Presentations- Fill out schedule form by tomomen (Thy) Reports "due" todayllispm
20 min .

Minimum Cuts
\mathbb{Z}_{2}-homology covering space optimal cycles/paths
MSSP
$2^{\text {OHg) }} n \operatorname{logn}$ time

value of flow f

$$
\begin{gathered}
=\sum_{s \rightarrow v} f(s \rightarrow v) \\
f(u \rightarrow v)=-f(v \rightarrow u)
\end{gathered}
$$

cycle basis
= Fundamental cycles wot any sp -tree.
cycle space $Z_{1}(\bar{z})=\mathbb{R}^{E-(N-1)}$
$\partial F=$ one unit of flow cow around boundary of f

Face potential $\alpha: F \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \partial \alpha: D \rightarrow \mathbb{K} \\
& \partial \alpha(d)=\alpha(\operatorname{left}(d)) \sim \alpha(\operatorname{right}(d))
\end{aligned}
$$

boundary space Π^{F-1}
(T, L, C) - name bdrycire by values of darts in C
Two circs are momologens if $\phi-\phi^{\prime}=\partial a$ $\phi \phi^{r}$

$$
H_{2}(\Sigma)=\mathbb{R}^{2 g}
$$

boundary,
Surface
setting: There is a fris; blue boundamplation in Σ
There is no negative cycle in ${z^{*}}^{*}$
Feasible, irc in $\sum \rightleftarrows$ shortest paths in Σ^{*}
$\alpha(F)$ $\alpha(F) \rightleftarrows \operatorname{dist}\left(F^{*}\right)$
every circe is $\overline{2}$ bury cire.

Corollary: For any flow F in Σ,
There is a feasible flow homologous with F if
\sum_{f}^{*} has no negative cycles
F and f^{\prime} are homologous iff $f-F^{\prime} i s a$ dry circulation Flow homology space $=\mathbb{R}^{\mathrm{zg}+1}$

Every flem is homologars with wt sum of

$$
\text { path }+2 \text { g cycles }
$$

Given F we can find feasible F^{\prime} homologous to F (if it exists) by computing shortest paths in Z_{F}^{*}
Planar: $O\left(n \log ^{2} n\right) \rightarrow O\left(n \log ^{2} n / \log \log n\right)$
Surface $=O\left(n \log ^{2} n / \log \log n\right)$ start with use nice $O\left(\frac{n}{g}\right)$-division instead of cycle sep at toplead

We have a membership +sepantion oracle

$O(n)$ constraints

Flow homology $L P$ has Zgri variables too man constraints so we must solve it implictly.
Ellipsoid method (1) all coefls are in \mathbb{Z} capacities
(2) Initial ε_{0}
(3) $\#$ iterations $=O\left(\log \left(\right.\right.$ vol $\left.\left.1 \varepsilon_{0} / v o l \Phi_{s}\right)\right)$

Ellipsoid

Query centroid of ε.
\rightarrow cuts ε thru center
$\varepsilon \leftarrow \min$. ellipsoid (half of ε)
After every $O(d)$ iteration bol ε drops by factor of z.
\#iterations $=O\left(g^{2} \log C\right) \quad c=$ sum of capacities foreach: $O\left(n \log ^{2} n^{2}\right)$ $\times O\left(g^{2} \log C\right)$ precision
$O\left(g^{4} n \log ^{2} n \frac{\log ^{2} c}{4}\right)$ time
Open problem, disjoint sit path on torus in Ola polytogntine? combinatorial alg.

