
CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

You’re older than you’ve ever been and now you’re even older
And now you’re even older
And now you’re even older
You’re older than you’ve ever been and now you’re even older
And now you’re older still

— They Might be Giants, ”Older”, Mink Car (1999)

1 Static-to-Dynamic Transformations

A search problem is abstractly specified by a function of the form Q : X×2D→A, where D is a (typically
infinite) set of data objects, X is a (typically infinite) set of query objects, and A is a set of valid answers.
A data structure for a search problem is a method for storing an arbitrary finite data set D ⊆D, so that
given an arbitrary query object x ∈ X, we can compute Q(x , D) quickly. A static data structure only
answers queries; a dynamic data structure also allows us to modify the data set by inserting or deleting
individual items.

A search problem is decomposable if, for any pair of disjoint data sets D and D′, the answer to a
query over D ∪ D′ can be computed in constant time from the answers to queries over the individual
sets; that is,

Q(x , D ∪ D′) =Q(x , D) �Q(x , D′)

for some commutative and associative binary function �: A×A→A that can be computed in O(1) time.
I’ll use ⊥ to denote the answer to any query Q(x ,∅) over the empty set, so that a �⊥ =⊥� a = a for all
a ∈A. Simple examples of decomposable search problems include the following.

• Rectangle counting: Data objects are points in the plane; query objects are rectangles; a query
asks for the number of points in a given rectangle. Here, A is the set of natural numbers, �=+,
and ⊥= 0.

• Nearest neighbor: Data objects are points in the plane; query objects are also points in the plane;
a query asks for the minimum distance from a data point to a given query point. Here, A is the set
of positive real numbers, �=min, and ⊥=∞.

• Triangle emptiness: Data objects are points in the plane; query objects are triangles; a query asks
whether any data point lies in a given query triangle. Here, A is the set of booleans, �= ∨, and
⊥= FALSE.

• Interval stabbing: Data objects are intervals on the real line; query objects are points on the real
line; a query asks for the subset of data intervals that contain a given query point. Here, A is the
set of all finite sets of real intervals, �= ∪, and ⊥=∅.

1.1 Insertions Only (Bentley and Saxe* [3])

First, let’s describe a general transformation that adds the ability to insert new data objects into a static
data structure, originally due to Jon Bentley and his PhD student James Saxe* [3]. Suppose we have a
static data structure that can store any set of n data objects in space S(n), after P(n) preprocessing time,
and answer a query in time Q(n). We will construct a new data structure with size S′(n) = O(S(n)),
preprocessing time P ′(n) = O(P(n)), query time Q′(n) = O(log n) ·Q(n), and amortized insertion time
I ′(n) = O(log n) · P(n)/n. In the next section, we will see how to achieve this insertion time even in the
worst case.

1

CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

Our data structure consists of ` = blg nc levels L0, L1, . . . , L`−1. Each level Li is either empty or a
static data structure storing exactly 2i items. Observe that for any value of n, there is a unique set of
levels that must be non-empty. To answer a query, we perform a query in each non-empty level and
combine the results. (This is where we require the assumption that the queries are decomposable.)

NEWQUERY(x):
ans←⊥
for i← 0 to `− 1

if Li 6=∅
ans← ans �QUERY(x , Li)

return ans

The total query time is clearly at most
∑`−1

i=0 Q(2i)< `Q(n) = O(log n) ·Q(n), as claimed. Moreover,
if Q(n)> nε for any ε > 0, the query time is actually O(Q(n)).

The insertion algorithm exactly mirrors the algorithm for incrementing a binary counter, where the
presence or absence of each Li plays the role of the ith least significant bit. We find the smallest empty
level k; build a new data structure Lk containing the new item and all the items stored in L0, L1, . . . Lk−1;
and finally discard all the levels smaller than Lk. See Figure 1 for an example.

INSERT(x):
Find minimum k such that Lk =∅
Lk ← {x} ∪
⋃

i<k Li 〈〈takes P(2k) time〉〉
for i← 0 to k− 1

destroy Li

During the lifetime of the data structure, each item will take part in the construction of lg n different
data structures. Thus, if we charge

I ′(n) =
lg n
∑

i=0

P(2i)

2i = O(log n)
P(n)

n
.

for each insertion, the total charge will pay for the cost of building all the static data structures. If
P(n)> n1+ε for any ε > 0, the amortized insertion time is actually O(P(n)/n).

⇓
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

⇓
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0

⇓
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1

⇓
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2

⇓
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3

⇓
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4

⇓
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5

⇓
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6

Figure 1. The 27th through 33rd insertions into a Bentley/Saxe data structure

2

CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

1.2 Lazy Rebuilding (Overmars* and van Leeuwen [5, 4])

We can modify this general transformation to achieve the same space, preprocessing, and query time
bounds, but now with worst-case insertion time I ′(n) = O(log n) · P(n)/n. Obviously we cannot get fast
updates in the worst case if we are ever required to build a large data structure all at once. The key idea
is to stretch the construction time out over several insertions.

As in the amortized structure, we maintain ` = blg nc levels, but now each level i consists of four
static data structures, called Oldesti, Olderi, Oldi, and Newi. Each of the ‘old’ data structures is either
empty or contains exactly 2i items; moreover, if Oldesti is empty then so is Olderi , and if Olderi is empty
then so is Oldi. The fourth data structure Newi is either empty or a partially built structure that will
eventually contain 2i items. Every item is stored in exactly one ‘old’ data structure (at exactly one level)
and at most one ‘new’ data structure.

The query algorithm is almost unchanged.

NEWQUERY(x):
ans←⊥
for i← 0 to `− 1

if Oldesti 6=∅
ans← ans �QUERY(x , Oldesti)

if Olderi 6=∅
ans← ans �QUERY(x , Olderi)

if Oldi 6=∅
ans← ans �QUERY(x , Oldi)

return ans

As before, the new query time is O(log n) ·Q(n), or O(Q(n)) if Q(n)> nε.
The insertion algorithm passes through the levels from largest to smallest. At each level i, if both

Oldesti−1 and Olderi−1 happen to be non-empty, we execute P(2i)/2i steps of the algorithm to construct
Newi from Oldesti−1 ∪Olderi−1. Once Newi is completely built, we move it to the oldest available slot
on level i, delete Oldesti−1 and Olderi−1, and rename Oldi−1 to Oldesti−1. Finally, we create a singleton
structure at level 0 that contains the new item.

AGE(i):
if Oldesti =∅

Oldesti ← Newi
else if Olderi =∅

Olderi ← Newi
else

Oldi ← Newi
Newi ←∅

LAZYINSERTION(x):
for i← `− 1 down to 1

if Oldesti−1 6=∅ and Olderi−1 6=∅
spend P(2i)/2i time executing Newi ← Oldesti−1 ∪Olderi−1
if Newi is complete

destroy Oldesti−1 and Olderi−1
Oldesti−1← Oldi−1
Oldi−1←∅
AGE(i)

New0← {x}
AGE(0)

Each insertion clearly takes
∑`−1

i=0 O(P(2i)/2i) = O(log n) · P(n)/n time, or O(P(n)) time if P(n)>
n1+ε for any ε > 0. The only thing left to check is that the algorithm actually works! Specifically,
how do we know that Oldi is empty whenever we call AGE(i)? The key insight is that the modified
insertion algorithm mirrors the standard algorithm to increment a non-standard binary counter, where
the most significant non-zero bit is either 1 or 2 and every other bit is either 2 or 3. It’s not hard
to prove by induction that this representation is unique; the correctness of the insertion algorithm
follows immediately. Specifically, AGE(i) is called on the nth insertion—or in other words, the ith ‘bit’ is
incremented—if and only if n= k · 2i − 2 for some integer k ≥ 3.

Figure 2 shows the modified insertion algorithm in action.

3

CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

⇓
A B C D E F G H

I J K L

I J K L

M N O P

Q R S T

U V

W X

Y

Z

⇓
A B C D E F G H

I J K L M

I J K L

M N O P

Q R S T

U

U V

W X

Y

Y

Z

0

⇓
A B C D E F G H

I J K L M N

I J K L

M N O P

Q R S T

U V

U V

W X

Y Z

0

1

⇓
A B C D E F G H

I J K L M N O

I J K L

M N O P

Q R S T

U V W

U V

W X

Y Z

0

0

1

2

⇓
A B C D E F G H

I J K L M N O P

Q R S T

U V W X

Y Z

0 1

2

3

⇓
A B C D E F G H

I J K L M N O P

Q

Q R S T

U V W X

Y

Y Z

0 1

2

2

3

4

⇓
A B C D E F G H

I J K L M N O P

Q R

Q R S T

U V W X

Y Z

Y Z

0 1

2 3

4

5

⇓
A B C D E F G H

I J K L M N O P

Q R S

Q R S T

U V W X

Y Z 0

Y Z

0 1

2 3

4

4

5

6

Figure 2. The 27th through 33rd insertions into a Overmars/van Leeuwen data structure

4

CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

1.3 Deletions via (Lazy) Global Rebuilding: The Invertible Case

Under certain conditions, we can modify the logarithmic method to support deletions as well as insertions,
by periodically rebuilding the entire data structure.

Perhaps the simplest case is when the binary operation � used to combine queries has an inverse �;
for example, if � = + then � = −. In this case, we main two insertion-only data structures, a main
structure M and a ghost structure G, with the invariant that every item in G also appears in M . To
insert an item, we insert it into M . To delete an item, we insert it into G. Finally, to answer a query, we
compute Q(x , M) �Q(x , G).

The only problem with this approach is that the two component structures M and G might become
much larger than the ideal structure storing M \ G, in which case our query and insertion times become
inflated. To avoid this problem, we rebuild our entire data structure from scratch—building a new main
structure containing M \ G and a new empty ghost structure—whenever the size of G exceeds half the
size of M . Rebuilding requires O(P(n)) time, where n is the number of items in the new structure. After
a global rebuild, there must be at least n/2 deletions before the next global rebuild. Thus, the total
amortized time for each deletion is O(P(n)/n) plus the cost of insertion, which is O(P(n) log n/n).

There is one minor technical point to consider here. Our earlier amortized analysis of insertions
relied on the fact that large local rebuilds are always far apart. Global rebuilding destroys that
assumption. In particular, suppose M has 2k − 1 elements and G has 2k−1 − 1 elements, and we
perform four operations: insert, delete, delete, insert.

• The first insertion causes us to rebuild M completely.

• The first deletion causes us to rebuild G completely.

• The second deletion triggers a global rebuild. The new M contains 2k−1 − 1 items.

• Finally, the second insertion causes us to rebuild M completely.

Another way to state the problem is that a global rebuild can put us into a state where we don’t
have enough insertion credits to pay for a local rebuild. To solve this problem, we simply scale the
amortized cost of deletions by a constant factor. When a global rebuild is triggered, a fraction of this
pays for the global rebuild itself, and the rest of the credit pays for the first local rebuild at each level
of the new main structure, since

∑lg n
i=0 P(2i) = O(P(n)).

We can achieve the same deletion time in the worst case by performing the global rebuild lazily. Now
we maintain three structures: a static main structure M , an insertion structure I , and a ghost structure G.
Most of the time, we insert new items into I , delete items by inserting them into G, and evaluate queries
by computing Q(x , M) �Q(x , I) �Q(x , G).

However, when |G|> (|M |+ |I |)/2, we freeze M and G and start building three new structures M ′,
I ′, and G′. Initially, all three new structures are empty. Newly inserted items go into the new insertion
structure I ′; newly deleted items go into the new ghost structure G′. To answer a query, we compute
Q(x , M) �Q(x , I) �Q(x , I ′) �Q(x , G) �Q(x , G′). After every deletion (that is, after every insertion into
the new ghost structure G′), we spend 8P(n)/n time building the new main structure M ′ from the set
(I ∪ M) \ G. After n/8 deletions, the new static structure is complete; we destroy the old structures
I , M , G, and revert back to our normal state of affairs. The exact constant 8 is unimportant, it only needs
to be large enough that the new main structure M ′ is complete before the start of the next global rebuild.

With lazy global rebuilding, the worst-case time for a deletion is O(P(n) log n/n), exactly the same as
insertion. Again, if P(n) = Ω(n1+ε), the deletion time is actually O(P(n)/n).

1.4 Deletions for Non-Invertible Queries

To support both insertions and deletions when the function � has no inverse, we have to assume that the
base structure already supports weak deletions in time D(n). A weak deletion is functionally exactly the

5

CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

I M G

M'I' G'

+ —

Figure 3. A high-level view of the deletion structure for invertible queries, during a lazy global rebuild.

same as a regular deletion, but it doesn’t have the same effect on the cost of future queries. Specifically,
we require that the cost of a query after a weak deletion is no higher than the cost of a query before
the weak deletion. Weak deletions are a fairly mild requirement; many data structures can be modified
to support them with little effort. For example, to weakly delete an item x from a binary search tree
begin used for simple membership queries (Is x in the set?), we simply mark all occurrences of x in the
data structure. Future membership queries for x would find it, but would also find the mark(s) and thus
return FALSE.

If we are satisfied with amortized time bounds, adding insertions to a weak-deletion data structure
is easy. As before, we maintain a sequence of levels, where each level is either empty or a base structure.
For purposes of insertion, we pretend that any non-empty level Li has size 2i , even though the structure
may actually be smaller. To delete an item, we first determine which level contains it, and then weakly
delete it from that level. To make the first step possible, we also maintain an auxiliary dictionary (for
example, a hash table) that stores a list of pointers to occurrences of each item in the main data structure.
The insertion algorithm is essentially unchanged, except for the (small) additional cost of updating this
dictionary. When the total number of undeleted items is less than half of the total ‘size’ of the non-empty
levels, we rebuild everything from scratch. The amortized cost of an insertion is O(P(n) log n/n), and
the amortized cost of a deletion is O(P(n)/n+ D(n)).

Once again, we can achieve the same time bounds in the worst case by spreading out both local and
global rebuilding. I’ll first describe the high-level architecture of the data structure and discuss how
weak deletions are transformed into regular deletions, and then spell out the lower-level details for the
insertion algorithm.

1.4.1 Transforming Weak Deletions into Real Deletions

For the moment, assume that we already have a data structure that supports insertions in I(n) time
and weak deletions in D(n) time. A good example of such a data structure is the weight-balance B-tree
defined by Arge and Vitter [1].

Our global data structure has two major components; a main structure M and a shadow copy S.
Queries are answered by querying the main structure M . Under normal circumstances, insertions and
deletions are made directly in both structures. When more than half of the elements of S have been
weakly deleted, we trigger a global rebuild. At that point, we freeze S̄ and begin building two new clean
structures M ′ and S′. The reason for the shadow structure is that we cannot copy from S while it is
undergoing other updates.

During a global rebuild, our data structure has four component structures M , S, M ′, and S′ and an
update queue U , illustrated above. Queries are evaluated by querying the main structure M as usual.
Insertions and (weak) deletions are processed directly in M . However, rather than handling them
directly in the shadow structure S (which is being copied) or the new structures M ′ and S′ (which are
not completely constructed), all updates are inserted into the update queue U .

6

CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

M S

S'

U±

M'

?

Figure 4. A high-level view of the deletion structure for non-invertible queries, during a lazy global rebuild

M ′ and S′ are incrementally constructed in two phases. In the first phase, we build new data
structures containing the elements of S. In the second phase, we execute the stream of insertions and
deletions that have been stored in the update queue U , in both M ′ and S′, in the order they were
inserted into U . In each phase, we spend O(I(n)) steps on the construction for each insertion, and
O(P(n)/n+ D(n)) steps for each deletion, where the hidden constants are large enough to guarantee
that each global rebuild is complete well before the next global rebuild is triggered. In particular, in the
second rebuild phase, each time an update is inserted into U , we must process and remove at least two
updates from U . When the update queue is empty, the new data structures M ′ and S′ are complete, so
we destroy the old structures M and S and revert to ‘normal’ operation.

1.4.2 Adding Insertions to a Weak-Deletion-Only Structure

Now suppose our given data structure does not support insertions or deletions, but does support weak
deletions in D(n) time. A good exmaple of such a data structure is the kd-tree, originally developed by
Bentley [2].

To add support for insertions, we modify the lazy logarithmic method. As before, our main structure
consists of lg n levels, but now each level consists of eight base structures Newi, Oldi, Olderi, Oldesti,
SNewi , SOldi , SOlderi , SOldesti , as well as an deletion queue Di . We also maintain an auxiliary dictionary
recording the level(s) containing each item in the overall structure. As the names suggest, each active
structure SFooi is a shadow copy of the corresponding active structure Fooi. Queries are answered by
examining the active old structures. Newi and its shadow copy SNewi are incrementally constructed
from the shadows SOlderi−1 and SOldesti−1 and from the deletion queue Di. Deletions are performed
directly in the active old structures and in the shadows that are not involved in rebuilds, and are inserted
into deletion queues at levels that are being rebuilt. At each insertion, if level i is being rebuilt, we spend
O(P(2i)/2i) time on that local rebuilding. Similarly, for each deletion, if the appropriate level i is being
rebuilt, we spend O(D(2i)) time on that local rebuilding. The constants in these time bounds are chosen
so that each local rebuild finishes well before the next one begins.

Newi
SNewi

Oldi
Olderi
Oldesti

SOldi
SOlderi
SOldesti

Di

Oldi-1
Olderi-1
Oldesti-1

SOldi-1
SOlderi-1
SOldesti-1

Newi-1
SNewi-1

Di-1
Newi
SNewi

Figure 5. One level in our lazy dynamic data structure.

Here are the insertion and deletion algorithms in more detail:

7

CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

AGE(i):
if Oldesti =∅

Oldesti ← Newi; SOldesti ← SNewi
else if Olderi =∅

Olderi ← Newi; SOlderi ← SNewi
else

Oldi ← Newi; SOldi ← SNewi
Newi ←∅; SNewi ←∅

LAZYINSERT(x):
for i← `− 1 down to 1

if Oldesti−1 6=∅ and Olderi−1 6=∅
spend O(P(2i)/2i) time building Newi and SNewi from SOldesti−1 ∪ SOlderi−1
if Newi and SNewi are complete

destroy Oldesti−1, SOldesti−1, Olderi−1, and SOlderi−1
Oldesti−1← Oldi−1; Oldi−1←∅
SOldesti−1← SOldi−1; SOldi−1←∅

else if Di 6=∅
spend O(P(2i)/2i) time processing deletions in Di from Newi and SNewi
if Di =∅

AGE(i)

New0← {x}; SNew0← {x}
AGE(0)

WEAKDELETE(x):
find level i containing x
if x ∈ Oldesti

WEAKDELETE(x , Oldesti)
if Olderi 6=∅

Add x to Di+1
Spend O(D(2i+1)) time building Newi+1 and SNewi+1

else
WEAKDELETE(x , SOldesti)

else if x ∈ Olderi
WEAKDELETE(x , Olderi)
Add x to Di+1
Spend O(D(2i+1)) time building Newi+1 and SNewi+1

else if x ∈ Oldi
WEAKDELETE(x , Oldi); WEAKDELETE(x , SOldi)

1.4.3 The Punch Line

Putting both of these constructions together, we obtain the following worst-case bounds. We are given a
data structure that the original data structure requires space S(n), can be built in time P(n), answers
decomposable search queries in time Q(n), and supports weak deletions in time D(n).

• The entire structure uses O(S(n)) space and can be built in O(P(n)) time.

• Queries can be answered in time O(Q(n) log n), or O(Q(n)) if Q(n)> nε for any ε > 0.

• Each insertion takes time O(P(n) log n/n), or O(P(n)/n) if P(n)> n1+ε for any ε > 0.

• Each deletion takes time O(P(n)/n+ D(n) log n), or O(P(n)/n+ D(n)) if D(n)> nε for any ε > 0.

8

CS 598 JGE Lecture 1: Static-to-Dynamic Transformations Spring 2011

References

[1] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM J. Comput. 32(6):1488–
1508, 2003.

[2] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications
of the ACM 18:509–517, 1975.

[3] J. L. Bentley and J. B. Saxe*. Decomposable searching problems I: Static-to-dynamic transformation.
J. Algorithms 1(4):301–358, 1980.

[4] M. H. Overmars*. The Design of Dynamic Data Structures. Lecture Notes Comput. Sci. 156. Springer-
Verlag, 1983.

[5] M. H. Overmars* and J. van Leeuwen. Worst-case optimal insertion and deletion methods for
decomposable searching problems. Inform. Process. Lett. 12:168–173, 1981.

*Starred authors were PhD students at the time that the work was published.

9

	Static-to-Dynamic Transformations
	Insertions Only (Bentley and Saxe* bs-dsp1s-80)
	Lazy Rebuilding (Overmars* and van Leeuwen ol-wcoid-81, o-ddds-83)
	Deletions via (Lazy) Global Rebuilding: The Invertible Case
	Deletions for Non-Invertible Queries
	Transforming Weak Deletions into Real Deletions
	Adding Insertions to a Weak-Deletion-Only Structure
	The Punch Line

