{*}, k\right]$ planarizes \sum
Each pathic $Q\left[i^{* *}, K\right]$ has length $\leq K$ Iq paths
\rightarrow total length $\leqslant z g k=2 \sqrt{n g}$
Theorem: Every surf triangulation has a planarizing subgraph of size $O(\sqrt{\mathrm{ng}})$.

Cor: Shortest paths $D(n \log \log n)$

$$
\begin{aligned}
& O\left(n \log ^{2} n\right) \text { negedges } \\
& g=0\left(n / \log ^{2} n\right)
\end{aligned}
$$

