\Rightarrow Let σ be shortest nontrivial cycle in \geq x any pt in o x antipodal point in o Both paths from x to x in o are shortest paths in Z (some exchange argument) >> Any shortest path crosses a strustonce. $\frac{O(n^3)^{time}}{Let \left(loop(x, yz) \right)^{time}} = path(x - vay) \cdot yz \cdot path(z - vax)$ There are O(n2) loops like this Enumerate in Olarlogen time Dijkstra xn Is loop(x, yz) contractible? ~ O(n) Dehn's algo. separating -> WFS in Z* O(n)

E shortest path tree @x (E. Har-Peled] Tree-cotree decomposition (T, L, C) That cut graph C*UL*=X Every loop(x,y&) crosses × once at yZ. separating contractible looplx, yz) is separating iff (yz)* is bridge of X contractible iff (yz) is not in reduced (X) We can test all loop(x, yz) (for each x) in O(n) time => Oln2logn) time [Oln2)]

D(grlogn) time Cabello Chambers E Whp Olg³nlogn) or Olg²nlog²n) (I any non-sep cycle rosses alless one cycle in C (i) (i) (i) shortest non-sep cycle T crosses some cycle in G exactly once. 3 MSSP " Olgin logn) Cycles + Boundaries Surface map Z nverties genus & (T,L,C) Even subgraphs = union of edge-disjoint cycles = sym. diff of cycles, (ycle space $Z_1(\Xi)$ generated by simple cycles, \oplus Fundamental cycles Ecycle, (e) le # T3 $Z_{1}(z) = Z_{2}^{E-(v-1)}$ $H = \bigoplus_{e \in H \setminus T} cycle_{T}(e)$

Boundary subgraph = boundary of partition of Faces.

every bdry is even
Boundary space
$$B_1(E) \leq Z_1(E)$$

 $X \in \mathcal{A}$ Any edge eec
 $p_1(E) \subset K$ into two trees.
 $L_partition of faces of E$
 $L_partition of$